TRIANGULAR MATRIX ALGEBRAS OVER QUASI-HEREDITARY ALGEBRAS

By

Bin ZHU*

Abstract. Let A and B be quasi-hereditary algebras and M an A - B-bimodule. Let Λ be the triangular matrix algebra of A and B with M. The quasi-heredity of the triangular matrix algebra Λ is proved under a suitable condition on the bimodule M. Furthermore the category of Δ -good Λ -modules and the characteristic module of Λ are described by using the corresponding ones of A and B.

1. Introduction

Let R be a commutative artin ring and A an artin algebra over R. If R is a field k, then A is a finite dimensional k-algebra. We will consider finitely generated left A-modules, maps between A-modules will be written on the right hand of the argument, thus the composition of maps $f: M_1 \to M_2, g: M_2 \to M_3$ will be denoted by fg. The category of all A-modules will be denoted by A-mod. All subcategories considered will be full and closed under isomorphisms.

Given a class Θ of A-modules, we denote by $\mathscr{F}(\Theta)$ the full subcategory of all A-modules which have a Θ -filtration, that is, a filtration

$$0 = M_t \subset M_{t-1} \subset \cdots \subset M_1 \subset M_0 = M$$

such that each factor M_{i-1}/M_i is isomorphic to one object in Θ for $1 \le i \le t$. The modules in $\mathscr{F}(\Theta)$ are called Θ -good modules, and the category $\mathscr{F}(\Theta)$ is called the Θ -good module category.

Let E(i), $i \in E$ be a complete list of simple A-modules, where $E = \{1, ..., n\}$ is a natural ordered set. For any $i \in E$, let P(i) be the projective cover of E(i) and

Keywords. Quasi-hereditary algebras; triangular matrix algebras; characteristic modules.

Mathematics Subject Classification. 16G10, 16G20, 16W30.

^{*}This project was supported by China Postdoctoral Science Foundation and NSF 10001017. Received March 1, 1999.

Revised September 11, 2000.

Bin ZHU

denote by $\Delta(i)$ the maximal factor module of P(i) with composition factors of the form E(j) with $j \leq i$. Dually, let Q(i) be the injective hull of E(i) and by $\nabla(i)$ the maximal submodule of Q(i) with composition factors of the form E(j) with $j \leq i$. Let Δ (respectively, ∇) be the full subcategory consisting of all $\Delta(i)$, $1 \leq i \leq n$, (respectively, all $\nabla(i)$, $1 \leq i \leq n$). The modules in Δ are called standard modules and ones in $\overline{\nabla}$ are called costandard modules.

The algebra A, or better, the pair (A, E) is called a quasi-hereditary algebra if ${}_{A}A$ belongs to $\mathscr{F}(\Delta)$ and $\operatorname{End}_{A}(\Delta(i))$ is a division ring, for any $1 \le i \le n$.

From now on, we will assume that A is quasi-hereditary. It was proved in [4] that $\mathscr{F}(\Delta)$ and $\mathscr{F}(\nabla)$ are functorially finite in A-mod, i.e. they are both covariantly finite and contravariantly finite in A-mod. A full subcategory \mathscr{T} of A-mod is called contravariantly finite in A-mod provided that for any A-module M, there is a module M_1 in \mathscr{T} with a morphism $f: M_1 \to M$ such that the restriction of $\operatorname{Hom}(-, f)$ to \mathscr{T} is surjective. Such a morphism f is called a right \mathscr{T} -approximation of M. A right \mathscr{T} -approximation $f: M_1 \to M$ of M is called minimal if the restriction of f to any non-zero direct summand of M_1 is nonzero. The covariantly finiteness of \mathscr{T} , a left \mathscr{T} -approximation of M and the minimal left \mathscr{T} -approximation of M can be defined dually, we omit them and refer to [4]. The category $\mathscr{F}(\Delta)$ admits the following description [4]

$$\mathscr{F}(\Delta) = \{ X \in A \operatorname{-mod} | \operatorname{Ext}^{1}(X, \nabla) = 0 \}$$
$$= \{ X \in A \operatorname{-mod} | \operatorname{Ext}^{i}(X, T) = 0 \text{ for all } i \ge 1 \}.$$

Dually, one has that

$$\mathscr{F}(\nabla) = \{ X \in A \operatorname{-mod} | \operatorname{Ext}^{1}(\Delta, X) = 0 \}$$
$$= \{ Y \in A \operatorname{-mod} | \operatorname{Ext}^{i}(T, Y) = 0 \text{ for all } i \ge 1 \}.$$

It was also proved in [4] that there is a unique basic module ${}_{A}T$ such that $add({}_{A}T) = \mathscr{F}(\Delta) \cap \mathscr{F}(\nabla)$. Such ${}_{A}T$ is a generalized tilting and cotilting A-module, which is called the characteristic module of A. The endomorphism ring of ${}_{A}T$ is again a quasi-hereditary algebra with respect to the opposite ordering E^{op} of E, which is called Ringel dual of A.

Now we recall from [5, 2.5] the notion of a subspace category. Let \mathscr{K} be a Krull-Schmidt category over a field k, and $|-|: \mathscr{K} \to k$ -mod an additive functor. We call the pair $(\mathscr{K}, |-|)$ a vectorspace category and denote by $\widetilde{\mathscr{U}}(\mathscr{K}, |-|)$, called subspace category of $(\mathscr{K}, |-|)$, the category of all triples $V = (V_0, V_w, \gamma_V)$,

where V_0 belongs to \mathscr{K} , V_{ω} belongs to k-mod and $\gamma_V : V_{\omega} \to |V_0|$ is a k-linear map. A morphism from V to V' by definition is a pair (f_0, f_{ω}) , where $f_0 : V_0 \to V'_0$ and $f_{\omega} : V_{\omega} \to V'_{\omega}$ such that $\gamma_V |f_0| = f_{\omega} \gamma_{V'}$.

If \mathscr{K} is finite, i.e. \mathscr{K} has, up to isomorphisms, only finitely many indecomposable objects, then there exists an injective realization of \mathscr{K} , namely, there are a finite dimensional k-algebra A and a left A-module M such that we can identify \mathscr{K} with A-Inj., the category of finitely generated injective left Amodules, |-| with the restriction of $\operatorname{Hom}_{A}(M, -)$ to A-Inj., Thus $\widetilde{\mathscr{U}}(\mathscr{K}, |-|)$ is a full subcategory of $\widetilde{\mathscr{U}}(A\operatorname{-mod}, \operatorname{Hom}_{A}(M, -))$, the later is equivalent to Λ mod, where

$$\Lambda = A[M] = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$$

is the one-point extension of A by M, and any triple (V_0, V_ω, γ) in $\tilde{\mathscr{U}}(\mathscr{K}, |-|)$ corresponds to the left Λ -module $\begin{pmatrix} V_0 \\ V_\omega \end{pmatrix}$; the operation of $\begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ on it is given by the map $\bar{\gamma}_V : M \otimes_k V_\omega \to V_0$ adjoint to γ_V [5, 1].

If \mathscr{K} is a directed vectorspace category, i.e. there are no cycles between indecomposable objects in \mathscr{K} , it was proved in [2] that (Λ, E) is a quasihereditary algebra with standard modules $E(1), E(2), \ldots, E(n), P(n+1)$, and $\mathscr{\widetilde{U}}(\mathscr{K}, |-|))$ is equivalent to the category of ∇ -good modules over Λ , where P(n+1) is the indecomposable projective Λ -module corresponding to the extension vertex.

Let Λ be the one-point extension of A by M. In contrasting to the ordering on simple Λ -modules above, we fix an ordering ${}_{A}E$ on simple A-modules and let ${}_{A}E = \{0\} \cup_{A} E$ such that E(0) is the simple Λ -module corresponding to the extension vertex. It was proved in [3] that if $(A, {}_{A}E)$ is a quasi-hereditary algebra and M belongs to $\mathscr{F}({}_{A}\Delta)$, then $(\Lambda, {}_{\Lambda}E)$ is a quasi-hereditary algebra and $\mathscr{\widetilde{U}}(\mathscr{F}({}_{A}\Delta), \operatorname{Hom}_{A}(M, -)) \approx \mathscr{F}({}_{\Lambda}\Delta)$.

In the study of a quasi-hereditary algebra A, instead of the complete module category, one is mainly interested in the category $\mathscr{F}(\Delta)$, or the category $\mathscr{F}(\nabla)$. In this paper, we study Δ -good (or ∇ -good) module categories and characteristic modules of a one-point extension algebra, and of a triangular matrix algebra.

This paper is organized as follows: in Section 2 our algebras are finite dimensional over field k. We consider the one-point extension Λ of A by an arbitrary left A-module M. We prove that for an ordering ${}_{A}E$ on simple A-modules, if $(A, {}_{A}E)$ is a quasi-hereditary algebra and M is a left A-module, then $(\Lambda, {}_{\Lambda}E)$ is a quasi-hereditary algebra, where ${}_{\Lambda}E = {}_{A}E \cup \{n+1\}$ such that

E(n+1) is the simple A-module corresponding to the extension vertex. We describe the category of ∇ -good modules over Λ by using the notion of a subspace category and describe the characteristic module of Λ , these results generalize the main results in [2]; in Section 3, all algebras are artin algebras over a commutative artin ring R. We prove the quasi-heredity of the triangular matrix algebras of quasi-hereditary algebras A and B by a bimodule $_AM_B$ under a suitable condition on the bimodule M. Moreover, we describe the good module category over this quasi-hereditary triangular matrix algebra and the characteristic module of it. We note that if R is a field k, A is a finite dimensional k-algebra and B is k, then this triangular matrix algebra becomes one-point extension of A by M, but the ordering on the simple modules of the one-point extension considered in this section is different from that of the one-point extension considered in Section 2.

2. One-Point Extensions

Thoughout this section, any algebra means a finite dimensional one over a fixed field k. Let (A, AE) be a quasi-hereditary algebra, M an arbitrary left A-module, and $\Lambda = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$ the one-point extension. Let $\Lambda E = AE \cup \{n+1\}$ such that E(n+1) is the simple module corresponding to the extension vertex,

THEOREM 2.1. Let $(A, {}_{A}E)$ be a quasi-hereditary algebra and M a left A-module. Let Λ be the one-point extension of A by M and ${}_{\Lambda}E$ the ordering on simple Λ -modules as above. Then $(\Lambda, {}_{\Lambda}E)$ is a quasi-hereditary algebra, and $\mathscr{F}({}_{\Lambda}\nabla) = \mathscr{\tilde{U}}(\mathscr{F}({}_{A}\nabla), \operatorname{Hom}_{A}(M, -)).$

PROOF. Let $E(1), \ldots, E(n)$ be the simple A-modules. Thus there is a complete set of orthogonal primitive idempotents $\{e_1, \ldots, e_n\}$ of A. Let $e_{n+1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $\{e_1, \ldots, e_n, e_{n+1}\}$ is a complete set of orthogonal primitive idempotents of Λ .

It is easy to see that the costandard Λ -modules are as follows:

$${}_{\Lambda}\nabla(i) = \begin{pmatrix} {}_{\Lambda}\nabla(i) & 0 \\ 0 & 0 \end{pmatrix}, \quad 1 \le i \le n.$$
$${}_{\Lambda}\nabla(n+1) = {}_{\Lambda}Q(n+1) = E(n+1).$$

We have that $\operatorname{End}_{\Lambda}({}_{\Lambda}\nabla(i))$ is a division ring and ${}_{\Lambda}Q(i) \in \mathscr{F}({}_{\Lambda}\nabla)$ for any $1 \le i \le n+1$. Then $(\Lambda, {}_{\Lambda}E)$ is a quasi-hereditary algebra with costandard modules ${}_{\Lambda}\nabla(i) = ({}_{A}\nabla(i), 0, 0)$ for all $1 \le i \le n$ and ${}_{\Lambda}\nabla(n+1) = {}_{\Lambda}E(n+1) = (0, k, 0)$.

Since the subspace category $\tilde{\mathscr{U}}(\mathscr{F}(_{A}\nabla), \operatorname{Hom}(M, -))$ is a full subcategory of Λ -mod which is closed under extensions and for any $i, _{\Lambda}\nabla(i)$ is in $\check{\mathscr{U}}(\mathscr{F}(_{A}\nabla), \operatorname{Hom}(M, -))$, we have that $\mathscr{F}(_{\Lambda}\nabla) \subseteq \check{\mathscr{U}}(\mathscr{F}(_{A}\nabla), \operatorname{Hom}(M, -))$. For any object $(V_{0}, V_{\omega}, \gamma_{V})$ in $\check{\mathscr{U}}(\mathscr{F}(_{A}\nabla), \operatorname{Hom}(M, -))$, we have an exact sequence:

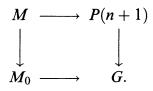
$$0 \to (V_0, 0, 0) \to (V_0, V_\omega, \gamma_V) \to (0, V_\omega, 0) \to 0,$$

where V_0 is in $\mathscr{F}({}_{A}\nabla)$, hence $(V_0, 0, 0)$ is in $\mathscr{F}({}_{A}\nabla)$. We know that $(0, V_{\omega}, 0)$ is in $\mathscr{F}({}_{A}\nabla(n+1))$ from the fact ${}_{A}\nabla(n+1) = (0, k, 0)$. Then $(V_0, V_{\omega}, \gamma_V)$ is in $\mathscr{F}({}_{A}\nabla)$. Therefore $\mathscr{F}({}_{A}\nabla) = \mathscr{U}(\mathscr{F}({}_{A}\nabla), \operatorname{Hom}(M, -))$. The proof is finished.

Let $(\Lambda, \Lambda E)$ be the quasi-hereditary algebra in Theorem 2.1. Let $f: M \to P(n+1)$ be the injection such that coker f is the simple projective E(n+1) (the existence of f is from the fact that M is the radical of $P_{\Lambda}(n+1)$). Let $f_0: M \to M_0$ be the minimal left $\mathscr{F}(\Lambda \nabla)$ -approximation of M. Thus by [4], we have that the following exact sequence:

$$0 \to M \xrightarrow{f_0} M_0 \to N_0 \to 0$$
, where $N_0 \in \mathscr{F}(\Lambda \Delta)$.

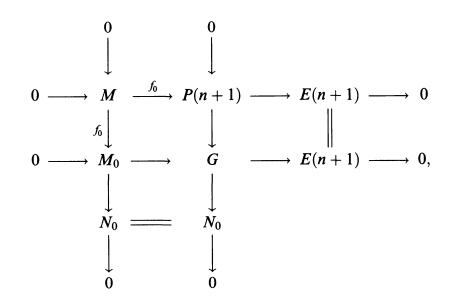
Then we have a commutative diagram which is the pull-out diagram of morphisms f and f_0 .



Let T_0 be an indecomposable direct summand of G having a composition factor as E(n+1). We have that

THEOREM 2.2. Let A, M and Λ be the same as in Theorem 2.1. and $_AT$ the characteristic module of A. Let $_{\Lambda}T = _AT \oplus T_0$. Then $_{\Lambda}T$ is the characteristic module of the quasi-hereditary algebra $(\Lambda, _{\Lambda}E)$.

PROOF. We have the exact sequence: $0 \to M \to M_0 \to N_0 \to 0$ with $N_0 \in \mathscr{F}(\Lambda \Delta)$, and a commutative diagram



where the rows and the columns are exact sequences. Since $\mathscr{F}(\Lambda\nabla)$ and $\mathscr{F}(\Lambda\Delta)$ are closed under extensions, we have that G is in $\mathscr{F}(\Lambda\Delta)$ and in $\mathscr{F}(\Lambda\nabla)$. From the constructions of standard (or costandard) Λ -modules, we have that ${}_{A}T \in \mathscr{F}(\Lambda\Delta) \cap \mathscr{F}(\Lambda\nabla)$. Since T_0 has a composition factor as E(n+1) and T_0 is not the direct summand of ${}_{A}T$, we have that ${}_{\Lambda}T$ is the direct sum of n+1 nonisomorphic indecomposable modules belonging to $\mathscr{F}(\Lambda\Delta) \cap \mathscr{F}(\Lambda\nabla)$. Thus it is the characteristic module of the quasi-hereditary algebra $(\Lambda, \Lambda E)$. The proof is finished.

EXAMPLE. Let A be the algebra given by

$$2 \circ \xrightarrow{\alpha} \circ 1$$

with relation $\beta \alpha = 0$. Then A is a quasi-hereditary algebra with standard modules ${}_{A}\Delta(1) = E(1), {}_{A}\Delta(2) = \frac{E(2)}{E(1)}$. The characteristic module of A is $T = \frac{E(1)}{E(1)} = E(2)$.

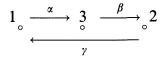
E(1)

Let Λ be the one-point extension of A by M = E(2). Then Λ is the algebra given by

with relations $\beta \alpha = \alpha \gamma = 0$. Then Λ is a quasi-hereditary algebra with standard

7

REMARK. The Ringel dual of the quasi-hereditary algebras in Theorem 2.1. is neither a one-point extension of algebras, nor a one-point coextension of algebras in general. For example, the Ringel dual of Λ in the example above is the algebra given by:



with relation $\gamma\beta = 0$.

3. Triangular Matrix Algebras over Quasi-Hereditary Algebras

Throughtout this section, we assume that A and B are artin R-algebras, where R is a commutative artin ring. Let

$$\Lambda = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$$

be the triangular matrix algebra, where M is an A - B-bimodule such that Λ is an artin R-algebra. It is well known that any Λ -module N can be identified with

Bin Zhu

a triple (X, Y, f), where X is an A-module, Y a B-module, and $f : M \otimes_B Y \to X$ an A-module morphism [1].

THEOREM 3.1. Let $(A, {}_{A}E)$ and $(B, {}_{B}E)$ be quasi-hereditary algebras and ${}_{\Lambda}E = ({}_{B}E, {}_{A}E)$. If ${}_{A}M$ is in $\mathscr{F}({}_{A}\Delta)$, then $(\Lambda, {}_{\Lambda}E)$ is a quasi-hereditary algebra. Moreover, $\mathscr{F}({}_{\Lambda}\Delta) = \{(X, Y, f) \mid X \in \mathscr{F}({}_{A}\Delta), Y \in \mathscr{F}({}_{B}\Delta)\}.$

PROOF. Let (A, AE) and (B, BE) be quasi-hereditary algebras and $\Lambda E = (BE, AE)$ the ordering on simple Λ -modules. An easy calculation shows that $(\Lambda, \Lambda E)$ is a quasi-hereditary algebra with standard modules

$${}_{\Lambda}\Delta(1) = \begin{pmatrix} 0 & 0 \\ 0 & {}_{B}\Delta(1) \end{pmatrix},$$

$$\dots \dots$$

$${}_{\Lambda}\Delta(m) = \begin{pmatrix} 0 & 0 \\ 0 & {}_{B}\Delta(m) \end{pmatrix},$$

$${}_{\Lambda}\Delta(m+1) = \begin{pmatrix} {}_{A}\Delta(1) & 0 \\ 0 & 0 \end{pmatrix},$$

$$\dots \dots$$

$${}_{\Lambda}\Delta(m+n) = \begin{pmatrix} {}_{A}\Delta(n) & 0 \\ 0 & 0 \end{pmatrix}.$$

We now prove the second assertion. Let \mathscr{T} be the subcategory of Λ -mod consisting of all triples (X, Y, f) with X is from $\mathscr{F}({}_{A}\Delta)$ and Y is from $\mathscr{F}({}_{B}\Delta)$. For any triple (X, Y, f) in \mathscr{T} , we have an exact sequence:

$$0 \to (X,0,0) \to (X,Y,f) \to (0,Y,0) \to 0,$$

where (X, 0, 0) and (0, Y, 0) are in $\mathscr{F}(\Lambda \Delta)$. Thus (X, Y, f) is in $\mathscr{F}(\Lambda \Delta)$ since $\mathscr{F}(\Lambda \Delta)$ is closed under extensions in Λ -mod. Therefore $\mathscr{T} \subseteq \mathscr{F}(\Lambda \Delta)$.

By the construction of standard Λ -modules, we have that all standard Λ modules $\Lambda \Delta(i)$ are in \mathscr{T} , where $1 \leq i \leq m+n$. By identifying an A-module X with a triple (X, 0, 0), and a B-module Y with a triple (0, Y, 0), we can consider both A-mod and B-mod as subcatgories of Λ -mod, namely, we identify A-mod with subcategory (A-mod, 0, 0), and B-mod with subcategory (0, B-mod, 0). Then $\operatorname{Ext}^{1}_{\Lambda}(A\operatorname{-mod}, B\operatorname{-mod}) = 0$, $\mathscr{F}(A\Delta)$ and $\mathscr{F}(B\Delta)$ are closed under extensions in Λ mod. We know from [4] that $\mathscr{F}(B\Delta) \int \mathscr{F}(A\Delta) := \{N \in \Lambda\operatorname{-mod} | \text{ there is an exact}$ sequence $0 \to X \to N \to Y \to 0$, with $X \in \mathscr{F}(A\Delta)$, $Y \in \mathscr{F}(B\Delta)$ is closed under extensions in Λ -mod. Then $\mathscr{T} = \mathscr{F}({}_{B}\Delta) \int \mathscr{F}({}_{A}\Delta)$ is a subcategory closed under extensions in Λ -mod. For any Δ -good Λ -module N, we have N is in \mathscr{T} since Nhas a ${}_{\Lambda}\Delta$ -filtration and all ${}_{\Lambda}\Delta(i)$ are in \mathscr{T} . Therefore

$$\mathscr{F}(\Lambda \Delta) = \mathscr{T} = \{ (X, Y, f) \, | \, X \in \mathscr{F}(A\Delta), \, Y \in \mathscr{F}(B\Delta) \}.$$

The proof is finished.

We keep all notation in Theorem 3.1. in the following. We will describe the characteristic module of Λ .

Let $\underline{e} = (e_1, \ldots, e_n)$ be a complete set of orthogonal primitive idempotents of A corresponding to the ordered index set $_AE$ of simple A-modules, $\underline{f} = (f_1, \ldots, f_m)$ a complete set of orthogonal primitive idempotents of B corresponding to the ordered index set $_BE$ of simple B-modules. Thus $(\underline{f}, \underline{e}) = (f_1, \ldots, f_m, e_1, \ldots, e_n)$ is a complete set of orthogonal primitive idempotents of Λ corresponding to the ordered index set $_{\Lambda}E = (_BE, _AE)$ of simple Λ -modules. We have a chain of ideals of Λ :

$$\Lambda = J_0 \supset J_1 \supset \cdots \supset J_{m-1} \supset J_m \supset J_{m+1} \supset \cdots \supset J_{m+n-1} \supset J_{m+n} = 0,$$

where

$$J_0 = \begin{pmatrix} A & R \\ 0 & B \end{pmatrix},$$

$$J_1 = \begin{pmatrix} A & R \\ 0 & B(f_2 + \dots + f_m)B \end{pmatrix},$$

$$\dots \dots \dots,$$

$$J_{m-1} = \begin{pmatrix} A & R \\ 0 & Bf_m B \end{pmatrix},$$

$$J_m = \begin{pmatrix} A & R \\ 0 & 0 \end{pmatrix},$$

$$J_{m+1} = \begin{pmatrix} A(e_2 + \dots + e_n)A & A(e_2 + \dots + e_n)R \\ 0 & 0 \end{pmatrix},$$

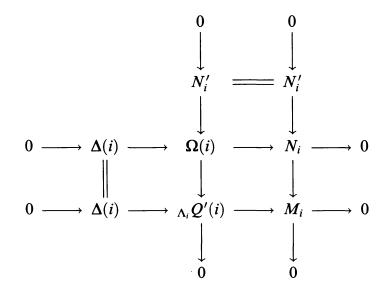
$$\dots \dots,$$

$$J_{m+n} = \begin{pmatrix} Ae_nA & Ae_nR \\ 0 & 0 \end{pmatrix},$$

$$J_{m+n}=0.$$

Bin ZHU

For each *i* in $\{1, 2, ..., m + n\}$, let Λ_i be the quotient of Λ by J_i . Then all Λ_i are quasi-hereditary algebras, whose standard modules are $\Lambda\Delta(1), ..., \Lambda\Delta(i)$. In particular, for any $i \ge m + 1$, $\Lambda\Delta(i)$ is an Λ_i -module. We assume that the injective Λ_i -hull of $\Lambda\Delta(i)$ is $\Lambda_i Q'(i)$. We have a commutative diagram



where $N_i \to M_i$ is the minimal right $\mathscr{F}(\Lambda_i \Delta)$ -approximation of M_i . Then we have N'_i is in $\mathscr{F}(\Lambda_i \nabla)$ by [4]. Therefore $\Omega(i) \in \mathscr{F}(\Lambda_i \Delta) \cap \mathscr{F}(\Lambda_i \nabla)$, since $\mathscr{F}(\Lambda_i \Delta)$ and $\mathscr{F}(\Lambda_i \nabla)$ are closed under extensions in Λ_i -mod, $\Lambda_i Q'(i)$ and N'_i are in $\mathscr{F}(\Lambda_i \nabla)$, while $\Delta(i)$ and N_i are in $\mathscr{F}(\Lambda_i \Delta)$. Let $\overline{T}(i)$ be an indecomposable direct summand, which has a composition factor as E(i), of $\Omega(i)$. Then we have that $\overline{T}(m+1), \ \overline{T}(m+2), \ldots, \ \overline{T}(m+n)$ are non-isomorphic indecomposable modules.

THEOREM 3.2. Let A, B, $_AM_B$, and Λ be the same as in Theorem 3.1. and $_BT$ the characteristic module of B. Then $_BT \oplus (\bigoplus_{j=1}^n \overline{T}(m+j))$ is the characteristic module of Λ .

PROOF. By Theorem 3.1., we have that $\mathscr{F}(\Lambda \Delta) = \{(X, Y, f) \mid X \in \mathscr{F}(A\Delta), Y \in \mathscr{F}_B\Delta\}$, and $_BT \in \mathscr{F}(B\Delta) \subseteq \mathscr{F}(\Lambda\Delta)$. Let $0 \to _BT \to (M, N, g) \to (X, Y, f) \to 0$ be an exact sequence with $(X, Y, f) \in \mathscr{F}(\Lambda\Delta)$. Then $0 \to _BT \to N \to Y \to 0$ is an exact sequence with $Y \in \mathscr{F}(B\Delta)$. Since $_BT$ is the characteristic module of B, the exact sequence above splits, and $N \cong _BT \oplus Y$. It implies that the exact sequence $0 \to _BT \to (M, N, g) \to (X, Y, f) \to 0$ splits. We have that $\operatorname{Ext}^1_{\Lambda}(\mathscr{F}(\Lambda\Delta), _BT) = 0$, and $_BT \in \mathscr{F}(\Lambda\Delta) \cap \mathscr{F}(\Lambda\nabla)$. Let $_{\Lambda}T$ be the characteristic module of Λ with a decomposition of indecomposable direct summands $_{\Lambda}T = _{\Lambda}T(1) \oplus \cdots \oplus _{\Lambda}T(m) \oplus _{\Lambda}T(m+1) \oplus \cdots \oplus _{\Lambda}T(m+n)$. Then $_{\Lambda}T(1) \oplus \cdots \oplus _{\Lambda}T(m)$ is the characteristic module of quasi-hereditary algebra Λ_m . It follows that the characteristic module of *B* is isomorphic to ${}_{\Lambda}T(1) \oplus \cdots \oplus {}_{\Lambda}T(m)$ from the fact that Λ_m is isomorphic to *B*. By the construction of $\overline{T}(i)$, the modules ${}_{B}T \oplus \overline{T}(m+1)$, and ${}_{\Lambda}T(1) \oplus \cdots \oplus {}_{\Lambda}T(m) \oplus {}_{\Lambda}T(m+1)$ are the characteristic module of Λ_{m+1} , thus $\overline{T}(m+1) \cong {}_{\Lambda}T(m+1)$. We can get that $\overline{T}(m+j)$ is isomorphic to T(m+j) for each $1 \leq j \leq n$ by an easy induction on *j*. The proof is finished.

Acknowledgement

I would like to thank Prof. C. M. Ringel for his hospitality during my stay at Universität Bielefeld, and to thank Prof. Shaoxue Liu for his encouragement. I am also grateful to Prof. C. C. Xi and Prof. B. M. Deng for their discussions and suggestions.

I am grateful to Volkswagen Foundation for support.

References

- [1] M. Auslander and I. Reiten, S. Smalø. Representation Theory of Artin Algebras. Cambridge studies in advanced mathematics 36 (1995).
- M. Bauch. Subspace categories as categories of good modules over quasi-hereditary algebras. Arch. Math. 62. 112–115 (1994).
- [3] B. M. Deng and C. C. Xi. Quasi-hereditary algebras which are dual extensions of algebras. Comm in Alg 22(12). 4717-4735 (1994).
- [4] C. M. Ringel. The category of modules with a good filtration over a quasi-hereditary algebra has almost split sequence. Math. Z. 208. 209-223 (1991).
- [5] C. M. Ringel. Tame algebras and integral quadratic form. LNM 1099, Berlin-Heidelberg-New York 1984.
- [6] C. M. Ringel. On contravariantly finite subcategories. in Proceedings of the sixth International Conference on Representations of Algebras, Carleton-Ottawa Math. Lecture Note series, No. 14, 1992.

Department of Mathematical Sciences Tsinghua University Beijing 100084, P.R. China E-mail: bzhu@math.tsinghua.edu.cn