TSUKUBA J. MATH.
Vol. 25 No. 1 (2001), 103-120

ON THE BRAIDED STRUCTURES OF
BICROSSPRODUCT HOPF ALGEBRAS*

By

Shuan-hong WANG

Abstract. In this paper we show that if H ¥t A4 is a bicrossproduct Hopf
algebra then (H % A4, 0) is braided if and only if ¢ has a unique form:
o(h®a,g®b) =3 B(h1,g1)w(h2, ga—1y)w(h3, by)a(ar, b2)T(az,g20) such
that f,w,7 and « satisfy certain compatible conditions. The result is
applied to a certain bicrossproduct of H and H“”, where H is a
Hopf algebra with bijective antipode.

An appropriately general setting in which to view the basic constructions is
that of a braided Hopf algebra. Braided Hopf algebras are known as dual qua-
sitriangular, coquasitriangular Hopf algebras. They play the role of the dual of a
quasitriangular Hopf algebra and include all of the standard, multiparameter, and
nonstandard quantizations of semisimple algebraic groups. Let 4 and H be two
Hopf algebras such that H acts on A4, 4 coacts on H, and the smash product
multiplication together the smash coproduct comulitiplication on H ® 4 make this
a Hopf algebra, called a bicrossproduct Hopf algebra and denoted by H ¥r A4 see ref.
[Maj4]. It is natural that we ask when H % 4 admits a braided structure, and what
forms the braided structure o of H ¥ A4 will take if H ¥ 4 admits a braided structure.

In this paper we give a positive answer to the question above. We find
necessary and sufficient conditions for 4 and H such that their bicrossproduct is
a braided Hopf algebra. The result is applied to a certain bicrossproduct of H
and HP, where H is a Hopf algebra with bijective antipode.

The paper is organized as follows. Section 1 contains a survey of known
definitions and results for the bicrossproduct H ¢ A obtained by S. Majid in ref.
[Maj4], which will serve as a backgroud for our results. We also introduce some
new notions (see [Definition 1.3-1.4 below).
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In Section 2, we discuss the braided structures of H ¥rA. We show that
(H ¥ A, 0) is braided if and only if there exist some bilinear forms a: 4 ® 4 — k,
o H®A—k, t:A®H — k and f: H® H — k, satisfying certain compatible
conditions such that (A4,«) is braided, (H,A4,w) is a dual w-Hopf algebra pair,
(A, H,7) is an anti-skew compatible 7-Hopf algebra pair and (H,f) is a braided-
like Hopf algebra associated to (w,t,dp), where dy is a comodule structure map
of H, and ¢ has a unique form:

oh®a,g®b) = _ B(hi,g1)o(ha, ga-1y)w(h3, br)a(ar, br)t(az, g20)

What we do in Section 3 is to give a braided structure over H ¥r H? where
H is a Hopf algebra with bijective antipode.

1. Preliminaries

Throughout this paper, unless otherwise explicittly stated, k denotes an
arbitrary field, (X) = X),, and H is a Hopf algebra over the field k with a
multiplication mpy, unit yu;, comultiplication Ay, counit ¢ and antipode S. We
follow the notation in and [S], but we will write the comultiplication in H,
A:H—- H®H, A(h)=>_h ® hy, for all h e H. Denote by HMod the category
of left H-comodules and by Mody the category of right H-modules. For (V,dy) €
HMod write: for all ve V

5V(U) = ZU(_I) Xy € HQYV.

We say that A4 is an algebra in Mody (i.e. A is a right H-module algebra) if the
following conditions hold:

(1.1) (4,—) is a right H-comodule,

(1.2) ab — h=>(a— h)(b—hy) and 1 — h=¢(h)],
for all a,be A, he H.

Similarly, a coalgebra C in f#Mod (ie. C is a left H-comodule coalgebra)
means that the following conditions are satisfied:

(1.3) (C,d¢) is a left H-comodule,

(1.4) 3¢y @cot ® coz = Y cr=1)c2(-1) ® €10 ® 20, 2_&(co)e(—1) = ()1,
for all ce C.

We recall now the definition of a bicrossproduct Hopf algebra. Let 4, H be
two Hopf algebras, H a coalgebra in “Mod and A an algebra in Mody. If the
following conditions hold:

(1) Ala — h) =3 (a1 — h1)hy—1) @ ay — hao, &(a — h) = e(a)e(h);
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(i) du(hg) = 3 (A1) — 91)g2—1) ® hoga, ou(l) =1 ® 1;
(i) > hy-1y(a — ha) @ hio = > (a — hy)hy—1) ® hao,

for all h,ge H, ae A. Then the tensor product H ® 4 bears a Hopf algebra
structure, called a bicrossproduct Hopf algebra and denoted H ¢ A4, via the smash
product and smash coproduct:

(h¥xa)(g#b) = hgi¥ (a— g2)b;

A(/’liﬁ?a) = Zhl iﬁ?hz(_l)al ® hzo ﬂ’az.
It has an antipode given by
Sh®@a) =Y (1% S(h1))a)(S(ho) ¥ 1),

for all he H, ae A.
We recall now the definition of a braided Hopf algebra:

DerFINITION 1.1 ([D, LT]). A braided Hopf algebra is a pair (4,0) with a
bilinear form o: 4 ® A — k satisfying

(BR1) a(ab,c) = > a(a,c1)a(b,c);

(BR2) o(a,bc) =3 o(ai,c)a(az, b);

(BR3) > o(ai,b1)axhy = 3 a(az, ba)biay;

(BR4) o(a, 1) = &(a);o(1,a) = &(a).
In this case, ¢ is termed a braided structure over 4. It is a consequence of the
above that ¢7!(a,b) = o(S(a), b).

We next recall the definition of a dual Hopf algebra pair:

DeriNITION 1.2 ([FS]). Let H, A be two Hopf algebras. Assume that there
exists a bilinear form w: H® 4 — k. (H,4,w) is called a dual skew w-Hopf
algebra pair if the following conditions hold:

(DP1) w(hg,a) = w(h,a))w(g,ar);
(DP2) w(h,ab) =" w(hy,a)w(hy,b);
(DP3) w(1,a) = ¢(a);w(h, 1) = e(h),

and in this case, we also say that (H,A,w) is a dual pairing.

In what follows we introduce two new conceptions as follows:
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DErFINITION 1.3. Let H, A be two Hopf algebras. Assume that there exists a
bilinear form 7: A ® H — k. (4, H,7) is called an anti-skew 7-Hopf algebra pair
if the following conditions hold:

(ASP1) t(ab,h) =" t(a, ha)t(b, m);
(ASP2) t(a,hg) = 3 (a1, h)t(az,9);
(ASP3) t(a,1) = &(a); (1, h) = &(h),

and in this case, we also call (H,A,7) an anti-skew pairing.

DEerINITION 1.4. Let A, H be two Hopf algebras, and let w: H x 4 — k,
t: A x H — k be two bilinear maps. Assume that H is a left 4-comodule with
structure map Jdy. A braided-like Hopf algebra associated to (w,7,dy) is a pair
(H,B) with a bilinear form f: H x H — k satisfying

(BRL1) B(hh',g) =3 B(hi,91)B(R', g20)w(h2, g2(-1));
(BRL2) B(h,gg") = > B(h1,91)B(h30, g)w(h2, g3 _1))T(h3(-1), 920);

(BRL3) Y B(h2,92)g1h1 = > haogsof(h1, gr)w(h2, ga(-1))
t(h3-1), 920) (b4, g3(-1));

(BRL4) B(1,h) = B(h, 1) = e(h).

ExaMpLE 1.5. Let (H,o) be a braided Hopf algebra and let 4 be arbitrary
Hopf algebra. H is a left A-comodule with trivial comodule coaction dp(h) =
1 ®h. Assume that w: H® A — k, 1: A® H — k be two trivial linear maps.
Then it is easy to see that (H,A,w) is a dual w-Hopf algebra pair, (4, H,7) is
called an anti-skew 7-Hopf algebra pair, and (H,o) is also a braided-like Hopf
algebra associated to (w,7,0H).

ReMARK. The example 1.5 means that Definition 1.4 is a generalization of
the usual braided Hopf algebra.

ExAMPLE 1.6. Let (H, o) be braided Hopf algebra with bijective antipode S.
Then H is also a Hopf algebra with the opposite comultiplication, i.e, A*”(h)
= th ®h1 Define

5H2H——>HCOP®H, 5H(h)=ZS(h1)h3 @hz



On the braided structures of bicrossproduct 107

Then, one has
1) (H,dy) is a coalgebra in ¥ Mod,
2) If w(h,a) =o(a,h), then (H, H? w) is a dual pairing;
3) If ©(a,h) =o(h,a), (H*P,H,7) is an anti-skew pairing;
4) (H,p) is a braided-like Hopf algebra associated to (w,7,dy) with

ﬁ(h’ g) = Z G(hlygl)a(gL hZ)a

where w(h,a) = o(a,h), t(a,h) = a(h,a), for all ae H*?, he H.

PROOF. 1) is obvious. 2) and 3) follow that (H, o) is a braided Hopf algebra.
4) It is easy to see that (BRL4) in Definition 1.4 holds. In order to show that
(BRL1) is satisfied, one has:

> Blhi,g)e(hz, ga1)BOH, g20)
= Zﬁ hi,g1) w(h2, S(g2)94)B(h', 93)

= o(h1,91) 0(g2,h2)a(S(g3)gs, h3) o (h1, ga)o(gs, h3)

BR1
B2VS ™ o(h1,91)0( 9:S(g3) g6, h2)o (], ga)o(gs, )
N

_Z (hy, g1) g4,h2) a(h ]792) 0(93’}’5)
N ) "

BR1)+(BR2
. )Z‘T(hlhf,gl)a(gz,hzhé)=ﬂ(hh”g)’

and the condition (BRL1) is proven.
Similarly, (BRL2) also holds.
We will show that the condition (BRL3) in Definition 1.4 holds as follows:

Z hao g30B(h1, g1)@(ha, go—1)) T(h3-1), g20)w(ha, g3-1))

= Zh4£5’0/,3(h1,91)60(h2,5(92)94)7?(5(/13)/15,93)60(h6,95(—1))

= hageB(h1, g1)w(ha, S(g2)9a)T(S(h3)hs, g3)oo(hs, S(gs)g7)
= hagsB(h1,91)0(S(92)g4, h2)5(g3, S(h3)hs)a(S(gs)g7, he)

= hsgr(hi,91) 5(g2, h2)a(S(93)gs, h3) 3(ga, S(ha)hs)(S(g6)gs, h7)
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"RY'S™ hagro(h, 91)0(925(93)95, h2)o(ga, S(h3)hs)a(S(g6) s, hs)

= hagsa(hi,g1) 9(g3, h2)a(g2, S(h3)hs) 3(S(ga)ge. he)

-~

2
(BR )Zh4g4g(hl,gl)a(gz,h2S(h3)h5)a(S(93)gs,h6)

=Y " mgsa(hi, 1) 9(g2, h3)a(S(g3)gs, ha)

-~

BR1
CRY'S™ hyguo(hi, 01)0(925(93)g5, 1) = Y hagaa (i, 1) o(g3, ha)

BR3
"2 )Zglhlﬂ(’lz,gz)o(g3,h3) = Bk, g2)g1h,
and (BRL3) is proved.
Thus (H,pB) is a braided-like Hopf algebra associated to (w,1,dx).

2. The Braided Structures over H ¢ A

In this Section we will describle the braided structures over bicrossproduct
Hopf algebra H % A.
The following is obvious:

PROPOSITION 2.1. Let H % A be a bicrossproduct bialgebra. Define maps as
follows:

p:H%A— H ph®a)=c¢(@)h, n:H¥%A— A,nh®a)=ceh)a,
i:A— H%Ai(a)=1g®a, j:H— H¥%A, jh)=h® l,.

Then 1) p, i is a bialgebra map,

2) n is a coalgebra map and n((h¥ a)(g¥ b)) = e(h)(a — g)b,

3) j is a algebra map, and A(j(h)) = > hi¥hy_1) ® hyp 1y,

Let (H ¥ A,0) be a bicrossproduct bialgebra, and 6: H¥xAQ H* A — k a
bilinear form, Define:

2:AxA—kalab)=0(i®i)a®b)=0(l®a,l®b);
B:HxH—k,phg) =0(j®j)(h®g)=0ch®1,9®1);
w:HxA—koha=cj®i)h®a)=ch®1,1®a);
t:Ax H—k,7(a,h) =o(i® j)(a®h) =o(1 ®a,h®1).

The following [Proposition 2.2] is obvious:
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PROPOSITION 2.2. With the notation above, let H ¥< A be a bicrossproduct bi-
algebra. If o satisfies condition (BR4), then
1) a(a,1) =¢(a)l = a(l,a)

2) B(h,1) = e(h)1 = B(1, h),
3) w(h,1) =¢e(h)]; w(l,a) =¢a)l,
4) t(a,1) = e(a)1; =(1,h) = e(h)1.

PrROPOSITION 2.3. Let H¥tA be a bicrossproduct Hopf algebra and o :
H+A® H A — k a bilinear form, if (H ¥ A,0) is a braided Hopf algebra, then
we have:

a(h®a,g ®b) =Y Blhi,g1)w(ha, ga—1y)@(hs, br)x(ar, ba)t(az, g),

where h,ge H, a,b € A.

Proor. For all a,b,a’,b' € A; h,h’,g,9' € H, we have:
o(h®a)(h' ®a'),(g®b)(g' ®D"))
BN sh@a, (g ®@b) (g ®b))ol ®d', (9 ®b)(g' ®b')),)

I o((h@a),, (¢ ®b))o((h @ a)y, (g ® b))
a((h'®a')1,(g'®b')2)6((h’®a’)2,(g®b)2). (1)

Letting a=1, i’ =1, b=1, g’ =1 in both sides of the equation (1), we
obtain

oh®d,g@®b') = B(h1,g1)w(h2, gy-1))w(h3, b} )a(a}, by)t(ah, g2),

and so completing the proof of proposition 2.3.
The following give some useful identities concerning the forms o, f,w and t:

PROPOSITION 2.4. Let B+ H be a bicrossproduct Hopf algebra. Assume that
c(h®a,g®b) =73 B(h1,g1)0(h, ga—1))w(h3,br)a(ar, ba)t(az,g20) is a braided
structure over H << A. Then we have the following identities:

(BCI) Za)(hz,b)hl = thoa)(hl,bl)a(hz(_l),bz);
(BC2) >_t(a,g2)91 = >_ ga0t(az, g1)a(ar, ga(-1));
(BC3) > w(h,br)by = 3 (b1« h1)hy_1yo(ha, b2));
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(BC4) 3" t(ai,g2)(a2 — g1) = 3_ g-nat(az go));
(BCS) Y- B(h,g) = Y(g9(-1) — h1)ha-1)B(h20,90));
(BC6) > B(h,g1)t(a,g2) = Zﬁ(hhgl)w(hz,gz(—l))f(a — h3,92);
(BCT) S a(a, br)oo(h, by) = X w(hy, br)a(a — hy, by);
(BC8) > B(h1,g1)w(ha, b — g2) = 3_ B(h1,91)
-(hy, ga(-1))T(h3(<1), 920) 0 (h30, b);
(BC9) Y a(ar, b — g2)t(az, 1) = t(a1,g)x(az,b).

Proor. By (BR1), one gets:
a(h@a)(h' ®d'),g®b)

= Zd(h@)a,gl ® ga(-nb1)a(h’ ® a', gao ® b2). (A)
By (BR2) one has:
ah®a,(g®b)(g' ®D"))

= Zd(hl ® hy—1)a1,9' ® b')a(hp ® az,g ®b), (B)
and by (BR3) one knows:

D a((h®a);, (g ® b);)(h @ a)y(g ® b),

=> (9®b),(h®a);o((h®a),,(g @ b),). (&)
Let a =1 and g =1 in the equation (C), then we get

ZO’(h] ®h2(_1), 1 ® bl)(hZO ® b2)

= (m ® (b1 — h2)hy 1)) (h2o, b2), (D)

and by applying (id ® ¢) to both sides of the equation (D), and by proposition
2.3, we obtain (BC1); by applying (¢ ® id) to both sides of the equation (D), and
by proposition 2.3, we get (BC3).

Letting h = 1, b =1 in equation (C), then applying (id ® ¢) to both sides of
the equation (C), and proposition 2.3, we can get (BC2); applying (¢ ® id) to both
sides of the equation (C), and proposition 2.3, we can obtain (BC4).

By letting a = b = 1 in the equation (C), then applying (¢ ® id) to both sides
of the equation (C), we can get (BCS).

Let h=1, a = b =1 in the formula (A), then by proposition 2.3, and (BC2),
we get (BC6).
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By letting h=1, a’ =1, g = 1 in the equation (A), then by proposition 2.3,
we get (BC7).

By letting a =1, g = 1, ' = 1 in the formula (B), then by proposition 2.3, we
get (BC8).

Letting h = g =1, b’ = 1 in the equation (B), then by proposition 2.3, we get
(BC9).

This completes the proof.

PROPOSITION 2.5. Let Bvx H be a bicrossproduct Hopf algebra. Assume that
o(h®a,g®b) =3 B(h1,g1)0(h2, ga(—1))0(h3, br)a(ar, ba)t(az,g2) is a braided
structure over H <Y< A. Then we have

1) (A,a) is a braided Hopf algebra,

2) (H,A,w) is a dual pairing,

3) (4,H,1) is an anti-skew pairing,

4) (H,p) is a braided-like Hopf algebra associated to (w,1,0m).

Proor. It follows from the proposition 2.1 that o, f, w, and 7 respectively
satisfies (BR4), (BRL4), (DP3), and (ASP3).

1) Since i: 4 - H® A is a bialgebra map, and (B¥ 4,0) a braided Hopf
algebra, so is (4,).

2) is obvious by letting a=a’ =1, g=1 in the equation (A) and letting
a=1, g=¢g =1 in the equation (B).

3) is easy to be seen by letting h=h'=1, b=1 in the formula (A) and
letting A =1, b=5b" =1 in the equation (B).

4) Let a=da'=b=1 in the equation (A), one gets (BRLI1); by letting
a=b"=b=1 in the formula (B), one has (BRL2); by letting a =5 =1 in the
equation (C), we can complete the proof of that (A4,f) is a braided-like Hopf
algebra associated to (w,7,dy), including the proof.

THEOREM 2.6. Let Hsx A be a bicrossproduct Hopf algebra. If there exist
forms o : AXxA—k, B:HXxH—k, w:HxA—k, 1:Ax H —k, such that
the following conditions hold.

1) (A,a) is a braided Hopf algebra,

2) (H,A,w) is a dual pairing;

3) (4,H,t) is an anti-skew pairing;

4) (H,p) is a braided-like Hopf algebra associated to (w,7,9).

5) The conditions (BC1)—(BC9) in Proposition 2.4 hold.

Then (H ¥ A,0) is a braided Hopf algebra with a braided structure given by:
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ah®a,g®b) =Y Blh,g1)w(hy, ga-1)w(hs, br)a(ar, b2)t(az, g2)

ProoF. It is obvious that o satisfies (BR4). In what follows we show that
(BR1) holds:

o(h®@a)(h'®a'),g®b) = o(hh] ® (a — h)a'),g ® b)
=D B}, g1)w(hahy, g 1)(hshy, br)a((a — hY), ay, by)
| .
t((a = hy)ya3,920)
N
=Y B(mhi, 1) w(hahy, ga-1))w(hshy, by)
N e’
a((ar — hy)hsyyay, ba)t((a2 — hsp)a3, g20)
L1 / / /
= )Zﬁ(hn,gl)w(hz,gz(-n))ﬁ(hl,gzo)fO(hzhz,93(—1)2w(h4h3vb1)"

~

a((ar — hy )h/ al,bZ)T((az éo)aé,gso)

(DP1)
Zﬂ (hy, g1)w(h2, g2_1))B(hy, g20)w(h3, g3—1y)w(hs, g3—1)2)

w(ha, br)ew(h3, by) a((ar — hi)h;<_1)a;,b3) 7((a2 — hgy)as, g0)

(BR1)+(ASPI ‘ '
+:( )Zﬁ(/ll,gl)w(hzagz( )ﬂ(hl,gzo)w(h3,93( n1)w(hy, ga-1)2)

co(h4,b1)£0(hg,b2)oz(a1 — h‘;),b32a(h5( 1 )a(al,b5)

7(ay, g301)7(az — hsg, g302)

(BCT)
Zﬂhhgl (h2, g2(-1))B(h1, g20)(h3, g3—1)1)w(hy, g3-1)2)
w(h4,bl)a(al,bz)a)(hg,b3)oc(h;(_l),b4)

v

a(ay, bs)t(as, gso1)t(az — hyy . g302)
~—

C1) ,
" Zﬁ hi, g1)w(h2, ga-1))B(hy, g20)0(h3, g3-1y1)
——

CO(hé, g3(_1)2)(0(h4, bl )a(al ) bZ)w(hclta b3) .
S —

a(ay, bs)t(as, t(a; — hj,
(a1, bs)(as, gso1)t(az 3 9302 )



On the braided structures of bicrossproduct 113

—
-~

—N— , -
= Zﬂ(’ll,gl) @(hy, ga-1)) B(h1,920) ©(h3, g3-1)1 Ga—1)1
N —

@(hy, g3-1)2 Ga-1)2)@(ha, by )a(ar, ba)w(hy, bs)
—_—— ———

a(ay, bs)(as, t(ay — hj,
(a1, b4)7(a3, g30 )7(az 3, 940)

(DP1)
= Zﬁ(hlagl)w(hbgZ(—l)93(~l)g4(~ll)ﬂ(hi7 920 )

w(hy, g30(-1) Jao(-1))w(h3, br)a(ar, br)w(hy, b3)
e N —r

a(ay, bs)z(al, gsoo )t(az — hi,
(1 )(2930)( 3» 9400 )

= Zﬂ(hl,gl) w(hy, ga-1))B(h1, g201) (R, g202(-1)) (b3, b1)
—_——— N —’
a(ay, br)w(hy, bs)a(ay, bs)t(ay, gaozr)t(az — Ay, g20202)

DPI
= )Zﬂ(hl,gl)w(hz,92(—1)51),3(/1{,9201)60(’15,9202(—1))“(01,1?2)

w(hy, b3)a(ay, ba)t(ay, ga001 )(az — hs, 920202)

N

(BC2)
Zﬂ (h1, g1)@(ha, ga~1yb1)B(h1, g201) (3, G202(-1))

a(ar, b2)ew(hy, bs)a(ay, ba)a( (az — h3)y, 920202(-1))
———

t((az — h3)5, 920201 ) T(@5, 9202020)
e e’

e Zﬁ(hl g1)w(h2, ga(-1yb1)B(h1, g201) w(h3, G202(—1)) a(a1, b2)
—

o(ay, ba)e(hs, by)a((az — h3), gaoaoa(—1)1)%(ha(_1), 920202(~1)2)

t(as — hyy, g20201)7(@%, 9202020)

(DP1)
Zﬂ(hl,gl w(hy, ga(~1yb1)B(h1, gao1)(hy, Ga02(-1)) @(h3, g203(—1))
~—————

(a1, ba)a(ay, ba)w(hg, bs) a((az — hy), gaoso(-1)1)

-~

“(h 1+ 92030(~1)2)T(@3 — hsy, 92020)7(@%, g20300)
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BC7) , , ,
Bz Zﬁ(hl ,91)@(ha, g2(—1yb1)B(h1, ga01) (B3, G202(-1)) Eo(h3, 9203(—1)2

a(ar, b2)a(ay, ba)w(hs, bs)alaz, ga03(- 1)1) o(hy_1y, 9203(-1)3)

~

t(ay — hyy ,92020)7(@3, 92030)
N

BCl1 ’
= )E.B(hl,gl)w(hbg2(—l)bl)§(h17gZOl)w(hé,9202(—L)a(a279203(—1)1)

a(ar, ba)a(ay, ba)w(hs, by)w(hy, g203(-1)2)

3(03 — h3, 920201‘5(61'2, g2030)

D

BC6
= )Zﬁ(hl,gl)w(h2,92(—1)b1)ﬂ(h{,gzol)d(az,gzos(—l))

a(ay, bz)a(al,b4) w(hy, b3)w(hy, gr30(- )

-~

(a3, g202) (a3, g20300)
DP1)+(BC2)
( Zﬂ (1, g1)w(h2, ga(—1yb1)B(h1, g201) (a2, 9203(~1))

a(ay, ba)a(a), ba)w(hs, g202(-1)b3) (a2, 9203)7(a3, 92020),

and

Z o(h® a,g1 ® g—1b1)o(h’ ® a’, g2 ® b2)

= Zﬁ(hlagl)w(hZaQZ(—l))w(hSag3(—l) 1b1) a(ar, gs(—1)2b2)t(az, g20)

T —

B(h}, gso1)(hb, gzo2-1) ) (h3, b3)a(ay, ba)T(a3, g3020)

(DP1)
Zﬁ(hl,gl)w(hz,gz( 193(- 1)b1)°‘(al g3o(-1) 1)b2)T(az,gzo)

~~

Bk}, gz001 )0 (h}, gr002(1) )0 (h3, b3)a(ay, bs)t(as, g0020)

BR2
(B2 Zﬂ(hl ,g1)o(ha, ga-1ybr)a(ar, b2) f‘(az, g202(-1)) (a3, 9202

e

B(R}, ga0201 ) (b, Gaoaoa(—1) )@ (h3, b3)a(ay, ba)T(as, g202020 )

DP1)+(BC2 ,
(Brix )Zﬁ(hl,gl)w(hz,gz(—l)bl)ﬁ(hl,gzol)a(az,9203(—1))

a(ay, by)a(a), ba)w(hy, gaoa(—1)b3) (a2, 9203)7(a3, 92020),
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and (BR1) is proved.

Similarly, we can check (with tedious calculation) that (BR2) and (BR3)
hold.

This completes the proof of Theorem.

Thus it follows from [Proposition 2.3, [Proposition 2.4 and
that:

THEOREM 2.7. The bicrossproduct Hopf algebra H < A is braided if and only if
there exist forms a: AxA—k, f:HxH—k, o:HxA—k, and 1: Ax H -k,
such that (A, a) is a braided Hopf algebra, (H, A, w) is a dual pairing, (A, H,7) is an
anti-skew pairing, (H,p) is a braided-like Hopf algebra associated to (w,7,0y) and
the conditions (BC1)—(BC9) are satisfied. Moreover, ¢ has a unique decomposition:

o(h®a,g@b) =Y Blhi,g1)w(h, gy -1))w(hs, br)a(ar, ba)t(az, g20).

REMARK. Let H be arbitrary Hopf algebra. shows that if 4
is not a braided Hopf algebra then the H ¥ A4 is not a braided Hopf algebra
either.

COROLLARY 2.8. Let H¥ A be bicrossproduct Hopf algebra and (H,p),
(A, o) braided Hopf algebras. Then a(h® a,g ® b) =>_ f(h,g)a(a,b) is a braided
structure over H < A if and only if

(BCY') > e(b)h =3 hoa(h—1,b);

(BC2') > e(a)g = 3 - gox(a, g(-1));

(BC3) Ye(h)b=>b—h;

(BC4') >_B(h,g) = >_(9-1) — h1)hy—1yB(h20, 90));

ProOOF. Letting f: Hx H —k, w: H x A — k, be trivial in [Theorem 2.7,
we obtain this Corollary.

COROLLARY 2.9. Let H< A be bicrossproduct Hopf algebra and (H,B) a
braided Hopf algebras. Assume that A is cocommutative. Then a(h® a,g ® b) =
> B(h,g)e(a)e(b) is a braided structure over H < A if and only if

(BC1") > e(h)b=>b— h;
(BC2") >_B(h,g) = >_(g(-1) — h1)hy—1yB(h20, 90)).
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COROLLARY 2.10. Let H Y A be bicrossproduct Hopf algebra and (A,a) a
braided Hopf algebras. Assume that H is cocommutative. Then o(h® a,g ® b) =
S"a(a,b)e(h)e(g) is a braided structure over H<x A if and only if

BC1") Y e(b)h =3 hoa(h(-1),b);

(
(BC2") Y- e(a)g = 3_ go(a, g(-1));
(BC3") S e(h)b=>_b— h.
COROLLARY 2.11. Let H<t A be bicrossproduct Hopf algebra, (H,A,w) a
dual pairing, and (A, H,t) an anti-skew pairing. Assume that A, H are cocom-
mutative. If the condition gh =" hgow(hi,gi-1))t(ha-1), gr0)w(hs, ga—1)) is

satisfied, then oc(h® a,g ® b) =>_ w(hi,g(-1))w(h2,b)t(a,go) is a braided struc-
ture over HY< A if and only if

(BC1”) S w(h, b1)by = S(by — hi)hy_nyo(hao, ba);

(BC2") Y- t(a1,92)(az — g1) = X_g(-nait(az, go);

(BC3") S e(h)t(a,g) = > w(hi,g-1))t(a — h2,90);

(BC4™) S w(h,b — g) = 3 w(hi, g(-1))t(hz-1), go)w(h2o, b).

PrOOF. Letting f: H x H — k, a: A x A — k be trivial in [Theorem 2.7, we
get this Corollary.

3. Application to H ¥r H?

Let H be an arbitrary Hopf algebra with a bijective antipode S. Then H” is
also a Hopf algebra with an antipode S~!. Define

— HP®H—> H, a—h=Y_ S(h)ah,

for all ae H°?, he H,
and

o :H— HPQH, ouyh)=>Y_ S(h)h® h,

for all he H, then H is a coalgebra in #*"Mod and H? is an algebra in Modp.
Then we can construct a bicrossproduct M(H)=H ® H “? with multiplication
and comultiplication respectively as follows:

(h®@a)(g®b) = hg1 ® S(g2)agsb;

Ah®@a) = h ® S(h)hsa) ® hs @ ay.
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Let (A4,a) be braided. Then (4”7, «") is also braided with a'(a,b) = a(b,a).
Thus, we have

THEOREM 3.1. Let (H,0) be a braided Hopf algebra. Then the bicrossproduct
Hopf algebra H ¥ H? is a braided Hopf algebra with a braided structure given

by:
G(h®a,g®b) = alhi,g1)0(gab, hra),

for all a,be H*?, h,ge H

ProoF. Let B(h,g) = a(h,g1)0(g2,h2), w(h,a) =a(a,h), t(a,h) = o(h,a)
for all ae H*?, h,ge H. By Example 1.6 (H,H“?,w) is a dual pairing,
(H®P,H,7) is an anti-skew pairing, and (H,f) is a braided-like Hopf algebra
associated to (w, 7,0y). Thus we will only check that the conditions (BC1)-(BC9)
are satisfied.

we first have:

Z @(hy, ba)a(hy—1y, b1)ha = Z a(by, h1)a(by, hy-1))h20

BR2
=" a(ba, hi)o(by, S(ha)ha) hs "= S (b, by S(hs) ha)hs
~ W

o

= o(b,)h = w(hy,b)hy,

and (BC1) is proved.
Similarly, we can show that the condition (BC2) is also true.
Secondly, we have:

D (b2 — h)hy_pyw(hag,br) =Y (by — hy )S(h2)haco(hs, by)

= S(h)bahaS(hs)hsw(ha, by) = > S(hy)bshseo(hy, by)
= 3" S(h) basa(br, o) =S S(h)habio(ba, hs)

= Zbla(bz,h) = Zblw(hvb2)a

and (BC3) is proved.
Similarly, it is not hard to verify that the condition (BC4) also holds.
Third, we check (BCS) as follows:
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> “(g(-1) — m)hy-Blhn, g0 )
=~

N~

= Z(S(gl)g3 — hy)S(ha)hap(h3, g2)
N ——’

=Y S(h1)S(g1)g3h2S (h3)hsP(hs, g2)

= ZS(h1)S(gl)93h3ﬁ(h2»g2)

= ZS (h)S gahs o(hy,g2) 0(g3, h3)
BR3)ZS h)S(g1) hagso(ha, 92) (ga, ha)

BR3
RS S(gih)gahaohs, g3)o (g1, ha)

= Z O'(hl ) gl)a(gz, h2) = ﬂ(h, g),
and (BCS) is proven.

> " B(hi, gr)w(ha, g2(-1))t(a@ — h3, g20)
= a(h,g1)a(g2, h2)a(gs-1), h3)a(g30,a — hg)

= olh,g1) 5(g2,h)a (5(93)95,’1320(94,S(h4)ah5)

CRYS™ 6(h1, 91)0(g2(g3)g5, 2) (g4, S(h3)ahs)

—z hl gl g3)h2) (g27S(h3)ahL)

(BR2)

=" " o(h1,91)0(92, haS(h3)aha) = D _ a(h1, g1) (g2, ah2)

B2 ol g)o(92, ha)algs,a) = D flhg1)7(, 92),

and this proves (BC6).
It is easy to check that the condition (BC7).
Finally, we have:

> B, gr)o(hz, ga-1))T(ha(-1y, g20)0(h20, b)

= Za(hl,91)0(92,hz)U(gs(—l),h3)0(@’ ha(—1))o(b, hao)

=S a(h1,01) 0(92, h2)a(S(g3)gs, h3) (gs, hai-1))a (b, hao)
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BR1
= )ZJ(hl,91)0(92(5(93)95,h2)0(94,h3(—1))0(b,h30)
= Za(hl,91)0'(93,hz)o'(gz,h3(-1))<7(b,@)

=" (ki g1) 5(g3, h2)a(ga, S(hs)hs) a(b, ha)

—

(BR2) > " a(h1,91)0(g2, haS(h3)hs)a(b, hs)

- Za(hl’gl)a(gz,ha)a(b, hy)

S o(h1,91)0(02, ) o(S(g3)bgs, )

~

= Bh,g1)a(b — ga,hs) = D> Bk, g1)w(h2, b — g2),

and (BCS8) is proven.

(D]
(DT]

[FS]

[LT]

A similar proof shows that (BC9) is also true.

Thus, by we have
G(h®a,g®b)

=Y Bk, g1) wlhz, go—1))ew(hs, ba)x(az, br) (a1, g20)

= o(h1,91)0(g2, h2)o(g3-1y, h3)a(ba, ha)a(b1, a2)a(g30, ar1)

=Y _o(h,91) (g2, h2)o(S(g3)gs, h3) 7(bs, ha)o (b1, a2)a(gs, ar)

(B—E—l) Z U(hlagl)g(g?n hZ)a(bZa h320'(b1 ’ az)a(gz, al)

-~

BRI BR2
"z O'(hl,91)3(93b2,h2)0(92b1,a2( = )Zo(hl,gl)o'(gzb,hza)-

~"

This concludes the proof.
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