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Abstract. For a Tychonoff space $X$ , the topological lattices $C_{k}(X)$

and $C_{p}(X)$ of all real-valued continuous functions on $X$ endowed
respectively with the compact-open topology and the topology of
pointwise convergence are studied. It is proved that $C_{k}(X)$ and $C_{k}(Y)$

are isomorphic if and only if $C_{p}(X)$ and $C_{p}(X)$ are isomorphic if
and only if $X$ and $Y$ are homeomorphic. It is also shown that $C_{p}(Y)$

is embedded in $C_{p}(X)$ as a topological sublattice if and only if $Y$ is
a continuous image of a cozero-set of $X$ .

1. Introduction

All spaces considered here are Tychonoff topological spaces. For a space $X$ ,
the set of all real-valued continuous functions on $X$ is denoted by $C(X)$ . The
subset of $C(X)$ consisting of bounded functions is denoted by $C^{*}(X)$ . These sets
can be regarded as lattices with respect to the order: $f\leq g$ if and only if
$f(x)\leq g(x)$ at every point $x\in X$ . Ring structures on $C(X)$ and $C^{*}(X)$ are also
defined as usual and have been studied extensively. In case topological spaces are
assumed to be compact, the following are famous.

KAPLANSKY THEOREM [4]. For compact spaces $X$ and $Y$ , if there is a lattice
isomorphism between $C(X)$ and $C(Y)$ , then $X$ and $Y$ are homeomorphic.

GELFAND-KOLMOGOROFF THEOREM [2]. For compact spaces $X$ and $Y$ , if
there is a ring isomorphism between $C(X)$ and $C(Y)$ , then $X$ and $Y$ are
homeomorphic.

The Gelfand-Kolmogoroff theorem is considered as a corollary of the
Kaplansky theorem since every ring isomorphism between function spaces is a
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lattice isomorphism. It is well known that $C(X)$ and $C(vX)$ are ring isomorphic
for every space $X$ , where $vX$ is the Hewitt realcompactification of $X[3]$ . So the
Kaplansky theorem and the Gelfand-Kolmogoroff theorem can not be uncon-
ditionally extended to the class of Tychonoff spaces. However if some topological
structure is added to $C(X)$ , then the topological ring $C(X)$ happens to char-
acterize the topology of $X$ . The space $C(X)$ with the topology of pointwise
convergence is denoted by $C_{p}(X)$ . The space $C_{k}(X)$ is the spaoe $C(X)$ with the
compact-open topology. The following are known.

NAGATA THEOREM [6]. If $C_{p}(X)$ and $C_{p}(Y)$ are isomorphic as topological
rings, then Tychonoff spaces $X$ and $Y$ are homeomorphic.

MORRIS-WULBERT THEOREM [5]. If $C_{k}(X)$ and $C_{k}(Y)$ are isomorphic as
topological algebras, then Tychonoff spaces $X$ and $Y$ are homeomorphic.

It is also well-known that there are non-homeomorphic spaces $X$ and $Y$ such
that $C_{p}(X)$ and $C_{p}(Y)$ (or $C_{k}(X)$ and $C_{k}(Y)$ ) are linearly homeomorphic (see
[1]). Two topological lattices are called isomorphic if there exists a lattice iso-
morphism which is also a homeomorphism between these topological lattices. As
mentioned above, every ring isomorphism between function spaces is a lattice
isomorphism. And $C_{p}(X)$ and $C_{k}(X)$ are topological lattices in the sense that the
operations $\vee$ and $\wedge$ are continuous. Hence the following question arises
naturally:

Are $X$ and $Y$ homeomorphic if $C_{k}(X)$ and $C_{k}(Y)$ are isomorphic as topological
lattices?

The same question is considered for function spaces with the topology of
pointwise convergence. Notioe that every order isomorphism between function
spaces must be a lattice isomorphism. Hence, in order to see that $C_{k}(X)$ and
$C_{k}(Y)$ are isomorphic as topological lattices, it suffices to show that there is an
order-isomorphic homeomorphism between $C_{k}(X)$ and $C_{k}(Y)$ . For Tychonoff
spaces $X$ and $Y$ , we can show the following.

THEOREM 1. If topological lattices $C_{k}(X)$ and $C_{k}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.

THEOREM 2. If topological lattices $C_{k^{*}}(X)$ and $C_{k^{*}}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.
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THEOREM 3. If topological lattices $C_{p}(X)$ and $C_{p}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.

THEOREM 4. If topological lattices $C_{p^{*}}(X)$ and $C_{p^{*}}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.

These theorems are generalizations of the Nagata theorem or the Morris-
Wulbert theorem, but not generalizations of the Kaplansky theorem. In order
to generalize the Kaplansky theorem to the class of Tychonoff spaces, a new
topology on $C(X)$ is introduced. This idea is based on the following: In the
Kaplansky theorem, the lattices $C(X)$ and $C(Y)$ can be thought of as topological
lattices with discrete topologies. Further the following more general question is
considered:

What is the space $Y$ whose $C_{k}(Y)$ can be embedded in $C_{k}(X)$ as a topological
sublattice?

For this question, it does not seem that such a space $Y$ can be simply
characterized. However if we consider the topology of pointwise convergence
instead of the compact-open topology, then we have a simple characterization.

2. Topological-lattice Embeddings and Proofs

The essential parts of the proofs of the above theorems can be concentrated
in the proof of the following theorem.

THEOREM 5. There is a topological-lattice embedding $\Phi$ from $C_{k}(Y)$ into
$C_{k}(X)$ such that $\{\Phi(f)(x): f\in C(Y)\}$ is open in $R$ for any $x\in X$ if and only $\iota f$

there is a continuous map $\phi$ from $X$ onto $Y$ such that for any compact subset $K$ of
$Y$ there exists a compact subset $K^{\prime}$ of $X$ with $\phi(K^{\prime})\supset K$ .

Here, the topological-lattice embedding $\Phi$ : $C_{k}(Y)\rightarrow C_{k}(X)$ is a homeo-
morphic embedding which satisfies $\Phi(f\vee g)=\Phi(f)\vee\Phi(g)$ and $\Phi(f\wedge g)=\Phi(f)$

$\wedge\Phi(g)$ for any $f,$ $g\in C(Y)$ .
A subset $I$ of the lattice $C(Y)$ is said to be a prime ideal (see [7], [8]) if the

following conditions are satisfied:
1) if $f\in I$ and $g\leq f$ , then $g\in I$ ,
2) If $f,$ $g\in I$ , then $f\vee g\in I$ ,
3) if $f\wedge g\in I$ , then $f\in I$ or $g\in I$ ,
4) $I\neq\emptyset,$ $I\neq C(Y)$ .
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Let $y$ be an arbitrary point of $Y$ . For any fixed real number $r$ , the set

$I_{y}^{<r}=\{f\in C(Y) : f(y)<r\}$

is a prime ideal. In general, when a prime ideal $I$ is given, $I$ is said to be
associated with a point $y_{0}$ in $Y$ if $f\in I,$ $g\in C(Y)$ and $g(y_{0})<f(y_{0})$ imply $g\in I$ .

PROOF OF THEOREM 5. If there is a continuous map $\phi$ from $X$ onto $Y$ such
that for any compact subset $K$ of $Y$ there exists a compact subset $K^{\prime}$ of $X$ with
$\phi(K^{\prime})\supset K$ , then the canonical map $\Phi$ : $C_{k}(Y)\rightarrow C_{k}(X)$ defined by $\Phi(f)=f\circ\phi$

is a topological-lattice embedding with $\{\Phi(f)(x):f\in C(Y)\}=R$ for any $x\in X$ .
We assume that there is a topological-lattice embeding $\Phi$ : $C_{k}(Y)\rightarrow C_{k}(X)$

such that $\{\Phi(f)(x):f\in C(Y)\}$ is open in $R$ for any $x\in X$ . Since $C_{k}(Y)$ is
connected, $\{\Phi(f)(x):f\in C(Y)\}$ must be a non-empty open interval $(a_{x}, b_{x})$ for
any $x\in X$ .

For any point $y$ in $Y$ and any real number $r$ , the prime ideal $I_{y^{<r}}$ defined as
above is an open subset of $C_{k}(Y)$ . Conversely,

(1) For any open prime ideal $I$ in $C_{k}(Y)$ , there exists a unique point $y_{0}$ of $Y$

such that $I$ is associated with $y_{0}$ .
In fact, let $f$ be an arbitrary element of $I$ . Then there is a compact subset $K$

of $Y$ and an $\epsilon>0$ such that the canonical open set

$\langle f, K,\epsilon\rangle=\{g\in C(Y) : |g(y)-f(y)|<\epsilon\forall y\in K\}$

is a subset of $I$ .
a) There is a point $y_{K}$ in $K$ which satisfies: if $g\in C(Y)$ and $g(y_{K})<f(y_{K})$ ,

then $g\in I$ .
Suppose that, for every point $y$ in $K$ , there exists $g_{y}\not\in I$ such that $g_{y}(y)<$

$f(y)$ . Let $G_{y}=\{u\in Y:g_{y}(u)<f(u)\}$ . then $G_{y}$ is an open subset of $Y$ containing
$y$ . Since $K$ is compact, there are points $y_{1},$

$\ldots,$
$y_{n}\in K$ such that $ K\subset G_{yl}\cup\cdots\cup$

$G_{y_{n}}$ . Let

$h=g_{y_{1}}\wedge\cdots\wedge g_{y_{n}}$ .

Then $h\not\in I$ and $h|K<f|K$ . However, since $(h\vee f)|K=f|K$ , the supremum $h\vee f$

must be a member of $I$ . Hence it follows that $h$ is a member of $I$ from the
condition 1) of the prime ideal, which is a contradiction.

b) Such a point $y_{K}$ is uniquely determined.
Assume that $y_{1}$ and $y_{2}$ be distinct points in $K$ which satisfy the condition

of a). Then for any $k\in C(Y)$ we can take $k_{1},$ $k_{2}\in C(Y)$ with the following
properties: $k=k_{1}\vee k_{2},$ $k_{1}(y_{1})<f(y_{1})$ and $k_{2}(y_{2})<f(y_{2})$ . This means that $k_{1}$ ,



Topological Lattices $C_{k}(X)$ and $C_{p}(X)$ 201

$k_{2}\in I$ and hence $k\in I$ , which implies that $C(Y)=I$ . This is a contradiction. By
the same argument, we obtain the following

c) The point $y_{K}$ does not depend on the choices of $f$ and $\langle f, K, \epsilon\rangle$ .
Let $y_{0}$ be the point uniquely determined above. Then it is easy to see that $I$ is

associated with $y_{0}$ .
Now, we can define a map $\phi$ from $X$ to $Y$ as follows: Take an arbitrary

point $x$ of $X$ . For any real number $a$ which satisfies $a_{x}<a<b_{x}$ , let

$J_{x}^{\prec a}=\{g\in C(Y) : \Phi(g)(x)<a\}$ .

Then this set is an open prime ideal in $C_{p}(Y)$ since $\Phi$ is a topological-lattice
embedding. Hence a unique point $y$ in $Y$ , with which this open prime ideal is
associated, is determined.

Since two open prime ideals $I_{1}$ and $I_{2}$ are associated with the same point if
and only if $I_{1}\cap I_{2}$ is a prime ideal,

(2) the point $y$ does not depend on the choice of the value $a$ .
This show that $\phi(x)=y$ is well-defined.
(3) $\phi$ is onto.
Let $y$ be an arbitrary point of $Y$ . Take a real number $r$ and consider the

open prime ideal $I_{y^{<r}}=\{f\in C(Y):f(y)<r\}$ in $C_{p}(Y)$ . Then, since $\Phi(I_{y^{<r}})$ is
open in $\Phi(C_{k}(Y))$ , if we take a function $f$ in $I_{y^{<r}}$ , then there is a compact subset
$K^{\prime}$ of $X$ and an $\epsilon>0$ such that

$\langle\Phi(f), K^{\prime}, \epsilon\rangle\cap\Phi(C(Y))\subset\Phi(I_{y}^{<r})$ .

By the same argument as that in a) of (1), it is shown that there is a point $x$ in $K^{\prime}$

with the following property: if $g\in C(Y)$ and $\Phi(g)(x)<\Phi(f)(x)$ , then $g\in I_{y^{<r}}$ . In
fact, for any point $x\in K^{\prime}$ , assume that there exists $g_{x}\in C(Y)$ such that $\Phi(g_{x})(x)$

$<\Phi(f)(x)$ and $g_{x}\not\in I_{y^{<}}$ . Let $G_{x}=\{v\in X:\Phi(g_{x})(v)<\Phi(f)(v)\}$ for each $x\in K^{\prime}$ .
Since $K^{\prime}$ is compact, there exist $x_{1},$

$\ldots,$
$x_{n}\in K^{\prime}$ such that $K^{\prime}\subset G_{x_{1}}\cup\cdots\cup G_{x_{n}}$ .

Let
$g=g_{x_{1}}\wedge\cdots\wedge g_{x_{n}}$ .

Then $g\not\in I_{y^{<r}}$ and $\Phi(g)|K‘<\Phi(f)|K^{\prime}$ . Since $\Phi(g\vee f)|K^{\prime}=\Phi(f)|K$ ‘, $g\vee f$ must
be in $I_{y^{<r}}$ and hence $g\in I_{y^{<r}}$ . This is a contradiction. Let $a=\Phi(f)(x)$ and take the
open prime ideal $J_{\chi}^{\prec a}$ in $C_{p}(Y)$ defined as that one in c) of (1). Then, since
$J_{x}^{\prec a}\subset I_{y^{<r}}$ , the open prime ideal $J_{x}^{\prec a}$ must be associated with $y$ , which shows that
$\phi(x)=y$ .

(4) $\phi$ is continuous.
It suffices to show that, for any closed subset $F$ of $Y$ and any point $ x\in$

$X-\phi^{-1}(F)$ , there are $g,$ $h\in C(Y)$ which satisfy the following: $\Phi(h)(x)>\Phi(g)(x)$
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and $\Phi(h)|\phi^{-1}(F)\leq\Phi(g)|\phi^{-1}(F)$ . For $x\in X-\phi^{-1}(F)$ let $\phi(x)=y$ . Since { $\Phi(f)(x)$ :
$f\in C(Y)\}=(a_{x}, b_{x})$ is open, we can take a function $g\in C(Y)$ and $a\in(a_{x}, b_{x})$

such that $\Phi(g)(x)<a$ . Then the open prime ideal $J_{x}^{\prec a}$ defined as above is
associated with $y\not\in F$ . Hence there is a function $h$ in $C(Y)$ which satisfies; $h(u)<$

$g(u)$ for any $u\in F$ , and $h$ is not a member of $J_{x}^{\prec a}$ . It follows that $\Phi(h)(x)>$

$\Phi(g)(x)$ . We will show that $\Phi(h)|\phi^{-1}(F)\leq\Phi(g)|\phi^{-1}(F)$ . Assume that there is a
point $x_{0}$ in $\phi^{-1}(F)$ which satisfies $\Phi(g)(x_{0})<\Phi(h)(x_{0})$ . Take a number $r$ such
that $\Phi(g)(x_{0})<r<\Phi(h)(x_{0})$ . Then the open prime ideal $J_{x_{0}}^{\prec r}$ contains $g$ but does
not contain $h$ . However, since this open prime ideal is associated with a point
$\phi(x_{0})$ in $F$ and $h(\phi(x_{0}))<g(\phi(x_{0}))$ , a contradiction is obtained.

(5) For any compact subset $K$ of $Y$ there is a compact subset $K$ ‘ of $X$ such
that $\phi(K^{\prime})\supset K$ .

We can assume that $K$ is nonempty. Take an $f\in C(Y)$ and $\epsilon>0$ . Then there
are a compact subset $K$ ‘ of $X$ and a $\delta>0$ such that

$\langle\Phi(f), K^{\prime},\delta\rangle\cap\Phi(C(Y))\subset\Phi(\langle f, K,\epsilon\rangle)$ .

It is proved that $\phi(K^{\prime})\supset K$ . Assume that $K$ is not a subset of $\phi(K^{\prime})$ . Then there
is a point $x_{0}$ in $\phi^{-1}(K)-\phi^{-1}(\phi(K^{\prime}))$ . For any point $x^{\prime}\in K^{\prime}$ , let $a_{x^{\prime}}=\Phi(f)(x^{\prime})$ .
Since the open prime ideal $J_{x}^{\prec a_{x^{\prime}}}=\{g\in C(Y):\Phi(g)(x^{\prime})<a_{x^{\prime}}\}$ is associated with
$\phi(x^{\prime})$ and $\phi(x^{\prime})\neq\phi(x_{0})$ , there exists $g_{x^{\prime}}\in J_{x}^{\prec a_{x^{\prime}}}$ such that $ g_{x^{\prime}}(\phi(x_{0}))\geq f(\phi(x_{0}))+\epsilon$ .
Using the same argument as that in (3), it can be shown that there is a func-
tion $g0\in C(Y)$ such that g0 $(\phi(x_{0}))\geq f(\phi(x_{0}))+\epsilon$ and $\Phi(go)|K‘<\Phi(f)|K$ ‘. Since
$\phi(x_{0})\in K$ , it follows that $ g0\not\in\langle f, K, \epsilon\rangle$ . Let $h=g0\vee f$ . Then $\Phi(h)|K‘=\Phi(f)|K$

‘

and $ h(\phi(x_{0}))\geq f(\phi(x_{0}))+\epsilon$ . It follows that $\Phi(h)\in\Phi(\langle f, K,\epsilon\rangle)$ and $ h\not\in\langle f, K,\epsilon\rangle$

are satisfied. This is a contradiction.

If $\Phi$ is a topological-lattice isomorphism from $C_{k}(Y)$ onto $C_{k}(X)$ , then the
inverse of the continuous map $\phi$ in the above proof must correspond to the
continuous map from $Y$ onto $X$ constracted similarly by using $\Phi^{-1}$ instead of $\Phi$ .
Hence it is shown that Theorem 1 is true.

Quite similarly we can prove the following.

THEOREM 6. There is a topological-lattice embedding $\Phi$ from $C_{k^{*}}(Y)$ into
$C_{k^{*}}(X)$ such that $\{\Phi(f)(x):f\in C^{*}(Y)\}$ is open in $R$ for any $x\in X$ if and only if
there is a continuous map $\phi$ from $X$ onto $Y$ such that for any compact subset $K$ of
$Y$ there exists a compact subset $K^{\prime}$ of $X$ with $\phi(K^{\prime})\supset K$ .

In the proof of Theorem 5, if we replace compact sets with finite sets, then
analogous results are obtained for the function spaces with the topology of
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pointwise convergence. Further, if $\{\Phi(f)(x) : f\in C(Y)\}$ contains at least 2 values,
then the interior of this set is a non-empty open interval $(a_{x}, b_{x})$ . Inquiring into
the proof of Theorem 5, we have the following.

THEOREM 7. There is a topological-lattice embedding $\Phi$ from $C_{p}(Y)$ into
$C_{p}(X)$ such that $\{\Phi(f)(x):f\in C(Y)\}$ contains at least 2 values for any $x\in X\iota f$

and only $lf$ there is a continuous map $\phi$ from $X$ onto $Y$.

THEOREM 8. There is a topological-lattice embedding $\Phi$ from $C_{p^{*}}(Y)$ into
$C_{p^{*}}(X)$ such that $\{\Phi(f)(x) : f\in C^{*}(Y)\}$ contains at least 2 values for any $x\in X$ if
and only if there is a continuous map $\phi$ from $X$ onto $Y$.

It has been already obvious that Theorem 2, 3 and 4 are true.
lf we tum to look at above theorems, then the following problem arises: For

a space $X$, how can we characterize such a space $Y$ whose $C_{k}(Y)$ (or $C_{p}(Y)$ ) is
embedded in $C_{k}(X)$ (or $C_{p}(X)$ ) as a topological sublattice? In case $C_{p}$ we have a
simple characterization of such a space $Y$. The following lemma is obvious.

LEMMA. Let $A$ be a topological sublattice of $C_{p}(X)$ and let $Z=\{x\in X$ :
$|A(x)|\geq 2\}$ , where $A(x)=\{f(x):f\in A\}$ and I means the cardinality of a set.
Let $r:C_{p}(X)\rightarrow C_{p}(Z)$ be the restriction $r(f)=f|Z$ . Then $r|A:A\rightarrow r(A)$ is a
topological-lattice isomorphism.

THEOREM 9. $C_{p}(Y)$ is embedded in $C_{p}(X)$ as a topological sublattice $lf$ and
only if $Y$ is a continuous image of a cozero-set of $X$.

PROOF. For a cozero-set $U$ of $X$, assume that there is a continuous map $\phi$

from $U$ onto $Y$. Then there is a canonical embedding $\Phi$ : $C_{p}(Y)\rightarrow C_{p}(U)$ defined
by $\Phi(f)=f\circ\phi$ for any $f\in C_{p}(Y)$ . Let $t$ be an order-preserving homeomor-
phism from the real line $R$ onto the open interval $(-1,1)$ such as $(2/\pi)tan^{-1}$ .
Then the map $H:C_{p}(Y)\rightarrow C_{p}(U)$ defined by

$H(f)(u)=t(\Phi(f)(u))$

is a topological-lattice embedding, where $f\in C(Y)$ and $u\in U$ . Further, we can
take a continuous map $s:X\rightarrow[0,1]$ such that $s^{-1}(0)=X-U$ . Let $\Psi$ : $ C_{p}(Y)\rightarrow$

$C_{p}(X)$ be the map defined as follows: $\Psi(f)(x)=0$ if $x\in X-U$ and $\Psi(f)(x)=$

$s(x)H(f)(x)$ if $x\in U$ . Then it is not difficult to see that $\Psi$ is a topological-lattice
embedding.
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Conversely, let $\Phi$ : $C_{p}(Y)\rightarrow C_{p}(X)$ be a topological-lattice embedding. Let

$F=\{x\in X : |\{\Phi(f)(x) : f\in C(Y)\}|=1\}$ .

If $ F=\emptyset$ , then we have already shown that $Y$ is a continuous image of $X$ in
Theorem 7. So we can assume that $ F\neq\emptyset$ . Further, we can assume that $\Phi(0_{Y})=$

$0_{X}$ , since $\Phi^{\prime}$ : $C_{p}(Y)\rightarrow C_{p}(X)$ defined by $\Phi^{\prime}(f)=\Phi(f)-\Phi(0_{Y})$ is also a topol-
ogical-lattice embedding, where $0_{X}$ and $0_{Y}$ are real-valued constant functions on
$X$ and $Y$ respectively with values $0$ . Hence it follows that $\Phi(f)(x)=0$ is satisfied
for any $x\in F$ and any $f\in C(Y)$ .

(0) $F$ is a zero-set.
For each integer $i$, let $i_{Y}\in C(Y)$ be the real-valued constant function on $Y$

with the value $i$ . It suffices to show that

$F=\cap\{\Phi(i_{Y})^{-1}(0) : i=0, \pm 1, \pm 2, \ldots\}$ .

Assume that there is a point $x$ in $X-F$ such that $x\in\Phi(i_{Y})^{-1}(0)$ for every
integer $i$ . Then there exists a function $g\in C(Y)$ such that $\Phi(g)(x)\neq 0$ . Now, let
$a=(1/2)\Phi(g)(x)$ . Take

$J_{x}^{\prec a}=\{f\in C(Y) : \Phi(f)(x)<a\}$ .

Then $J_{x}^{\prec a}$ is an open prime ideal in $C_{p}(Y)$ . Hence there is a point $y\in Y$ such
that $J_{x}^{\prec a}$ is associated with $y$ . But this is a contradiction, since if $a>0$ then
$i_{Y}\in J_{x}^{\prec a}$ for all $i$, and if $a<0$ then $i_{Y}\not\in J_{x}^{\prec a}$ for all $i$ .

Let $U=X-F$ . Then there is a topological-lattice embedding of $C_{p}(Y)$ into
$C_{p}(U)$ by Lemma, which satisfies the condition of Theorem 7. Hence $Y$ is a
continuous image of $U$.

It is obvious that the similar theorem is obtained for $C_{p^{*}}(X)$ and $C_{p^{*}}(Y)$ .

COROLLARY 1. Let $X$ be a Lindelof space. If $C_{p}(Y)$ is embedded in $C_{p}(X)$ as
a topological sublattice, then $Y$ is also Lindelof

The following example show that topological-lattice embeddings can not be
replaced with topological, order-isomorphic embeddings in Theorem 5, 6, 7, 8.

EXAMPLE. There exist spaces $X$ and $Y$ with the following properties:
1) There is an order-isomorphic, topological embedding $\Phi$ from $C_{k}(Y)$

$(C_{p}(Y))$ into $C_{k}(X)(C_{p}(X))$ such that $\{\Phi(f)(x):f\in C(Y)\}=R$ for any $x\in X$ .
2) $Y$ is not a continuous image of $X$.
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In fact, let $X$ be the unit interval $[0,1]$ and $Y$ the two-points space $\{0,1\}$ .
Then obviously there is no continuous map from $X$ onto $Y$. The map $\Phi$ : $C_{k}(Y)$

$\rightarrow C_{k}(X)$ , which satisfies the condition 1), is defined as follows: For $f\in C(Y)$ and
$x\in[0,1]$ ,

$\Phi(f)(x)=(1-x)f(O)+xf(1)$ .

3. Generalizations of the Kaplansky Theorem

Let $X$ be a space. For $f\in C(X)$ and a compact subset $K$ of $X$, let

$[f, K]=\{g\in C(X) : g|K=f|K\}$ .

Then we can define the topology on $C(X)$ generated by

$\{[f, K] : f\in C(X), K\in\ovalbox{\tt\small REJECT}^{r}\}$ ,

where X is the family of all compact subsets of $X$. This topology is called the
compact-discrete topology. The space $C(X)$ with the compact-discrete topology is
denoted by $C_{d}(X)$ . The meaning of $C_{d^{*}}(X)$ is obvious.

The compact-discrete topology is related to a topology on the power set of a
topological space. The power set $P(X)$ is the set of all subsets of a space $X$. We
define the topology $\tau_{\kappa}$ on $P(X)$ as follows: For each pair $A,$ $B$ of disjoint compact
subsets of $X$, let

$\langle A, B\rangle=\{Y\in P(X) : A\subset Y, B\cap Y=\emptyset\}$ .

Considering the family of all these subsets $\langle A, B\rangle$ as an open (sub-)base, we can
introduce a topology on $P(X)$ . This topology is called the compact-cocompact
topology.

THEOREM 10. The topology $\tau_{\kappa}$ is $T_{1}$ and zero-dimensional, and hence
Tychonoff.

PROOF. Let $G$ be an arbitrary point and take another point $H$ in $P(X)$ . Then
there exists a point $x$ in $X$ such that (1) $x\in H$ and $x\not\in G$ or (2) $x\in G$ and $x\not\in H$ .
In case (1), $H$ is an element of the basic open set $\langle\{x\}, \otimes\rangle$ , but $G$ is not in
$\langle\{x\}, \otimes\rangle$ . If (2) is satisfied, then $\langle\otimes, \{x\}\rangle$ is a neighborhood of $H$ which does
not contain $G$ . In order to show the zero-dimensionality, it suffices to show that
every basic open set $\langle A, B\rangle$ is closed. Let $ C\not\in\langle A, B\rangle$ . Then there is a point $x$

in $X$ such that either $x\in A\backslash C$ or $x\in B\cap C$ . Using the same argument above, it
is shown that $\langle\otimes, \{x\}\rangle$ or $\langle\{x\}, \otimes\rangle$ is a neighborhood of $C$ which does not
intersect with $\langle A, B\rangle$ .
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Considering graphs of functions, the set $C(X)$ can be thought of as a subset
of the power set $P(X\times R)$ of the product space $X\times R$ .

THEOREM 11. The compact-discrete topology on $C(X)$ coincides with the
relative topology of the compact-cocompact topology on $P(X\times R)$ .

PROOF. Let $f$ be an arbitrary point in $C(X)$ . Any basic neighborhood
$[f, K]$ of $f$ with respect to the compact-discrete topology is equal to the
neighborhood $\langle\{(x,f(x)):x\in K\}, \emptyset\rangle\cap C(X)$ of $f$ with respect to the relative
compact-cocompact topology. Conversely, for any basic neighborhood $\langle A, B\rangle\cap$

$C(X)$ of $f$ with respect to the relative compact-cocompact topology, the set
$[f, \pi_{X}(A)\cup\pi_{X}(B)]$ is a neighborhood of $f$ with respect to the compact-discrete
topology which is included in $\langle A, B\rangle$ , where $\pi_{X}$ is the natural projection from
$X\times R$ onto $X$.

The following is easy.

THEOREM 12. The space $C_{d}(X)$ has the following properties:
1) $C_{d}(X)$ is a zero-dimensional Tychonoff space.
2) $C_{d}(X)$ is a topological ring.
3) $C_{d}(X)$ is a topological lattice.
4) $C_{d}(X)$ is discrete $\iota f$ and only $lfX$ is compact.

As mentioned in Introduction, algebraic lattices are regarded as topological
lattices with discrete topologies. So we can generalize the Kaplansky theorem as
follows:

THEOREM 13. If topological lattices $C_{d}(X)$ and $C_{d}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.

THEOREM 14. If topological lattices $C_{d^{*}}(X)$ and $C_{d^{*}}(Y)$ are isomorphic, then $X$

and $Y$ are homeomorphic.

These theorems follow from the following, which can be proved similarly as
Theorem 5.

THEOREM 15. There is a topological-lattice embedding $\Phi$ from $C_{d}(Y)$ into
$C_{d}(X)$ such that $\{\Phi(f)(x):f\in C(Y)\}$ is open in $R$ for any $x\in X$ if and only $lf$
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there is a continuous map $\emptyset$ from $X$ onto $Y$ such that for any compact subset $K$ of
$Y$ there exists a compact subset $K^{\prime}$ of $X$ with $\phi(K^{\prime})\supset K$ .

THEOREM 16. There is a topological-lattice embedding $\Phi$ from $C_{d}^{*}(Y)$ into
$C_{d^{*}}(X)$ such that $\{\Phi(f)(x):f\in C^{*}(Y)\}$ is open in $R$ for any $x\in Xlf$ and only $lf$

there is a continuous map $\phi$ from $X$ onto $Y$ such that for any compact subset $K$ of $Y$

there exists a compact subset $K^{\prime}$ of $X$ with $\phi(K^{\prime})\supset K$ .
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