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ON LAGRANGIAN $H$-UMBILICAL SURFACES IN $CP^{2}(\tilde{c})$

By

Noriaki SATO

Abstract. A Lagrangian H-umbilical surface $M$ is an isotropic
surface in $CP^{2}(\tilde{c})$ if and only if $M$ is a minimal surface in $CP^{2}(\tilde{c})$ .

1. Introduction

Let $M$ be an n-dimensional submanifold of a complex m-dimensional
Kaehler manifold $\tilde{M}$ with complex structure $J$ and Kaehler metric $g$ . A sub-
manifold $M$ of a Kaehler manifold $\tilde{M}$ is said to be totally real if each tangent
space of $M$ is mapped into the normal space by the complex structure of $\tilde{M}$ .
The totally real submanifold $M$ of $\tilde{M}$ is called Lagrangian if $n=m$ . A Kaehler
manifold of constant holomorphic sectional curvature $\tilde{c}$ is called a complex space
form and will be denoted by $\tilde{M}(\tilde{c})$ . Let $CP^{m}(\tilde{c})$ be a complex m-dimensional
complex projective space with the Fubini-Study metric of constant holomorphic
sectional curvature $\tilde{c}$ . Chen and Ogiue [1] classified totally umbilical submani-
folds in $\tilde{M}(\tilde{c})(\tilde{c}\neq 0)$ and proved that $\tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0)(m\geq 2)$ admits no totally
umbilical, Lagrangian submanifolds except the totally geodesic ones. Recently,
Chen [2] introduced the notion of Lagrangian H-umbilical submanifolds which
is the simplest totally real submanifolds next to the totally geodesic ones in $\tilde{M}(\tilde{c})$

and classified Lagrangian H-umbilical submanifolds in $\tilde{M}(\tilde{c})$ .
A Lagrangian H-umbilical submanifold of a Kaehler manifold $\tilde{M}$ ’ is a non-

totally geodesic Lagrangian submanifold whose second fundamental form takes
the following simple form;

$\sigma(e_{1}, e_{1})=\lambda Je_{1}$ , $\sigma(e_{2}, e_{2})=\cdots=\sigma(e_{n}, e_{n})=\mu Je_{1}$

(1.1)
$\sigma(e_{1}, e_{j})=\mu Je_{j}$ , $\sigma(e_{j}, e_{k})=0$ , $j\neq k,j,k=2,$ $\ldots,n$
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for some suitable functions $\lambda,\mu$ with respect to some suitable orthonormal local
frame field $\{e_{j}\}$ .

From Theorem in Matsuyama [5], we see that any non-totally geodesic,
minimal Lagrangian submanifold $M^{n}$ ( $n$ : even) in $CP^{n}(\tilde{c})$ which has at most
two principal curvatures in the direction of any normal is constant isotropic
submanifold in $CP^{n}(\tilde{c})(n\geq 4)$ or minimal Lagrangian H-umbilical surface in
$CP^{2}(\tilde{c})$ .

The aim of this paper is to study Lagrangian H-umbilical surfaces in terms of
isotropic.

THEOREM 1.1. Let $M$ be a Lagrangian H-umbilical surface in $CP^{2}(\tilde{c})$ . $M$ is
an isotropic surface in $CP^{2}(\tilde{c})$ if and only if $M$ is a minimal surface in $CP^{2}(\tilde{c})$ .

COROLLARY 1.1. A constant isotropic Lagrangian H-umbilical surface in
$CP^{2}(\tilde{c})$ is locally congruent to a flat torus.

COROLLARY 1.2. An isotropic Lagrangian H-umbilical surface with constant
scalar normal curvature in $CP^{2}(\tilde{c})$ is locally congruent to a flat torus.

REMARK 1.1. More generally, Montiel and Urbano [6] completely classified
a complete constant isotropic Lagrangian submanifold $M^{n}$ in $CP^{n}(\tilde{c})$ .

REMARK 1.2. Very recently, Chen [3] showed that non-totally geodesic
minimal Lagrangian surfaces in any Kaehler surface are Lagrangian H-umbilical.

The author would like to express his hearty thanks to Professor Yoshio
Matsuyama for his valuable suggestions and encouragements. The author also
would like to thank the referee for giving many valuable comments.

2. Preliminanes

Let $\nabla$ (resp. $\tilde{\nabla}$ ) be the covariant differentiation on $M$ (resp. $\tilde{M}$). We
denote by $\sigma$ the second fundamental form of $M$ in $\tilde{M}$ . Then the Gauss
formula and the Weingarten formula are given respectively by $\sigma(X, Y)=$

$\tilde{\nabla}_{X}Y-\nabla_{X}Y,\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ for vector fields $X,$ $Y$ tangent to $M$ and a
normal vector field $\xi$ normal to $M$, where $-A_{\xi}X$ (resp. $ D_{X}\xi$ ) denotes the
tangential (resp. normal) component of $\tilde{\nabla}_{X}\xi$ . Let $\zeta=(1/n)trace\sigma$ and $H=|\zeta|$

denote the mean curvature vector and the mean curvature of $M$ in $\tilde{M}$ ,
respectively. If the second fundamental form $\sigma$ satisfies $\sigma(X, Y)=g(X, Y)\zeta$ ,
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then $M$ is said to be totally umbilical submanifold in $\tilde{M}$ . If the second fun-
damental form $\sigma$ satisfies $g(\sigma(X, Y),$ $\zeta$ ) $=g(X, Y)g(\zeta, \zeta)$ , then $M$ is said to be
pseudo-umbilical submanifold in $\tilde{M}$ . The submanifold $M$ of $\tilde{M}$ is said to be a

$\lambda$-isotropic submanifold if $|\sigma(X, X)|=\lambda$ for all unit tangent vectors $X$ at each
point.

We denote by $\tilde{R}$ and $R$ the Riemannian curvature for $\tilde{\nabla}$ and $\nabla$ respectively.
Then the Gauss equation is given by

(2.1)
$g(\tilde{R}(X, Y)Z,$ $W$ ) $=g(R(X, Y)Z,$ $W$) $+g(\sigma(X, Z),$ $\sigma(Y, W))-g(\sigma(Y, Z),$ $\sigma(X, W))$

for all vector fields $X,$ $Y,$ $Z$ and $W$ tangent to $M$. We denote by $\tilde{M}(\tilde{c})$ a complex
m-dimensional complex-space-form of constant holomorphic sectional curvature
$\tilde{c}$ . We have

(2.2) $\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z}=(\tilde{c}/4)\{g(\tilde{Y},\tilde{Z})\tilde{X}-g(\tilde{X},\tilde{Z})\tilde{Y}+g(J\tilde{Y},\tilde{Z})J\tilde{X}$

$-g(J\tilde{X},\tilde{Z})J\tilde{Y}+2g(\tilde{X}, J\tilde{Y})J\tilde{Z}\}$

for all vector fields $\tilde{X},\tilde{Y}$ and $\tilde{Z}$ on $\tilde{M}(\tilde{c})$ .

We prepare the following result.

THEOREM 2.1 [4]. Let $M$ be an n-dimensional real space form of constant
curvature $c$ . If $M$ is an isotropic Lagrangian submamfold of $CP^{n}(\tilde{c})$ , then $M$ is
parallel. Thus $M$ is totally geodesic or $n=2$ and $M$ is locafly congruent to a flat
torus $T^{2}(c=0)$ .

3. Proof of Theorem 1.1

Let $M$ be a Lagrangian H-umbilical surface in $CP^{2}(\tilde{c})$ . We choose a local
orthonormal frame field

$e_{1},$ $e_{2},$ $e_{3}=Je_{1},$ $e_{4}=Je_{2}$

of $CP^{2}(\tilde{c})$ such that $e_{1},$ $e_{2}$ are tangent to $M$. By (1.1), the surface in $CP^{2}(\tilde{c})$

satisfies

(3.1) $\left\{\begin{array}{l}\sigma(e_{l},e_{1})=\lambda e_{3}\\\sigma(e_{1},e_{2})= \mu e_{4}\\\sigma(e_{2},e_{2})=\mu e_{3}\end{array}\right.$

for some suitable functions $\lambda$ and $\mu$ with respect to some suitable orthonormal
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local frame field $\{e_{i}\}$ . Now, the Gauss curvature $K$ is given by

(3.2) $K=g(R(e_{1}, e_{2})e_{2},$ $e_{1}$ )

By (2.1), (2.2) and (3.2) we get the Gauss curvature

(3.3) $K=\tilde{c}/4+\sum_{\alpha=3}^{4}\{h_{11}^{\alpha}h_{22}^{\alpha}-(h_{12}^{\alpha})^{2}\}$

where $h_{ij}^{\alpha}=g(\sigma(e_{j}, e_{j}),$ $e_{\alpha}$ ).
By (3.1) and (3.3) we have

(3.4) $K=\tilde{c}/4+\mu(\lambda-\mu)$

By (3.1), for any unit tangent vector $e=(ke_{1}+le_{2})/\sqrt{k^{2}+l^{2}}$ , where $k,$ $l$ are some
real numbers, we get (see [7])

(3.5) $|\sigma(e, e)|^{2}=(k^{4}\lambda^{2}+2k^{2}l^{2}\lambda\mu+l^{4}\mu^{2}+4k^{2}l^{2}\mu^{2})/(k^{2}+l^{2})^{2}$

On the other hand, we get

(3.6) $|\sigma(e_{1}, e_{1})|^{2}=\lambda^{2}$

(3.7) $|\sigma(e_{2}, e_{2})|^{2}=\mu^{2}$

If the surface is isotropic, by (3.6) and (3.7) we have

$\mu=\pm\lambda$

The case (i): $\mu=\lambda$

By (3.4), we get nonzero constant Gauss curvature $K=\tilde{c}/4$ . By Theorem 2.1,
we see that the Lagrangian H-umbilical surface is a totally geodesic surface in
$CP^{2}(\tilde{c})$ . This is a contradiction for definition (1.1).

The case (ii): $\mu=-\lambda$

We see that the surface is minimal in $CP^{2}(\tilde{c})$ .
Conversely, if the surface is a minimal surface, then $\mu=-\lambda$ and by (3.5), we

get

$|\sigma(e, e)|^{2}=\lambda^{2}$

This completes the proof of Theorem 1.1.
Now, we shall show Corollary 1.1. Since the surface $M$ is constant $\lambda-$

isotropic, by Theorem 1.1 we see that $M$ is minimal and $\mu=-\lambda$ . So, by (3.4) we
have constant Gauss curvature $K=\tilde{c}/4-2\lambda^{2}$ . Thus, the assertion of Corollary
1.1 follows immediately from Theorem 2.1.
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Now, we shall show Corollary 1.2. The scalar normal curvature is given by

(3.8) $K_{N}=\sum_{\alpha,\beta=3}^{4}\{\sum_{i=1}^{2}(h_{1i}^{\alpha}h_{2i}^{\beta}-h_{1i}^{\beta}h_{2i}^{\alpha})\}^{2}$

Since the surface $M$ is isotropic, by Theorem 1.1 we see that $M$ is minimal and
$\mu=-\lambda$ . So, by (3.1) and (3.8) we have $K_{N}=4\lambda^{4}$ . Thus the assertion of Corollary
1.2 follows from Corollary 1.1.
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