TSUKUBA J. MATH.
Vol. 24 No. 2 (2000), 361-385

ON GOLDBACH NUMBERS IN ARITHMETIC
PROGRESSIONS

By

Hiroshi Mikawa

1. Introduction

The Goldbach conjecture says that every large even integer is representable
as the sum of two primes. If an even integer is written in this manner, we
call it Goldbach number. In 1952 Ju. V. Linnik investigeted the distribution of
Goldbach numbers. Let G(q,k) denote the least Goldbach number g in an
arithmetic progression g = k (modg). Obviously, if g is even then k& must be
even. He showed that

G(g,k) < g(logq)’

under the extended Riemann hypothesis.
In 1968 M. Jutila [13, 14| unconditionally proved that, for any ¢ > 0,

(1) G(g, k) « ¢%/°**

subject to prime ¢. The exponent 6/5 comes from the zero-density estimate for
L-functions by M. N. Huxley [9]. The restriction to prime moduli is caused by
I. M. Vinogradov’s bound [24, p. 360] for character sums over shifted primes:

2) S x(p— k)

P=X

where y is a non-principal character to modulo ¢ and (k,q) = 1. Also see A. A.
Karatsuba and A. Hildebrand [8].

In 1986 Z. Kh. Rakhmonov successfully estimated (2) for composite g, so
as to remove the restriction on g from (1). Later he gave, for prime moduli g,
a simple proof of (2) with the exponent 3/2 in place of 6/5.

In the same spirit as H. Iwaniec and M. Jutila [12], we apply the sieve
methods to this problem and present an improvement upon (1).

Received October 8, 1999



362 Hiroshi Mikawa

THEOREM. Let J > 14/13 be given. Then we have
Glg,k) < ¢’

for all prime q # 2 and all 1 < k < q. Here the implied constant depends only on J.

Recently A. Perelli studied the distribution of Goldbach numbers over
polynomial sequences and showed some surprising results. However the estimates
depend on the coefficients of polynomials. Our problem is then independent of
119].

We adapt the sieve identity method, which has been developed by several
authors, see [2, 5, 6] for instance. Fatally we encounter the numerical integrations
to compute. We control the arising patameters so that all numerical calculations
can be done by hand. This leads us to the exponent 14/13. So there would be
some room for a further refinement, by pushing our method more. However we
stop at this place.

Inspired by K. Alladi [I, Lemma 3|, we examine the incomplete sum

(3) > u(d),

dln

d<\/n
which seems to be easily handled, as the divisor function. And besides, the above
sum vanishes whenever u(n) =1, vide [23, Chap. 2, ex. 25]. We introduce (3)
into the sieve of Eratosthenes. This produces a sort of sieve identity, which one
may regard as a weighted sieve with Kuhn’s type constant weight or a truncated
iteration of Buchstab’s identity, see [4, 17]. This observation makes a feature of
this paper. Thus our aim is, in turn, to explore and to illustrate the effect of (3)
on finding primes.

In addition, we employ the reversal réles trick due to J.-r. Chen, vide [18],
together with the Rosser-Iwaniec upper bound sieve [10, 17]. To deal with the
remainder terms arising from the sieve methods, we use an idea of D. R. Heath-
Brown and H. Iwaniec [7, 11].

We change a little the usual notation in the sieve theory. This will be
explained in the next section. Except these, we use the standard notation in
Number Theory. Especially, the letter p is reserved for primes. We write some
absolute constant by using the letter K, which is not the same at each appearance.
a=b(q) is short for a=b (modg). n~ N means N; <n <N, with some
N < Nj, N, <2N. For a set S, |S| stands for its cardinality. We use the
abbreviation L = log x.



On Goldbach numbers in arithmetic progressions 363

I would like to thank M. Sc. Temenoujka Peneva Peneva for encouragement
and helpful discussion.

2. Sieve of Eratosthenes

To begin with, for z > 2, we introduce the arithmetical functions:

1, if p|n implies p >z or n=1
0, otherwise,

1, if p|n implies p <z or n=1
0, otherwise.

w.0n) = {

We notice that, in the usual notation in the sieve theory, S(/,z) =>_ ., ®.(n),
and the sieve of Eratosthenes reads ®;(n) =3 ,, u(d)¥:(d). We then observe
that both ® and ¥ are completely multiplicative. Let p(n) denote, as usual, the
least prime factor of an integer n > 1.

LemMMmA 1.

(Dz(n):l—ZCI)I,(;—j).

pln
p<z
LEMMA 2. Fbr D > 2, we have
n
O.(n) = S u@Ed)+ S ud) APy (3)
dln dln
d<|D d/p(d)|<Dsd

LemMa 3. Suppose that, as x — oo, z=1z(x)— oo and logx/logz >
loglog x. Then we have

1
Z Y, (n) < xexp (— l(c))i)zC)'

n<x

Lemma 1 is Buchstab’s identity. Lemma 2 may be produced by an iterative
usage of Lemma 1. For an elegant simple proof, see [2]. Lemma 3 is [20, Kap. V,
Lemma 5.2]. Lemmas 2 and 3 form a prototype of the fundamental lemma in the
sieve theory, vide [20, Kap. VI, Satz 6.1]. Lemma 4 below is the core of our proof
of Theorem and verified by a straightforward argument.



364 Hiroshi Mikawa

LEmMMA 4.
0, if u(n) =1
1, if n=p
d) = )
dzmﬂ() 0, if pln with /n<p<n
d< =2, if n=ppyp3 With p3 < p, < p; < Vn

The above weight, however, takes various values for n having five prime
factors. To state this, we define the set

&={neN|n=p pp3;psPs, Ps < P4 < p3 < py < p; < V/n}

and the subsets
& ={neé&|pp, < Vn}
&y ={ned&|pp;<vn}
Es={ne&|ppy<Vn pyps < n}

&s={neé&|pps>vn}.

LEMMA 5. In the above notation, we have that
£2C£3C54, 540(/)@5:@,
and that, for any ne &,

S Y Y2-Y2

din Jj=2.3.4 neé; neés
d<y/n

ProOF. The first part immediately follows from the definition of &;’s. To
see the second part, write V' (n) for the left hand side. For a set S of integers, let
|S|(n) denote the characteristic function of S, so that S| =", _¢1=>_1|S|(n).
Put

&Y ={neé&|pp; > Vn},

for 1 <i< j<5. Then, for any n € &, the expression
>_ 216"
I<i<j<5

is the number of divisors d|n with v(d) =2 and d > /n, which are not counted
by V(n). In view of the correspondence d — n/d, this is also equal to the number
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of divisors d|n with v(d) = 3 and d < \/n, which are counted by V' (n). And, V(n)
counts all divisors d|n with v(d) =1, since p, < /n, and no divisor d|n with
v(d) = 4. Hence we find that

5 ) ]
Vin)=1- <1> +3 > (= 1E7m) = D> 17 (m) +0

l<i<j<5 l<i<j<5

=6-2) ") |67(n).

1<i<j<5

Now, since n= p,p,pspsps > (pops)’, €% is empty, whence &7 = if
i+ j=7. Since p,p, > +/n implies p,p; < n/p,ps < \/n, we have £ N&> = &
or |&%|(n) + €3 |(n) = | U&H|(n). Thus it turns out that

V(n) =2{(1 = [6"2[(m) + (1 = |2](n)) + (1 = (16|(n) + |6 |(n))) + |6 | (m)}

= 2(|1&2|(n) + |&3](n) 4 |&4](n) — |&5](n)),

as claimed.

3. Proof of Theorem

First of all, we notice that G(gq,0) = 2¢q for all prime gq.
Let 6/5>J > 14/13 be given. Let ¢ be a large prime, and 1 <k <g—1.
Put

q’; S =(x,x+y; y=xL*

EN

x = x(g) =

so that x%/6 « g « x13/147 with some 5 = n(J) > 0. Our goal is to show that

the set {(p,p,) € #2|p+ p, =k (modq)} is not empty. Then we would find a

Goldbach number p + p; < 2(x+ y) < 4x = g’ satisfying p + p; = k (modg).
To this end we define

(4) QZZZ(Z/‘(“’)>®Y(V); X =x'"% Y =x, Vz%.

p.re s d]r
prr=k(g) \d<Xx

Since 1/7<y<1/6 or Y =x"> (2x)1/7, Q counts r€.# having at most six
prime factors. The design of our proof is to estimate Q in two different ways.

In the first stage we shall give an asymptotic formula for Q. We postpone our
proof of the following evaluation until section 5.
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ProposiTION 1.

Y 1,
0- > (%;ﬂ(d))d)y(r) +0(yg L),

re s
d<X

Write B for the above sum over r € 4. We replace the condition d < X =
x'/2 by d < \/r. Since /r — x!/2 « x'/2L~*, the resulting error is

> {re #|dr}] « x'2L™* . yx™ 12 « yL™*.

|d—x1/2| «x1/2L-4

Next we may restrict r € .# to squarefree integers, at the cost of O(yY~! + x!/2).
Then Lemmas 4 and 5 show that

B=3" () ( ) ,u(d)) @y(r) + O(yL™)

ref dir
d</r

:Z(+1)+ ZZZ (—2)+< Z Z(+2)+ Z(‘2)> +0(yL™)

peS pipp3eS j=2,3,4 re.o re s
Y< p3<pr<p1<pop3

where o, =& NS, j=2,3,4,5. By the prime number theorem and partial
summation, we then obtain that

(5) B:(1—2C3+0(L“'))%+2< 3 l.d,-l«lﬂﬂ)
j=2.3,4
where
dtdts
C; = j .
’ J (1- 16— 13)6n
y<t3<ip
26 +13<1
Lh+t3>1/2

We here note that, by Lemma 5,

(6) > || < 3(|a] + |f5]) = 3|44 U ts| < 36N 5.
j=2,3,4,5

As above, summing by parts and the prime number theorem yield that

(7) 6N =SS SN 1=(C+orL )

PiPp3paps€ S
Y< ps<pa<p3<p2<p;
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where
Ce J J J J dtrdtzdtadts
ST (1 —tz—l‘3—t4—l‘5)l‘2[3[4[5-
P<ts<tg<t3<0lp
26+ttt +ts< 1

We proceed to bound C; and Cs crudely. First we consider Cj:

J1/3 J(l—tz)/2 dt, dts
y max(1/2—1,13) 1-n—-t)) t3

We simply estimate the inner integral by the maximum of the integrand times
the length of the interval. We see that the integrand monotonically decreases
throughout the interval under consideration. Hence,

(1-0/2-(1/2-1 Ba-n/2-1
J (ETeErr e kR Wi Tt

J 3171 2 1
= _\dr
1/2—t J1/42 2 1-2t ¢t
el ()
e 2\ t

= log(2 —4y) +%(l —log?2).

I/\

Il

Since y = 12/77, we have

(8) C3 log1—797§+;(1 —log2) < 0.475.
We turn to Cs:
1/5 ((1-15)/4 ((1=ta=t5)/3 (1=ts—14—15)/2 dtydtsdtsdts
L L L L (1 -ty — 13 — 14 — t5)tal3tats’

As for the integrand, we see that
(1 =ty — 13 — 14 — t5)tatatats > (1 — 23 — tg — t5)t3tats
> (1 — 314 — t5)1215
4
> (1 —4t5)¢5

> (1 —4y)yt
in the region under consideration. The volume of integral domain is equal to
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1/5 p(l=t5)/4 p(l—15—1t5
J J J —(1 — 313 — 14 — I5) dts d[4dl5

(1/5 p(1=t5)/4 jU=ta=ts)/3 4 5
= J / 2.2‘3(1—313—I4—t5) dt4dt5

r1/5 J(l ts)/

/5 s(-ts5)/4 -1 3
- T (-4t —15)3d
l, / 533,340 TH 1) dis

Is

(1 — 414 — I5)2d14dt5

B : 1 —515)°d
= P ——— — Jt t
), 223340 ) dis
1/5 1 \
:/ 323344507
_(1=5p°
T4
Hence, y = 12/77 gives that
I (=50 77/17\* 1
©) CS<q-ays 4 29(12) 2880 < 0004

This finishes all our task of bounding the numerical integrations.
Next stage of our proof is to separate Q according to the number of prime

factors of r € .#. Turning back to the definition (4) of Q, we use Lemmas 4 and 5
to obtain that

0=/ ( 3 md)) Oy () + O(yg 'L

p.rey d\r
ptr=k(q) d<\r
=D D D+ D> > (-
p-mes pef pppie.d
p+pr=k(q) Y< pa<ps<pi<pap3
p+pipaps =k(q)
D0+ D (=2} +00% 'L
j=2.3.4 peSrey pe.gre.ds
ptr=k(q) prr=k(q)

:P~2Pl+2( > P,-—P5> +0(y*q~'L™), say.

j=2.3.4
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P is our target. Trivially, Py >0 and Ps > 0. In section 6, we shall show the
following upper bound, which is 8/3 times as large as the expected main term.

ProposITION 2. For j=2,3,4, we have

8 -
PjSg Y L’&/j|+0(y2q lL 4).

(g—1)
We therefore have that

e ]

y 2 17-4
10 P+2-- il | ———+ 0 L™).

w

J

We are now in the final step. It follows from Proposition 1 and (5) that

B ) 2 1 Y
Q=(1-2C+O(L 1))@_T)L2+2<,-_;4M| WS[) (g— DL’

Combining this with (10), we deduce that

2
P> (1-2GC+ O(L‘l))(?:yl)T—2<(§— 1)
J=

Moreover (6) and (7) show that

Y
|+ |As| | — -
27374| / |> (q_l)L

2(@‘0 > |&4}+|ﬂ5|) s2-§3|£ﬂf|:10(C5+0(L'1))%.

j=2.3,4

We thus reach the inequality

y2

P> (1-2C;—10Cs + O(L—‘))m.

Our crude bounds (8) and (9) yield that 1 —-2C3 —10Cs >1—2x 0475 —
10 x 0.004 = 0.01. Consequently, P = |{(p,p,) e #*|p+ p; =k (modgq)}| > 0.
This completes our proof of [CTheoreml apart from the verification of Propositions
1 and 2.

4. Character Sums

In this section we consider some sums involving characters to modulo ¢, so
as to provide for our proof of Propositions 1 and 2. We hold the notation and
the conditions introduced in the previous sections. Especially, J,¢q,k,x, #, and &.
Let y be a non-principal character to modulo gq.
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LEMMA 6. Let (an) and (b,) be arbitrary sequences. Suppose that 1 < M,
N < q/2. Then we have that

DD x(mn—k)awb, «< ¢'*Lja||Ib]l + x'*L max (| |by|

mne ¥ ~N
m~Mn~N "

where || - || denotes the ¢*-norm.

Proor. We treat the condition mn € £ in the same way as [3, p. 165]. The
sum to estimate is then bounded by

J |C(1)| min(L, |¢| ") dt + x"2L  max _|a,| |bn|
1] <x'/2 m~Mn~N

where

C=C) = Z Zx(mn— )b (mn)"”.

m~M n~N

Thus it is sufficient to show that |C|2 < q||a||2||b||2 uniformly for ¢.
Cauchy’s inequality shows that

C1* < lal* D

m~M

Z)((mn—k bun"

n~N

Since 1 < M <m <2M < ¢q, the summation range for m may be widen up to
1 < m < ¢q. Expanding the square and bringing the sum over m inside, we have
that

P« ||a||2 Z Z |bn |||

nn'~N

Z x(mn — k)ig(mn' — k)‘

l<m<g

If n#£n' (modgq) then the inner sum becomes the Jacobstahl sum, which is
bounded. In the alternative case, n =n’ (modg) implies n =n’, because of
|[n —n'| < N < g. Hence we conclude that

P <« lal? (z |b,,|) 0 P
n~N n~N

<« |lal*(N + g)lIb||?

< gllal*||51*.
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LEmMMA 7.

> x(p—k)logp « (gx)'*L°
pe.¥

This is [24, p. 364, Theorem 8] or [22]. We shall sketch the proof. We may
replace logp by the von Mangoldt function A, with the error O(x!'/?). We next
decompose it by using R. C. Vaughan’s identity. In the notation of [3, §24|, we
take U = V = x!/3. Then the character sum in question becomes

<L Z max Z z(mn — k)| + ZZ x(mn — k)ayb,| + x'/?

m<xl/3 mne .y

n>t |/1<m n<2x2”

where a, < A(m)+ 1, b, < 7(n) + logn. The Pdlya-Vinogradov inequality shows
that the above first term is O(Lx!/3.4'/2L), which is satisfactory. To bound
the second term, we may appeal to Lemma 6, since 4x%3 < ¢q. Thus, [Lemma 7

follows.

Lemma 8. For j=2,3,4, we have
Z x(n—k)« (qx)1/2L4.

ne .

ProOF. We begin by recalling the definition of &/, = &;U.# in sections 2
and 3. We give the detail for j =4 only. The others are similar. The sum to

estimate 1is
F = Z Z Z Z Z*X(P1P2P3P4P5 — k)

P1p2papaps €S

where * indicates the conditions:

Y < ps < py < p3 < py < py < pap3PsPs; Pi1Pa < PaP3Ps;i  PaP3 < P1P4Ds-
We note that p, >x° and p,psp,ps > Y4 On putting f,(p)) =

DS pppaps—n 1, We see that
(D F= Y3 x(pn—k)fu(p1)

pines
pi>xVin>y4

= 23 AR S f)J it

pne s
p>xon>y4

! 1

~[ [ =X xton-wap0)) = | R sy,

0 pnes 0
p>xn>y4



372 Hiroshi Mikawa

where
(12) a,(t) = e™ P « 1,
(13) bn([) :Z 2m/! ZZZZ Z e27ti/l

/ P2p3paps=n pa<i<n
Y<ps<Pa<P3<P1 pap3/(pyps)</<ppips/pa

« min(x, ||¢]|” )

Here ||¢|] denotes the distance from ¢ to the nearest integer. Then, by a dyadic
decomposition of summation ranges, we find that

Fo(t) « L? sup Z Z x(mn — k)a,,(1)b,(1)).

NP <M N <N mne.y
X< MN «x m~Mn~N

Since 2x*/° < ¢, yields that

Fy(1) « L? sup (¢MN)">L max |a,,(1)| max |b,(?)]
M. N m~M n~N

« (gL min(x, |1 )

because of and (13). Hence, combining this with (11), we get the required
bound.

Next we consider mean values of character sums. Let y, denote the principal
character. We employ the Dirichlet polynomial method as in [10, §2].

LEMMA 9. Let (9;) and (a,,) be arbitrary sequences with d;,a,, < 1. Suppose
that 1 « M « x"/2 and x « MN « x. Then we have that, for any A > 0,

= S DD xl =R | D xlmysn| | D x(n)| < F2L7A.
x(modgq)|le.s m~M n~N
X# Xo

ProoF. We first note that x!3/2 « x!=7/24=1/2 The mean value estimate
shows that

D

x(mod¢)

2

< x2: E

x(modq)

4
< (g+ M M?L.

> xl =k,

le s

Z x(m)oy,

m~M

It follows from the fourth power means for the Dirichlet L-functions that
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« gN?L?.

2

x(mod gq)

ZX

By Holder’s inequality and the above estimates, we then have that

G < (x)*((q + M) ML)/ (gN?L%)!
« x(q* + gM>)" 4 (MN)'* L
«< x(q* + X223
« x24L3,

as claimed.

LemMma 10. Let (51), () and (pB,) be arbitrary sequences satisfying Jy,
am < 1 and B, < t(n). Suppose that

Zx(l — k)i, « (gx)"/2L*
le ¥
for any non-principal character y (modgq). Let

x/M <« M «x!?"(=Y), x< MN<x.

Then we have that, for any A > 0,

= D D=k

x(modg)|le s
X#Xo

S |« L

n~N

< X

E a m

m~M

ProoF. Let I(y), M(y) and N(yx) denote the above three character sums,
in the order. Let S, be the set of y(modgq), x # xy, such that I(y) <« L or
M(y) « L or N(y) « L. It is easy to see that the contribution of y € Sy to H is

«Lx(gx)"* « x*L™4

for any A4 >0, since ¢« x'¥%7 For parameters U,V,W » L, let S=
S(U,V,W) denote the set of y(modgq), x # x,, such that

U<|I(})|<2U and V <|M(y)| <2V and W <|N(y)| <2W.
It follows from our assmption and trivial bounds that

(14) U« (qx)1/2L4, VM, W<xNL.
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Thus, we have that

(15) H<x*L™ + L* sup |S(U,V,W)|UVW
uv,w

where the supremum is taken over U, V, W satisfying U, V, W >» L and [14).
As before in we see

By the mean value estimate and the large value estimate, we find that

(g + MM M*
V2h

2h 4h
L. |S|<<M L35+‘1M LS,

|S] « 2 1/ 6h

with 4 = 6. Similarly,

(g+ N)N
W2

N2 3 qN4

|1S| « L |S|« 3L +W6L9.

Hence, becomes

(16) H«x*L ™4+ L% sup T(U,V,W)UVW
Uu,v,w

where

T=T(U,V W):min(x_z (q+ MMOM" M¥  gM* (g4 N)N N? qN4>

U2’ V2h > Y2k yoh w32 W2 Weé
We have four cases to consider, and use the inequality: For ay,...,a, > 0,
min(ay,...,an) <ay'---ay; si+--+s=1,0<s,...,5 < L.

Case 1. T <2M?*/V? and T <2N?/W?2. In this case, we have that

[

C2\V/21/2h g o1k aran1/2
=2 U? 2k w2

= 2(UV’W)—‘x(%)l/h(MN).

2 M2h N2
Ts2min(x )

Hence, by [14),
TUVW « x*(gx'L8)/'? « x2(x~1/14)1/12,
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Casg 2. T >2M?/V? and T >2N?/W?2.

. 2 gM" gM* gN gN*
Ts2m1n(i€——,q ,q ,q ,q )
U2’ V2 yerh W2 we

, X2\ (gt (h=1)/4h(+1) 7 1/4h(h+1)
=4\ 1 2h 1/ 6h

. ﬂ (2h—1)/4(h+1) qN4 1/4(h+1)
w2 we

— 2(UVW)—lqu/z(MN)(2h+3)/4(h+1).

Thus, we have that

TUVW « xq1/2x15/28

« xz(qx—13/14)1/2

« x¥1/?,

Case 3. T <2M*/V? and T > 2N?/ W2,

U2 VZh W2 we

K2N\V2 / ppan\1/2k gN (2h—3)/4h gN* 1/4h
<Awz) (= w2 we

_ o UVW)-lqu(zh—z)/4hN(2h+l)/4h.

) 2 M2h N N4
T£2m1n<x 7Y 4 )

65/77

Since N » xM~1 > xY ! =x%/77 we see that

TUVW « xMqg> /"2 N13/%
« x(MN)(qN—ll/IO)S/IZ

« x2(gx13/14y5/12

& x?5n/12

375
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Case 4. T >2M* /v and T <2N?/W?2.

_(x? gM" gM* N2
T < 2m1n(U§’ J2h > J/6h ’W2>

X2 1/2—1/6h qM4h 1/6h N2 1/2
() (%) (»)

U/
=2(UVW)_1x(?> g M*3N.

By [14), we have that
TUVW « x(qUx )3 M=13(MN)
« xX2(gPx" LB M1y %
« sz(qzx—13/7)1/36
« x>

because of M2 » x¢/7.

Combining all the above four cases with [16), we get the required bound.

5. Proof of
First of all, we recall the definition (4) of Q.

(17) 0= 3 W@y W)= (Zﬂw))a)ym.

pef red dlr
r=k-p(q) d<X

On p e .#, we attach the weight &, :=log p/logx =1 + O(L7), and impose the
restriction (k — p,q) = 1. The resulting cost is

18 «y*q7'L7 + y2q7%
y

We may then treat the congruence r =k — p (modg) by means of character
sums. The leading term would come from the principal character:

(19) q—iT 3 igii > W) =g 2 W+ 00 L),

pe.¥ re.y re.y
(k=p.q)=1 (r.g)=1

by the prime number theorem. On putting
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pes re g
(k—p,q)=1 r=k—p(q) (rq)=1

(20) R= Y ép( O DY W(r)),

we have, by [17), and (19), that

Y 2 —1y-5
E . A R+ O L77).
0 (q—l)L;W(rH +0(y*q7'L™)
Our task is thus to show
(21) R« y*q~ L7,

Before expressing R by characters, we need some elemantary preparation. We
shall decompose W given by into some sums of the convoluton of two
arithmetical functions. We are demanded to remove the dependence between
these functions, as well as the variables.

Since ®y is completely multiplicative, we see

(22) W)= > ud)®@y(d)®y(l).
dl=r
d<X

Let ./ be the sequence (Y (1 4+ L7'%)7),_ _; and Z = Y(1 + L7197¢ where G
is the integer defined by the inequality

(23) Y(1+ L1076 exp( ) <Y1+ L' %=2).

(log L)?
Then, we see G « L!''. The interval [Z,Y) is thus divided into the O(L!)
subintervals [M, M (1 + L71%)), M e 4.

Now, by [Lemma 1, we have that

/
(24) Dy (l) = Dz(I) — o,(L).
=00~ 3 (p)

Z<p<Y

We approximate ®(/) by

(25) Z we)¥z(e); V=x"%

ell
e<V

It follows from that the resulting error is

> uevn(3)« X wile)

e|l ell
e/ple)<V<e V<e<VZ
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since p(e) = Z implies Wz(e) = 0. The second term of is written as

YD Y.

Me.n pf=l
M<p<M(1+L719)

When M < p < M(1+ L7'%), we replace ®,(f) by ®(f) at the cost of
SIS ( )3 ,(_/)) DD ) St
Me.# pf=l v Me.# p'pll

M<p<MQO+L'%) \M<p'<p M<p'<p<M(1+L"19)

because of again. On summing up the above rearrangement, we deduce
that

(26) W= am+ Y Y ﬂM(l—’,)

mir Me # pir
m<XV M < p<M(1+L19)
r
+ 0( > ‘Pz(m)r(;))
mjr
Vm<VZ

r

vo[ = X «(5)

Me# p'plr pp
M<p'<p<M(1+L™'9)

= Wi(r) + Wa(r) + W3(r) + Wy(r), say,

where
(27) Zz,u YOy (d ) « ZZ(DY(d Yy(e) =1,
(28) Bru(n) =" u(d)®y(d)®p(f) « t(n).

df =n

d<X

Let R; be the similar expression to R given by with W, in place of W. Then
R is the sum of R/’s, j=1,2,3,4.
We first consider R4. Recalling [26), we have that

Z|W4(r)|<< Z ZZ Z 7(n)

re ¢ Me# M<p'<p<M(1+L-19) p'pne ¥

LY 55 wiliesr)

Me# M<p' <p<M(14+L-19) p'p
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log p 1
« yL max
Me (Msp<MZ(1+LIO) p ) zszp;y p'logp’
«< yL™?,
by the prime number theorem. Hence,

D D SWLCTE L AC!

peSf res resg
r=k—p(q)

« 25 1w
9e5
<« y2q 'L,
which is satisfactory for [21).
We proceed to R;. We remember [26), and (25). Then, shows

that
SN« Y Wz(m) > t(n)
resg Vsm<VZ mne S
< yL Fz(m)
V<m<VZ m

«< yLexp (-—i—o(;é—g )
« yLexp(—K(logL)?),

Hence, as above, W3 makes a neglisible contribution to R.

We turn to R;. We further divide W) given by according as m < U :=
x!/1 or U <m < XV. Here note that U = x/* « x!7g~! and XV = x15/28 «
x!71/2¢=1/2 We then split up the summation ranges by powers of 1+ L0, if m
is large. For simplicity, we write h~ H for H < h < H(1 + L™19). Thus,

29 R« ¥ |TY a(m)—qTIIZZa(m)

pesf mne g mne.g
(k—p,q)=1 | mn=k—p(q) (mn,q)=1
m<U m<U

DO VIDIEADHIELEETD HIEE

pesf mne g mne g
(k~p,q)=1 mn=k—p(q) (mn,q)=1
maMnx~N maMn~N

=81+ 952, say,
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where M and N run through the powers of 1 + L~!0 subject to U « M « XV and
X < MN «< x.

We bound S first. Since (k— p,q) =1, if (m,q) > 1 then the congruence
mn =k — p (modq) of n has no solution. If (m,q) =1 then

y 1
(30) S oi=2tol)=— > L
mne g qm q— 1 mne.¥
mn=k—p(q) (n,q)=1

We therefore see that S; « yU « yx!="g~! which is also neglisible.

Next we consider S,. We need to drop the condition mn € #, in order to
make the variables independent. We obserb that mn e .# is absorbed by the
condition x < MN and MN(1+L"'%? < x+ y. On the other hand, the con-
dition MN < x or MN(1+L'%? > x+ y means x < mn < MN(1 + L1%)? <
x(1+L719?% or (x4 y)(1+ L2 < MN <mn < x+ y. Hence, such terms
contribute to S, at most

ot Y ST 3 > 1«yg! > 7(r)

MN<x or ””'GA"; x<r<x(1+L7'%)? or
10 , m=x
MN(1+L7%) " >x+y n~N (x+y)(l+L"°)‘2<r5x+y
«< yg 'xL71°L.

Consequently, (29) becomes

where the supremum is taken over all parameters M and N satisfying x!/14 «
M « x13/2 and x « MN « x, and all sequences (a,,) with a,, < 1.
At last we were ready for expressing R, by characters. It turns out that

(31)

Ry« y?q7'L™> + L?? sup ¢! Z
M.N.a  y(modg)
X#Xo

D x(m)an :

mx~M

> x(m)

nxN

> x(p— k)&,

pPES

Then yields the desired bound for R;.
Finally we proceed to consider R,. The initial step is the same as above.
Thus, in place of (31), we have that
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(32)
Ry<y’q ' L*+ L2 sup 7' > D xp—K)&|| D x(p)|| D x(n)B,
Manﬁ x(modq) pef pzM n~N
X#Xo

where the supremum is taken over all parameters M and N satisfying
Z«M«Y and x <« MN « x, and all sequences (f,) with f, « t(n).

We first deal with the case Z« M < U=x!/1 Since N>»x/M>
x13/14 5 ¢, the mean square estimate shows that

2
(33) DD xmB,

« (g4 N)NL?® « N*L>.
x(modg)|n=N

Choose the integer H with MH~! < g < M so that 10 < H « (logx)/(log Z) «
(log L)z. Let @ denote the characteristic function of primes in [M, M(1 4+ L~19)),
and wy the H-fold convolution of w. Then, wy(n) < H! for all n. The mean

value estimate yields that

G4 >

x(mod g)

2H
< (g+M") > @y (n)®

MH<n<MH(14+L-10)#

x(p)
M < p<M(1+L-10)

< (MHH)?

Now, by Hoélder’s inequality, we have that the averaged character sum in (32) is

at most
(X #Xo

x(z

X

> x(p—k),

pesf

2+2/(H—1))(H1)/2H

2)1/2
In view of Lemma 7, and (34), the above becomes

« ((quS)l/(H—l)xZ)(Hv1)/2H((MHH!)Z)I/ZH(N2L3)1/2

> x(mB,

nx~N

> x(p)

pxM

« (/%) x(MN)(H)H L2
« x~VBH 2y 2

« exp(—KL(log L) %)x2L3,

which gives the acceptable estimation of R, in the case Z < M < U.
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It remains to consider the case U < M « Y. In this case, all assumptions of
are fulfilled, because of Lemma 7. Thus we have that R « y?q~'L™*,
as claimed. Consequently, Proposition 1 follows.

6. Proof of [Proposition 2

To handle P;, we need the reversal roles trick. It follows from the definition
that

(35) P=>>"1= > 3 1+00%?.

peSresd; resd; pesf
p+r=k(q) (k=r,q)=1 p=k-r(q)

We shall estimate the inner sum by means of the Rosser-Iwaniec sieve [11, 17].
Let ¢ > 0 be a fixed small number. Put

z=x13, D= x60/TN0-5) _ yS0-e)

Then, since 2 < s =logD/logz < 3, the upper bound sieve yields that

2+ Ke y
Z q)z(l)S lOqu—l Z Ad Z _62

where (4;7) = (44(z, D)) satisfies that
=0 if d>D; || <p?(d)¥.(d).

We then rewrite the above remainder term by using [30). Thus, providing that ¢ is
small enough, we obtain that

8
Z IS§_y1L+ Z (Zld>_ Z (Zid) +0(Dg™").
pes (¢—1) e ajl 9- all
p=k-r(q) I=k-r(q) (1"1 =

Substituting this into [35), we have that

Yy

8
(36) P < 3 CL

|| + T + O(y*q~%) + O(Dyq™")

where
T= % ( > v -— % U(l))
1 \/=k-r(q) U, q)=1
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According to [11], (4) has the following form.

b= Z o> va(eA)

..... r) v<D® Dl <p1<Dl+£
1<i<r
vy py=d

where A = (Dy, ..., D,) runs through the subsequences of (D**(1+¢)") _ including
the empty one, such that

D\Dy---D;, <D foral l<m<(r+1)/2.

Here p,(¢,A) depends only on v, ¢ and A, and satisfies |p, (g, A)| < ©?(v)¥p.2 (v).
And the number of A = (Dy,...,D,)’s is less than exp(8¢73).

Now, as before in section 5, we shall split up U and appeal to Lemmas 9 and
10. We write U(Il) = U;(I) + Ux(I), where U; is the form arising from A = &,
(Dy1),(Dy,D3), and U, from A = (D;,...,D,) with r > 3.

When A=, (D),(D1,D:), d takes v, vp,, vp,p,. Since D; > D, and
D} < D, we see that d < D'E(DIDZ)”E9 < DE(D2/3)(1+69) = D', say. Hence U; may

be written as
Ui(l) = Z 22%(8 A)

Azgv(Dl)v(DlyDZ) dn

Dl

with ay «< 1. Here we notice that
D < xa(x40/77)(1—6)(1+e9) < x40/TT+e  115/28
providing that ¢ is small enough. Therefore U, is the same type as W) defined by

(26) in the previous section.
We proceed to consider U,. From the definition, we find that

Uz(l) = Z Z Z ﬂn(g, A)

A=(D1 ..... D,) D, < <Dl+£9 n__
r>3 rSPr<Br p=l

where

Pule: ) =2 > - Zzpv(m)«r)

v< D¢ D<P, DI+£
1<i<r-1
vp1--Pr_h=n

Since D3 > D, and Dj < D1D,D3 < D, we see D, < D'/5. Then,

szz < D82 <D, <p < l)rl-kfs9 < D(1+£9)/5 — Y(1~a)(1+89) <Y — x12/77
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Hence U, is also the same type as W» given by [26). It turns out that U is divided
into the suitable form for the argument of proving Proposition 1.
Furthermore shows that the character sum 3_ ., x(r — k) fills the

réle of one over shifted primes in our proof of [Proposition 1. Therefore the same
argument as that in the previous section leads to

T « yzq‘lL“‘.

Combining this with [36), we have the required upper bound for P;’s.
This completes our proof of Theoreml
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