
TSUKUBA J MATH.
Vol. 24 No. 1 (2000), 139-156

THE INJECTIVITY RADIUS AND THE FUNDAMENTAL
GROUP OF COMPACT HOMOGENEOUS RIEMANNIAN

MANIFOLDS OF POSITIVE CURVATURE

By

Ryosuke ICHIDA

1. Introduction

In this paper we characterize a homogeneous spherical space form whose
fundamental group is a binary dihedral group by means of the injectivity
radius of the exponential map. As an application of this result we show that
the fundamental group of a non-simply connected homogeneous 1/4-pinched
Riemannian manifold is isomorphic to a finite subgroup of the special unitary
group $SU(2)$ of degree 2. Moreover we show that the fundamental group of a
non-simply connected homogeneous 1/4-pinched Riemannian manifold whose
dimension is of $4j+1(j\geq 1)$ is a cyclic group. As is well known, every
nontrivial finite subgroup of $SU(2)$ is a cyclic, binary dihedral or binary poly-
hedral group ([21]). Therefore the fundamental group of a non-simply connected
homogeneous 1/4-pinched Riemannian manifold is isomorphic to one of the finite
groups stated above.

Let $M$ be an m-dimensional $(m\geq 3)$ complete, connected Riemannian
manifold and $N$ an n-dimensional $(0\leq n\leq m-1)$ connected, compact sub-
manifold (without boundary) embedded in $M$. Let $Exp_{N}$ : $v(N)\rightarrow M$ denote the
normal exponential map of $N$. Here $v(N)$ is the total space of the normal bundle
of $N$ in $M$. In the case where $N$ is a point of $M,$ $v(N)$ stands for the tangent
space to $M$ at that point. We denote by $i(N)$ the injectivity radius of $Exp_{N}$ . It is
defined as the supremum of the set of all $r>0$ for which $ExpN$ : $v_{r}(N)\rightarrow M$ is an
embedding, where $v_{r}(N)$ is the set of all normal vectors to $N$ of length less than $r$ .
The injectivity radius $Inj(M)$ of $M$ is then defined as $Inj(M)=\inf\{i(x)|x\in M\}$ .
If $M$ is compact, then $Inj(M)$ is positive.

A binary dihedral group $D_{k}^{*}$ is a finite group generated by two elements $a$
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and $b$ with fundamental relations $a^{2k}=e,$ $a^{k}=b^{2}$ and $aba=b$ , where $2k$ is the
order of $a(k\geq 2)$ and $e$ denotes the unit element of $D_{k^{*}}$ . In case of $k=2,$ $D_{2}^{*}$ is
isomorphic to the quatemion group $Q8$ . As stated above, $SU(2)$ contains binary
dihedral groups.

There are homogeneous spherical space forms whose fundamental groups are
binary dihedral groups. We can characterize such spherical space forms in terms
of the injectivity radius of the exponential map.

Let $M$ denote an m-dimensional $(m\geq 3)$ connected, compact, non-simply
connected Riemannian manifold with sectional curvature $K_{M}\geq 1$ . An upper
bound of $Inj(M)$ is closely related to the fundamental group $\pi_{1}(M)$ of $M$. The
diameter sphere theorem due to Grove and Shiohama ([8]) shows that $ Inj(M)\leq$

$\pi/2$ . Toponogov’s diameter theorem implies that if $Inj(M)=\pi/2$ , then $M$ is
isometric to the m-dimensional real projective space $RP^{m}$ with constant curvature
1. Shiohama showed in [18] the following result. If $\pi_{1}(M)\cong Z_{3}$ , then $ Inj(M)\leq$

$\pi/3$ and equality holds if and only if $M$ is isometric to the lens space of constant
curvature 1. We showed in [11] that if the order of $\pi_{1}(M)$ is not a prime, then
$Inj(M)\leq\pi/4$ and equality holds if and only if $M$ is a homogeneous Riemannian
manifold of constant curvature 1 and $\pi_{1}(M)$ is isomorphic to either $Z_{4}$ or $Q8$ .
Here if $\pi_{1}(M)\cong Q8$ , then we have $m=4j-1(j\geq 1)$ .

Let $M$ be as above, and let $N$ be an n-dimensional $(n\geq 1)$ connected,
compact, totally geodesic submanifold embedded in $M$ such that $2n\leq m-1$ . We
note here that if $2n\geq m$ , then the first relative homotopy class $\pi_{1}(M, N)$ is trivial,
i.e., the homomorphism $\iota_{\#}$ : $\pi 1(N)\rightarrow\pi_{1}(M)$ induced from the inclusion $\iota$ : $ N\rightarrow$

$M$ is surjective ([6]). In the case where $\pi_{1}(M, N)$ is nontrivial, i.e., $\iota\#(\pi_{1}(N))\neq$

$\pi 1(M)$ , an upper bound of $i(N)$ is closely related to $\pi_{1}(M)$ and $\pi_{1}(M, N)$ . We
now assume that $M$ is a homogeneous Riemannian manifold. Then we showed in
[11] that if $N$ is a simple closed geodesic of $M$ which is homotopically nontrivial
and if $\pi_{1}(M)$ is not a cyclic group, then $i(N)\leq\pi/4$ . Here if equality holds, then
$M$ is of constant curvature 1, $m=4j-1(j\geq 1)$ and $\pi_{1}(M)$ is a binary dihedral
group. In this result we can eliminate the assumption that $N$ is homotopically
nontrivial. Moreover this result is also tme for the case $n\geq 2$ . In this paper we
show the following.

THEOREM A. Let $M$ be an m-dimensional $(m\geq 3)$ connected, compact, non-
simply connected homogeneous Riemannian manifold with sectional curvature
$K_{M}\geq 1$ . Let $N$ be an n-dimensional $(n\geq 1)$ compact, connected, totally geodesic

submanifold embedded in $M$ such that $2n\leq m-1$ . Assume that $\pi_{1}(M)$ is not a
cyclic group and that $\pi_{1}(M, N)$ is nontrivial. Then $i(N)\leq\pi/4$ . Here if equality
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holds, then $M$ is of constant curvature 1, $m=4j-1(j\geq 1)$ and $\pi_{1}(M)$ is
isomorphic to a binary dihedral group.

As applications of Theorem A we have the following two results.

THEOREM B. Let $M$ be an m-dimensional $(m\geq 2)$ connected, compact, non-
simply connected homogeneous Riemannian manifold whose sectional curvature $K_{M}$

satisfies $1\leq K_{M}\leq 4$ . Then $\pi_{1}(M)$ is isomorphic to a finite subgroup of $SU(2)$ .

THEOREM C. Let $M$ be an m-dimensional connecfed, compact, non-simply
connected homogeneous Riemannian mamfold whose sectional curvature $K_{M}$ sat-

isfies $1\leq K_{M}\leq 4$ . If $m=4j+1(j\geq 1)$ , then $\pi_{1}(M)$ is a cyclic group.

In the case where $M$ is a non-simply connected homogeneous spherical space
form, Theorems $B$ and $C$ are classical results ([21]; p. 229). However, even if $M$ is
such a spherical space form, our proof for these theorems is different from one
given in [21].

The proof of the theorems stated above will be given in Sections 3 and 4.
We give in Section 5 examples of connected, compact, non-simply connected
homogeneous Riemannian manifolds with $1\leq K\leq 4$ .

2. Preliminaries

Throughout this paper we always assume that all geodesics on Riemannian
manifolds are parameterized by arc-length, unless otherwise stated.

In this section we prepare lemmas which will be used in the proof of the
theorems stated in Section 1.

Throughout this section let $M$ be an m-dimensional $(m\geq 3)$ connected,
compact, non-simply connected Riemannian manifold whose sectional curvature
$K_{M}$ satisfies $K_{M}\geq 1$ and let $p:V\rightarrow M$ denote the universal Riemannian
covering. $V$ is a complete Riemannian manifold with sectional curvature $K_{V}\geq 1$ .
We will denote by $d$ the distance function on $V$ which is induced from the
Riemannian metric of $V$. Let $\Gamma$ denote the deck transformation group of $V$

corresponding to the fundamental group $\pi_{1}(M)$ of M. $\Gamma$ acts freely on $V$.
By the theorem of Bonnet-Myers, the diameter $d(V)$ of $V$ is not greater than

$\pi$ . Hence $V$ is compact and $\Gamma$ is a finite group. Toponogov’s diameter theorem
shows that $ d(V)=\pi$ holds if and only if $V$ is isometric to the Euclidean unit m-
sphere $S^{m}$ . By the diameter sphere theorem of Grove and Shiohama ([8]), the
diameter $d(M)$ of $M$ is not greater than $\pi/2$ . Rigidity theorem due to Gromoll
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and Grove ([7]) implies that if $m$ is odd and $d(M)=\pi/2$ , then $M$ is of constant
curvature 1.

A nonempty subset $C$ of $V$ is called totally r-convex in $V(r>0)$ if for every
geodesic $\gamma$ : $[0, a]\rightarrow V$ with $\gamma(0),$ $\gamma(a)\in C$ and $0<a<r$ we have $\gamma([0, a])\subset C$ .

Let $C$ be a connected, compact, totally r-convex set in $V$ whose boundary $\partial C$

is nonempty. The interior of $C$ is a totally geodesic submanifold embedded in $V$.
We set $C^{a}=\{x\in C|d(x, \partial C)\geq a\}(a\geq 0)$ and $\rho=\max\{d(x, \partial C)|x\in C\}$ . Then
the set $\bigcap_{0\leq a\leq\rho}C^{a}$ consists of one point $s_{C}$ , which is called the soul of $C$ ([3]). If
$C$ is invariant under an isometry $\varphi$ of $V$, then $s_{C}$ is a fixed point of $\varphi$ because $\varphi$

leaves $\partial C$ invariant. Hence we have

LEMMA 2.1. Let $C$ be a connected, compact, totally r-convex proper subset in
V. If $C$ is invariant under a fixed point free isometry of $V$, then $\dim C\geq 1$ and
$\partial C=\otimes$ .

Let $C$ be a compact totally $\pi$-convex proper subset in $V$. If $C$ is not arcwise
connected, then there exist two points $x,$ $y\in C$ such that $ d(x, y)\geq\pi$ . Then by the
theorem due to Bonnet-Myers we get $ d(x, y)=\pi$ . Hence $V$ is isometric to $S^{m}$ and
$C$ consists of exactly two points. Thus we have

LEMMA 2.2. Let $C$ be a compact totally $\pi$-convex proper subset in V. If $C$

contains at least three points, then $C$ is arcwise connected and $\dim C\geq 1$ .

Let $C$ be a connected, compact, totally $\pi$-convex proper subset in $V$ with
$\dim C\geq 1$ . Then any two points of $C$ can be connected by a minimizing geodesic
in $V$ which is contained in $C$ .

Let $A$ be a nonempty compact proper subset in $V$. We set

$B=\{x\in V|d(x, A)\geq\pi/2\}$ , $C=\{x\in V|d(x, B)\geq\pi/2\}$ .

Then we shall show the following lemma.

LEMMA 2.3. Let $A,$ $B$ and $C$ be as above. Let $\Gamma_{1}$ be a subgroup of $\Gamma$ such that
$\Gamma_{1}\neq\{I_{V}\}$ . Assume that $m(\geq 3)$ is odd. Suppose that $A$ is invariant under $\Gamma_{1}$ and
that $C$ and $B$ contain connected, compact submanifolds $N_{1}$ and $N_{2}$ with $ 1\leq$

$\dim N_{1},$ $\dim N_{2}\leq m-2$ , respectively. Then we have
(1) $B$ and $C$ are totally $\pi$-convex in $V$ and $\partial B=\partial C=\emptyset$ .
(2) If $x\in B$ and $y\in C$ , then $d(x, y)=\pi/2$ .
(3) $V$ is isometric to $S^{m}$ .
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PROOF. By using the comparison theorem of Toponogov, we can show that
both $B$ and $C$ are totally $\pi$-convex in $V$ ([9], [10]). Since $N_{1}\subset C$ and $N_{2}\subset B$ ,
Lemma 2.2 shows that both $B$ and $C$ are arcwise connected. Since $A$ is invariant
under $\Gamma_{1},$ $B$ and $C$ are also invariant under $\Gamma_{1}$ . Then Lemma 2.1 implies that
$\partial B=\partial C=\emptyset$ . By using again the comparison theorem of Toponogov, we obtain
that $d(x, y)=\pi/2$ for any $x\in B$ and $y\in C$ . Let $p_{1}$ : $V\rightarrow V/\Gamma_{1}$ be the Rie-
mannian covering of the quotient Riemannian manifold $V/\Gamma_{1}$ . Since $B$ and $C$ are
invariant under $\Gamma_{1}$ , the distance between $p\mathfrak{l}(B)$ and $p_{1}(C)$ in $V/\Gamma_{1}$ is equal to
$\pi/2$ . Hence we have $d(V/\Gamma_{1})=\pi/2$ . Since $m$ is odd, by the rigidity theorem ([7])
$V/\Gamma_{1}$ is of constant curvature 1, and hence $V$ is isometric to $S^{m}$ .

LEMMA 2.4. Let $N_{0}$ be an n-dimensional connected, compact, totally geodesic
submamfold (without boundary) embedded in $V$ with $1\leq n\leq m-2$ . Let $\Gamma_{1}$ be a
subgroup of $\Gamma$ such that $\Gamma_{1}\neq\{I_{V}\}$ . Assume that $m(\geq 3)$ is odd and that $N_{0}$ is
invariant under $\Gamma_{1}$ . If there exists a point $x_{0}\in V$ such that $d(x_{0}, N_{0})\geq\pi/2$ , then $V$

is isometric to $S^{m}$ .

PROOF. We set

$A_{1}=N_{0}$ , $B_{1}=\{x\in V|d(x, A_{1})\geq\pi/2\}$ , $C_{1}=\{x\in V|d(x, B_{1})\geq\pi/2\}$ .

Then $x_{0}\in B_{1}$ and $A_{1}\subset C_{1}$ . Both $B_{1}$ and $C_{1}$ are invariant under $\Gamma_{1}$ because $\Gamma_{1}$

leaves $A_{1}$ invariant. By using the comparison theorem of Toponogov, we conclude
that both $B_{1}$ and $C_{1}$ are totally $\pi$-convex in $V$ ([9], [10]). We shall show that $B_{1}$ is
arcwise connected. To do that, we assume that $B_{1}$ is not arcwise connected. Since
$B_{1}$ is totally $\pi$-convex, $V$ is isometric to $S^{m}$ and $B_{1}$ consists of exactly two points.
Hence $C_{1}$ is isometric to a great $(m-1)$ -sphere $S_{1}$ in $S^{m}$ . Then $A_{1}$ is isometric
to a great n-sphere in $S^{m}$ which is contained in $S_{1}$ because $A_{1}$ is totally
geodesic in $V$ and is contained in $C_{1}$ . Since $n\leq m-2$ , there exists a point $x\in C_{1}$

such that $d(x, A_{1})=\pi/2$ , which shows $x\in B_{1}\cap C_{1}$ . This is a contradiction. Thus
$B_{1}$ is arcwise connected. Since $B_{1}$ is invariant under $\Gamma_{1}$ , by Lemma 2.1 $B_{1}$ has no
boundary and $\dim B_{1}\geq 1$ . Similarly $C_{1}$ has no boundary. By Frankel’s theorem
([5]), we have $\dim B_{1}+\dim C_{1}\leq m-1$ . Since $\dim B_{1},$ $\dim C_{1}\geq 1$ , we obtain that
$\dim B_{1},$ $\dim C_{1}\leq m-2$ . Applying Lemma 2.3 to the present situation, we con-
clude that $\nabla$ is isometric to $S^{m}$ .

For each $\varphi\in\Gamma$ we set $T(\varphi)=\min\{d(x, \varphi(x))|x\in V\}$ . Let $\varphi\in\Gamma\backslash \{I_{V}\}$ . Sup-
pose that the displacement function $d(\cdot, \varphi(\cdot)):V\rightarrow R$ takes the minimum at $ x_{0}\in$

V. Let $\sigma$ be a minimizing geodesic segment from $x_{0}$ to $\varphi(x_{0})$ and $\tilde{\sigma}$ : $R\rightarrow V$ the
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geodesic extension of $\sigma$ in the both directions. Then $\varphi$ translates $\tilde{\sigma}$ , i.e., $\varphi(\tilde{\sigma}(t))=$

$\tilde{\sigma}(t+T(\varphi))$ for all $t\in R$ . Furthermore $\tilde{\sigma}$ : $[0, kT(\varphi)]\rightarrow V$ is a closed geodesic
where $k$ is the order of $\varphi$ .

Let $Z(\Gamma)$ be the centralizer of $\Gamma$ in the full isometry group of V. $M$ is a
homogeneous Riemannian manifold if and only if $Z(\Gamma)$ acts transitively on $V$

([21]; p. 73). We now assume that $M$ is a homogeneous Riemannian manifold.
Then $V$ is also a homogeneous Riemannian manifold. Each $\varphi\in\Gamma$ is a Clifford
transformation of $V$, i.e., the displacement function $d(\cdot, \varphi(\cdot)):V\rightarrow R$ is a con-
stant function ([21]). Hence for any $\varphi\in\Gamma$ we have $T(\varphi)=d(y, \varphi(y)),$ $y\in V$ .
Therefore for any $x\in M$ and for any $[\gamma]\in\pi_{1}(M,x)\backslash \{e\}$ we can choose a closed
geodesic as a representation of $[\gamma]$ .

LEMMA 2.5. Let $M$ and $V$ be as above. Assume that $M$ is a homogeneous
Riemannian manifold. Let $\varphi\in\Gamma\backslash \{I_{V}\}$ . Let $\sigma:[O, a]\rightarrow V$ be a simple closed
geodesic satisfying the conditions: (1) $\sigma(0)=\sigma(a),$ $T(\varphi)<a$ ; (2) $\sigma$ is invariant
under $\varphi$ ; (3) $\sigma:[0, T(\varphi)]\rightarrow V$ is a minimizing geodesic segment between $\sigma(0)$

and $\varphi(\sigma(0))$ . Let $\Gamma_{\sigma}$ be the subgroup of $\Gamma$ whose any element leaves $\sigma$ invariant.

If $T(\varphi)\leq T(\psi)$ for any $\psi\in\Gamma_{\sigma}\backslash \{I_{V}\}$ , then $\Gamma_{\sigma}$ is the cyclic group generated
by $\varphi$ .

PROOF. Let $\Gamma_{1}$ be the cyclic group generated by $\varphi$ and $k$ its order where
$k\geq 2$ . We put $x=\sigma(0)$ . Then $\varphi$ translates $\sigma$ and we have $\varphi^{j}(x)=\sigma(jT(\varphi))$

for each $j(0\leq j\leq k-1)$ where $\varphi^{j}=\varphi\circ\cdots 0\varphi$ ( $j$ times). Hence we have $a=$

$kT(\varphi)$ . For each $j(0\leq j\leq k-1)\sigma:[jT(\varphi), (j+1)T(\varphi)]\rightarrow V$ is a minimizing
geodesic segment between $\varphi^{j}(x)$ and $\varphi^{j+1}(x)$ . Suppose that there is a $\psi\in\Gamma_{\sigma}\backslash \Gamma_{1}$ .
Since $\sigma$ is invariant under $\psi$ and $\Gamma$ acts freely on $V$, we have $\psi(x)\in\sigma((jT(\varphi)$ ,
$(j+1)T(\varphi)))$ for some $j(0\leq j\leq k-1)$ . Since $\varphi_{1}=\varphi^{-j}\circ\psi$ leaves $\sigma$ invariant
and $\varphi_{1}(x)\in\sigma((O, T(\varphi)))$ , we get $T(\varphi_{1})<T(\varphi)$ . This is a contradiction. Hence we
have $\Gamma_{\sigma}=\Gamma_{1}$ .

The following lemmas are well known results (for the proof, see [1], [2]).

LEMMA 2.6. Let $W$ be an m-dimensional $(m\geq 3)$ connected, complete Rie-
mannian manifold with sectional curvature $K_{W}\leq\lambda^{2}(\lambda>0)$ and $N$ a connected,
compact, totally geodesic submamfold embedded in $W$ such that $1\leq\dim N\leq m-$

2. Let $\gamma$ : $[0, \infty$ ) $\rightarrow W$ be a geodesic. Then we have
(1) If $\gamma(a)$ is the first conjuga $te$ point to $\gamma(0)$ along $\gamma$ , then $ a\lambda\geq\pi$ .
(2) If $\gamma(0)\in N$ and the tangent vector $\gamma^{\prime}(0)$ is orthogonal to $N$ and if $\gamma(a)$ is

the first focal point of $N$ along $\gamma$ , then $ 2a\lambda\geq\pi$ .
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LEMMA 2.7. Let $W$ be as in Lemma 2.6. Let $x$ and $y$ be distinct points of $W$.
Suppose that there exist distinct minimizing geodesics $\sigma_{1},$ $\sigma_{2}$ : $[0, a]\rightarrow W$ from $x$ to
$y$ . If $a=i(x)$ and $ a\lambda<\pi$ , then $\sigma_{1^{\prime}}(a)=-\sigma_{2^{\prime}}(a)$ .

LEMMA 2.8. Let $W$ and $N$ be as in Lemma 2.6. Let $x\in W\backslash N$ . Suppose that
there exist distinct minimizing geodesics $\sigma_{1},$ $\sigma_{2}$ : $[0, a]\rightarrow W$ from $x$ to N. If $a=$

$i(N)$ and $ 2a\lambda<\pi$ , then $\sigma_{1^{\prime}}(0)=-\sigma_{2^{\prime}}(0)$ .

The following theorem will be used in the proof of Theorems $B$ and C.

THEOREM 2.1 ([2], [4], [12]). Let $W$ be an m-dimensional $(m\geq 2)$ connected,
complete, simply connected Riemannian mamfo $ld$ with $1\leq K_{W}\leq 4$ . Then we have

(1) $Inj(W)\geq\pi/2$ .
(2) If $d(W)=\pi/2$ and $m(\geq 3)$ is odd, then $W$ is isometric to the Euclidean

m-sphere $S^{m}(4)$ with constant curvature 4.

3. Proof of Theorem A

Throughout this section let $M$ be an m-dimensional $(m\geq 3)$ connected,
compact, non-simply connected homogeneous Riemannian manifold whose
sectional curvature $K_{M}$ satisfies $K_{M}\geq 1$ and $N$ an n-dimensional $(n\geq 1)$ con-
nected, compact, totally geodesic submanifold (without boundary) embedded in
$M$.

Let $\iota\#:\pi_{1}(N)\rightarrow\pi_{1}(M)$ be the homomorphism which is induced from the
inclusion $l:N\rightarrow M$ . Let $\pi 1(M, N)$ denote the first relative homotopy class. For
the sake of convenience we write $\pi_{1}(M, N)=0$ if $\iota\#$ is surjective and $\pi_{1}(M, N)\neq$

$0$ otherwise. As stated in Section 1, if $2n\geq m$ , then we have $\pi_{1}(M, N)=0$ .
Let $p:V\rightarrow M$ denote the universal Riemannian covering. $V$ is also compact

homogeneous Riemannian manifold with $K_{V}\geq 1$ . We denote by $\Gamma$ the deck
transformation group of $V$ corresponding to $\pi_{1}(M)$ . Let $\Gamma_{0}$ be the subgroup of $\Gamma$

which corresponds to $\iota\#(\pi_{1}(N))$ . If $\pi_{1}(M, N)\neq 0$ , then $p^{-1}(N)$ has at least two
connected components and we have $2i(N)\leq d(N_{1}, N_{2})$ for any distinct connected
components $N_{1}$ and $N_{2}$ of $p^{-1}(N)$ . Let $N_{0}$ be a connected component of $p^{-1}(N)$ .
Let $\varphi\in\Gamma$ . Then $\varphi$ is contained in $\Gamma_{0}$ if and only if $N_{0}$ is invariant under $\varphi$ .

For $\varphi_{1},$

$\ldots,$
$\varphi_{k}\in\Gamma$ we will denote by $\Gamma(\varphi_{1}, \ldots, \varphi_{k})$ the subgroup of $\Gamma$

generated by $\varphi_{1},$

$\ldots,$
$\varphi_{k}$ .

In order to prove Theorem $A$ , we prepare several lemmas.
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LEMMA 3.1. Assume that $\Gamma$ is not cyclic and $\Gamma_{0}=\{I_{V}\}$ . Then $i(N)\leq\pi/4$ .
Here $lf$ equality holds, then $M$ is of constant curvature 1 and $\Gamma\cong Q8$ .

PROOF. Assuming that $i(N)\geq\pi/4$ , we shall show that $i(N)=\pi/4$ and
$K_{M}\equiv 1$ . Let $N_{0}$ be a connected component of $p^{-1}(N)$ and fix it. By the as-
sumption on $\Gamma_{0}$ , we have $\varphi(N_{0})\cap N_{0}=\emptyset$ for all $\varphi\in\Gamma\backslash \{I_{V}\}$ . Since $\Gamma$ is not
cyclic, $m$ is odd by Synge’s theorem and $\Gamma$ contains a proper subgroup. The
assumption that $i(N)\geq\pi/4$ implies that $d(N_{0}, \psi(N_{0}))\geq\pi/2$ for all $\psi\in\Gamma\backslash \{I_{V}\}$ .
Let $\Gamma_{1}$ be an arbitrary proper subgroup of $\Gamma$ . We set

$A=\bigcup_{\varphi\in\Gamma_{1}}\varphi(N_{0})$ , $B=\{x\in V|d(x, A)\geq\pi/2\}$ , $C=\{x\in V|d(x, B)\geq\pi/2\}$ .

Then $A$ is invariant under $\Gamma_{1}$ and we have $\psi(N_{0})\subset B$ for all $\psi\in\Gamma\backslash \Gamma_{1}$ . We can
apply Lemma 2.3 to the present situation. Hence the assertions (1), (2) and (3)
in Lemma 2.3 hold for the present situation. Thus $M$ is of constant curvature 1.
Let $\psi\in\Gamma\backslash \Gamma_{1}$ . By Lemma 2.3 (2), we have $d(x, y)=\pi/2$ for any $x\in N_{0}$ and $ y\in$

$\psi(N_{0})$ . This shows that $T(\psi)=\pi/2$ and $d(N_{0}, \psi(N_{0}))=\pi/2$ . Hence we have
$i(N)=\pi/4$ .

In the following we assume that $i(N)=\pi/4$ . We shall show that $\Gamma\cong Q8$ . It
follows from the argument above that there exists a $\varphi\in\Gamma$ with $T(\varphi)=\pi/2$ and
$T(\psi)=\pi/2$ holds for all $\psi\in\Gamma\backslash \Gamma(\varphi)$ . From now on we identify $V$ with $S^{m}$ and
view $\Gamma$ as a finite subgroup of the orthogonal group $O(m+1)$ . By homogeneity
of $V,$ $\Gamma$ is a Clifford transformation group of $S^{m}$ . We take a $\varphi_{1}\in\Gamma$ with $T(\varphi_{1})=$

$\pi/2$ and fix it. For each $x\in S^{m},$ $\varphi_{1}$ translates the great circle in $S^{m}$ passing
through $x$ and $\varphi_{1}(x)$ . Hence $\varphi_{1}$ has the properties that $\varphi_{1^{2}}=-I$ and $\Gamma(\varphi_{1})\cong Z_{4}$ ,
where $I$ denotes the unit $(m+1)$ -matrix. Each $\psi\in\Gamma\backslash \Gamma(\varphi_{1})$ has the properties
that $T(\psi)=\pi/2,$ $\psi^{2}=-I$ and $\Gamma(\psi)\cong Z_{4}$ . Let $\varphi_{2}\in\Gamma\backslash \Gamma(\varphi_{1})$ and fix it. We have
the relations $(\varphi_{1}\varphi_{2})^{2}=\varphi_{1^{2}}=\varphi_{2^{2}}=-I$ since $\varphi_{1}\varphi_{2}\not\in\Gamma(\varphi_{1})$ . By using these relations,
we obtain that $\varphi_{1}\varphi_{2}\varphi_{1}=\varphi_{2}$ and $\varphi_{2}\varphi_{1}\varphi_{2}=\varphi_{1}$ . This shows that $\Gamma(\varphi_{1}, \varphi_{2})\cong Q8$ .
We put $\Gamma_{2}=\Gamma(\varphi_{1}, \varphi_{2})$ . We now assume that $\Gamma\neq\Gamma_{2}$ . Take a $\varphi\in\Gamma\backslash \Gamma_{2}$ . Since
$\varphi_{1}\varphi,$ $\varphi_{2}\varphi$ and $\varphi_{1}\varphi_{2}\varphi$ are not contained in $\Gamma_{2}$ , we obtain that $(\varphi_{1}\varphi_{2}\varphi)^{2}=(\varphi_{1}\varphi)^{2}=$

$(\varphi_{2}\varphi)^{2}=\varphi_{1^{2}}=\varphi^{2}=-I$ . The relation $(\varphi_{1}\varphi)^{2}=\varphi^{2}$ implies $\varphi_{1}\varphi\varphi_{1}=\varphi$ . By using the
relations that $(\varphi_{1}\varphi_{2}\varphi)^{2}=\varphi_{1^{2}},$

$\varphi_{1}\varphi\varphi_{1}=\varphi$ and $\varphi_{1}\varphi_{2}\varphi_{1}=\varphi_{2}$ , we get $(\varphi_{2}\varphi)^{2}=I$ .
This is a contradiction. Hence we have $\Gamma=\Gamma_{2}$ , which shows that $\Gamma\cong Q8$ .

LEMMA 3.2. Suppose that $\Gamma$ is not cyclic and that $\Gamma_{0}$ is a proper subgroup of
F. Then $i(N)\leq\pi/4$ . Here $lf$ equality holds, then $M$ is of constant curvature 1 and
furthermore, identifying $V$ with $S^{m}$ and viewing $\Gamma$ as a finite subgroup of $O(m+1)$ ,
we have
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(1) If $\psi\in\Gamma\backslash \Gamma_{0}$ , then $\psi^{2}=-I\in\Gamma_{0}$ and $\Gamma(\psi)\cong Z_{4}$ .
(2) If $\psi\in\Gamma\backslash \Gamma_{0}$ and $\varphi\in\Gamma_{0},$ rhen $\varphi\psi\varphi=\psi$ .

PROOF. As in the proof of Lemma 3.1 we fix a connected component $N_{0}$ of
$p^{-1}(N)$ . Then $N_{0}$ is invariant under $\Gamma_{0}$ . Suppose that $i(N)\geq\pi/4$ . We shall show
that $i(N)=\pi/4$ and $K_{M}\equiv 1$ . We set

$A=N_{0}$ , $B=\{x\in\nabla|d(x, A)\geq\pi/2\}$ , $C=\{x\in V|d(x, B)\geq\pi/2\}$ .

Let $\psi\in\Gamma\backslash \Gamma_{0}$ . We have $d(N_{0}, \psi(N_{0}))\geq\pi/2$ because $i(N)\geq\pi/4$ . Thus we have
$\psi(N_{0})\subset B$ for all $\psi\in\Gamma\backslash \Gamma_{0}$ . The order of $\Gamma$ is greater than 2 since $\Gamma_{0}$ is a proper
subgroup of F. Hence $m(\geq 3)$ is odd by Synge’s theorem. By applying Lemma
2.3 to the present situation, we conclude that $i(N)=\pi/4$ and $K_{M}\equiv 1$ . From now
on we assume that $i(N)=\pi/4$ . By Lemma 2.3, both $B$ and $C$ are totally geodesic
submanifolds of $V$ without boundary and we obtain $d(x, y)=\pi/2$ for any $x\in B$

and $y\in C$ . We identify $V$ with $S^{m}$ and view $\Gamma$ as a finite subgroup of $O(m+1)$ .
Then $N_{0}$ is a great n-sphere in $S^{m}$ and $B$ is a great $(m-n-1)$ -sphere in $S^{m}$ .
Hence we have $N_{0}=C$ by the definition of $C$. Let $\psi\in\Gamma\backslash \Gamma_{0}$ . Since $\psi(N_{0})\subset B$

and $\psi$ is a Clifford transformation, we have $T(\psi)=\pi/2$ . Let $x\in N_{0}$ . Then $\psi$

translates the great circle in $S^{m}$ passing through $x$ and $\psi(x)$ . Hence $\psi^{2}(x)=-x\in$

$N_{0}$ . Since $\Gamma$ acts freely on $S^{m}$ and $\psi^{2}$ leaves $N_{0}$ invariant, we obtain that $\psi^{2}=$

$-I\in\Gamma_{0}$ and $\Gamma(\psi)\cong Z_{4}$ . This shows (1). Next we shall show (2). Let $\psi\in\Gamma\backslash \Gamma_{0}$

and $\varphi\in\Gamma_{0}$ . We may assume that $\varphi\neq\pm I$ . Since $\psi\varphi\in\Gamma\backslash \Gamma_{0}$ , we have $(\psi\varphi)^{2}=$

$\psi^{2}=-I$ . From the relation $(\psi\varphi)^{2}=\psi^{2}$ , we get $\varphi\psi\varphi=\psi$ .

LEMMA 3.3. Suppose that $\Gamma$ and $\Gamma_{0}$ satisfy the same hypotheses as in Lemma
3.2 and that $i(N)=\pi/4$ . Then $\Gamma_{0}$ is a cyclic group of order $2k(k\geq 1)$ .

PROOF. By Lemma 3.2 we can identify $V$ with $S^{m}$ . Then $\Gamma$ can be viewed as
a finite subgroup of $O(m+1)$ . Let $N_{0}$ be a connected component of $p^{-1}(N)$ and
fix it. Then $N_{0}$ is a great n-sphere in $S^{m}$ and is invariant under $\Gamma_{0}$ . We may
assume that $N_{0}=S^{n}=S^{m}\cap R^{n+1}$ . We take a $\psi_{1}\in\Gamma_{0}\backslash \{I\}$ such that $ T(\psi_{1})\leq$

$T(\varphi)$ for all $\varphi\in\Gamma_{0}\backslash \{I\}$ . We shall show that $\Gamma_{0}=\Gamma(\psi_{1})$ . We first assume that
$\psi_{1}=-I$ . Since $ T(\psi_{1})=\pi$ , we have $ T(\varphi)=\pi$ for all $\varphi\in\Gamma_{0}\backslash \{I\}$ . This implies that
$\Gamma_{0}=\{I, \psi_{1}\}=\Gamma(\psi_{1})$ . We next assume that $\psi_{1}\neq-I$ . In case of $n=1$ , by
Lemma 2.5 $\Gamma_{0}$ is the cyclic group generated by $\psi_{1}$ . From now on, let $n\geq 2$ . Let
$C_{1}$ be the great circle in $S^{n}$ which contains $x_{0}$ and $\psi_{1}(x_{0})$ . Then $C_{1}$ is invariant
under $\psi_{1}$ . Since $ T(\psi_{1})<\pi$ , the order of $\Gamma_{0}$ is greater than 2. Hence $n(\geq 3)$ is odd
by Synge’s theorem. Let $n=2q+1,$ $q\geq 1$ . Since $-I\in\Gamma_{0}$ and $(-I)(C_{1})=C_{1}$ , by
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Lemma 2.5 there exists the smallest positive integer $k\geq 2$ such that $(\psi_{1})^{k}=-I$ .
Hence the order of $\Gamma(\psi_{1})$ is equal to $2k$ . Let $x_{0}\in N_{0}$ and $\psi_{2}\in\Gamma\backslash \Gamma_{0}$ , and fix
them. Lemma 3.2 shows that $(\psi_{2})^{2}=-I\in\Gamma_{0}$ and $\varphi\psi_{2}\varphi=\psi_{2}$ for all $\varphi\in\Gamma_{0}$ . Let
$\varphi\in\Gamma_{0}\backslash \{\pm I, \psi_{1}\}$ . Since $\psi_{1}\psi_{2}\varphi$ and $\psi_{1}\psi_{2}$ are not contained in $\Gamma_{0}$ , by Lemma 3.2
(1) we have the relation $(\psi_{1}\psi_{2}\varphi)^{2}=(\psi_{1}\psi_{2})^{2}$ . By combining this with the relation
$\varphi\psi_{2}\varphi=\psi_{2}$ , we obtain $\varphi\psi_{1}=\psi_{1}\varphi$ . Then there exists a complex vector $\xi\in S^{n}\subset$

$C^{q+1}$ which is a common eigenvector of $\varphi$ and $\psi_{1}$ . Let $C_{2}$ be the great circle in
$S^{n}$ determined by $\xi$ and $\overline{\xi}$ where $\overline{\xi}$ is the conjugate vector of $\xi$ in $C^{q+1}$ . Then $C_{2}$

is invariant under $\varphi$ and $\psi_{1}$ . By Lemma 2.5 we have $\varphi\in\Gamma(\psi_{1})$ . Hence we have
$\Gamma_{0}=\Gamma(\psi_{1})$ . Thus $\Gamma_{0}$ is the cyclic group of order $2k$ generated by $\psi_{1}(k\geq 1)$ .

LEMMA 3.4. Suppose that $\Gamma$ and $\Gamma_{0}$ satisfy the same hypotheses as in Lemma
3.2 and that $i(N)=\pi/4$ . Then $\Gamma\cong D_{s^{*}}(s\geq 2)$ .

PROOF. By Lemma 3.2 we may identify $V$ with $S^{m}$ and view $\Gamma$ as a finite
subgroup of $O(m+1)$ . We take a $\psi_{1}\in\Gamma_{0}\backslash \{I_{V}\}$ such that $T(\psi_{1})\leq T(\varphi)$ for
all $\varphi\in\Gamma_{0}\backslash \{I_{V}\}$ . As we have shown in Lemma 3.3, $\Gamma_{0}$ is a cyclic group generated
by $\psi_{1}$ with order $2k(k\geq 1)$ and $(\psi_{1})^{k}=-I$ . Let $\psi_{2}\in\Gamma\backslash \Gamma_{0}$ . It follows from
Lemma 3.2 that $(\psi_{2})^{2}=-I,$ $\psi_{1}\psi_{2}\psi_{1}=\psi_{2}$ and $\Gamma(\psi_{2})\cong Z_{4}$ . We first consider
the case $k\geq 2$ . Then we have $\Gamma(\psi_{1}, \psi_{2})\cong D_{k}^{*}$ . We shall show that $\Gamma=\Gamma(\psi_{1}, \psi_{2})$ .
To do that, we assume that there exists a $\varphi\in\Gamma\backslash \Gamma(\psi_{1}, \psi_{2})$ . Since $\psi_{2}\not\in\Gamma(\psi_{1})$ and
$\psi_{2}\varphi\not\in\Gamma(\psi_{1}, \psi_{2})$ , by Lemma 3.2 we obtain that $\psi_{1}\psi_{2}\psi_{1}=\psi_{2},$ $\psi_{1}\varphi\psi_{1}=\varphi$ and
$\psi_{1}\psi_{2}\varphi\psi_{1}=\psi_{2}\varphi$ . By using these relations, we get $(\psi_{1})^{2}=I$ . This is a contra-
diction because $(\psi 1)^{2k}=I$ and $k\geq 2$ . Thus we have $\Gamma=\Gamma(\psi_{1}, \psi_{2})$ . Next let us
consider the case $k=1$ . Then $\psi_{1}=-I$ and $\Gamma_{0}\subset\Gamma(\psi_{2})$ . We take a $\psi_{3}\in\Gamma\backslash \Gamma(\psi_{2})$ .
By Lemma 3.2 (1) we obtain that $(\psi_{2}\psi_{3})^{2}=(\psi_{2})^{2}=(\psi_{3})^{2}=-I$ . These relations
yield that $\psi_{2}\psi_{3}\psi_{2}=\psi_{3}$ and $\psi_{3}\psi_{2}\psi_{3}=\psi_{2}$ . Hence we have $\Gamma(\psi_{2}, \psi_{3})\cong Q8$ . By the
same way as in the proof of Lemma 3.1, we can show that $\Gamma=\Gamma(\psi_{2}, \psi_{3})$ . Thus
we have $\Gamma\cong D_{s^{*}}(s\geq 2)$ .

LEMMA 3.5. Suppose that $\Gamma$ is not a cyclic group and that $\Gamma_{0}\neq\Gamma$ . If $i(N)=$

$\pi/4$ , then $m=4j-1(j\geq 1)$ .

PROOF. By Lemmas 3.1 and 3.2, $V$ is isometric to $S^{m}$ and $\Gamma$ is isomorphic
to $D_{s^{*}}(s\geq 2)$ . In the case where $\Gamma_{0}$ is trivial, $\Gamma$ is isomorphic to $Q8$ . If $\Gamma_{0}$ is
nontrivial, then $\Gamma_{0}$ is a cyclic group of order $2k(k\geq 1)$ by Lemma 3.3. We
identify $V$ with $S^{m}$ and view $\Gamma$ as a finite subgroup of $O(m+1)$ . As we have
shown in the proofs of Lemmas 3.1 and 3.4, we can choose a generator $\{\varphi_{1}, \varphi_{2}\}$
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of $\Gamma$ as follows. In the case where $\Gamma_{0}=\{I\}$ or $\Gamma_{0}=\{I, -I\},$ $\varphi l$ and $\varphi_{2}$ have the
properties that $T(\varphi_{1})=T(\varphi_{2})=\pi/2$ and $\varphi_{1}\varphi_{2}\varphi_{1}=\varphi_{2},$ $\varphi_{2}\varphi_{1}\varphi_{2}=\varphi_{1}$ . If the order
of $\Gamma_{0}$ is greater that 2, then $\varphi_{1}$ is a generator of $\Gamma_{0}$ and $T(\varphi_{1})=\pi/k(k\geq 2)$ ,
$T(\varphi_{2})=\pi/2$ . In this case $\varphi_{1}$ and $\varphi_{2}$ satisfy the relations $\varphi_{1}\varphi_{2}\varphi_{1}=\varphi_{2},$

$(\varphi_{1})^{k}=$

$(\varphi_{2})^{2}=-I$ . Let $x\in S^{m}$ . For $\varphi_{j}(i=1,2)$ let $C_{l}$ be the great circle in $S^{m}$ passing
through $x$ and $\varphi_{j}(x)$ . Then $C_{i}$ is invariant under $\varphi_{j},$ $i=1,2$ . Let $C_{3}=\varphi_{2}(C_{1})$ .
Since $T(\varphi_{2})=\pi/2$ and $\varphi_{2}\not\in\Gamma(\varphi_{1})$ , we have $ C_{1}\cap C_{3}=\emptyset$ . The relations $\varphi_{1}\varphi_{2}\varphi_{1}=$

$\varphi_{2}$ and $(\varphi_{2})^{2}=-I$ imply that $\varphi_{1}(C_{3})=C_{3}$ and $\varphi_{2}(C_{3})=(-I)(C_{1})=C_{1}$ . Let $W_{i}$

be the 2-dimensional subspace in $R^{m+1}$ such that $C_{i}=W_{i}\cap S^{m}(i=1,2,3)$ . We
set $W_{4}=W_{1}\oplus W_{3}$ . Then $W_{2}$ is contained in $W_{4}$ and both $\varphi_{1}$ and $\varphi_{2}$ leave $W_{4}$

invariant. Since $\Gamma$ is generated by $\varphi_{1}$ and $\varphi_{2},$
$W_{4}$ is F-invariant. Hence for any

$x\in S^{m}$ there exists a $\Gamma$-invariant 4-dimensional subspace of $R^{m+1}$ containing $x$ .
Thus $R^{m+1}$ can be expressed as a direct sum of $\Gamma$-invariant 4-dimensional sub-
spaces, which implies that $m=4j-1(j\geq 1)$ .

PROOF OF THEOREM A. Lemmas 3.1 and 3.2 show that $i(N)\leq\pi/4$ . Suppose
$i(N)=\pi/4$ . Then $M$ is of constant curvature 1. Moreover Lemmas 3.1, 3.4 and
3.5 imply that $\pi_{1}(M)\cong D_{s^{*}}(s\geq 2)$ and $m=4j-1(j\geq 1)$ .

4. Proof of Theorems $B$ and $C$

First of all we state a theorem which will be used in the proof of Theorem C.

THEOREM 4.1 ([11]). Let $M$ be an m-dimensional $(m\geq 3)$ connected, compact,
non-simply connected Riemannian mamfold with sectional curvature $K_{M}\geq 1$ .
Suppose that the order of $\pi_{1}(M)$ is not a prime. Then $Inj(M)\leq\pi/4$ . If equality
holds, then $M$ is of constant curvature 1 and $\pi_{1}(M)$ is isomorphic to either $Z_{4}$ or
$Q8$ . Here $lf\pi_{1}(M)\cong Q8$ , then $m=4j-1(j\geq 1)$ .

Throughout this section let $M$ denote an m-dimensional $(m\geq 3)$ connected,
compact, non-simply connected homogeneous Riemannian manifold whose
sectional curvature $K_{M}$ satisfies $1\leq K_{M}\leq 4$ . If $m$ is even, then $\pi_{1}(M)$ is iso-
morphic to $Z_{2}$ by Synge’s theorem. In the following we assume that $m(\geq 3)$ is
odd, unless otherwise stated. Then $M$ is orientable. Let $p:V\rightarrow M$ be the
universal Riemannian covering and $\Gamma$ the deck transformation group corre-
sponding to $\pi_{1}(M)$ . Let $G$ denote the identity connected component of the full
isometry group of M. $G$ is a compact Lie group with respect to the compact open
topology. $G$ also acts on $M$ transitively. We take an $x_{0}\in M$ and fix it in the



150 Ryosuke ICHIDA

following. Let $H$ be the isotropy subgroup of $G$ at $x_{0}$ . The action $\Psi$ : $ G\times M\rightarrow$

$M((\varphi, x)\mapsto\varphi(x))$ on $M$ on the left induces a diffeomorphism $\hat{\Psi}$ : $G/H\rightarrow M$

$(\varphi H\mapsto\varphi(x_{0}))$ .

LEMMA 4.1. Let $G$ and $H$ be as above. If $\dim H=0$ , then $S^{3}$ is a covering
space of $M$ and $\Gamma$ is isomorphic to a finite subgroup of $SU(2)$ .

PROOF. We identify $M$ with $G/H$ . By assumption, $H$ is a finite subgroup of
$G$ . Hence the natural projection $p_{1}$ : $G\rightarrow G/H$ is a covering map. Let $\hat{G}$ be the
universal covering Lie group of $G$ with covering homomorphism $p_{2}$ . Then
$p;=p_{1}\circ p_{2}$ : $\hat{G}\rightarrow G/H$ is a universal covering map and $\Gamma$ is isomorphic to
$p_{2}^{-1}(H)$ . Hence $\hat{G}$ is compact. Let $\hat{g}$ be the Riemannian metric on $\hat{G}$ induced from
that of $G/H$ by $p$ . Then $\hat{g}$ is a left invariant metric on $\hat{G}$ and each sectional
curvature $K$ of $(\hat{G},\hat{g})$ satisfies $1\leq K\leq 4$ . By a theorem due to Wallach ([20];
Theorem 2.1), $\hat{G}$ is isomorphic to $SU(2)$ as a Lie group. This completes the
proof.

In what follows we assume that $\dim H\geq 1$ . Any nontrivial one-parameter
subgroup of $H$ induces a nontrivial Killing vector field on $M$ which vanishes at
$x_{0}$ . Let $X$ be a nontrivial Killing vector field on $M$ vanishing at $x_{0}$ . Let $L$ be the
set of all points of $M$ at which $X$ vanishes. Each connected component of $L$ is a
compact totally geodesic submanifold (without boundary) embedded in $M$ whose
codimension is even ([13]; p. 59). Henoe the dimension of each connected com-
ponent of $L$ is odd since $m$ is odd.

Under the condition that $1\leq K_{M}\leq 4,$ $L$ has the following properties.

LEMMA 4.2. Let $M$ and $L$ be as above. Then
(1) $L$ is connected.
(2) $L$ is totally $\pi/2$-convex in $M$.
(3) $i(L)\geq\pi/4$ .

PROOF. Suppose that $L$ is disconnected. Let $L_{1},$
$\ldots,$

$L_{s}(s\geq 2)$ be the distinct
connected components of $L$ . By exchanging indices if necessary, we may assume
that $d(L_{1}, L_{2})\leq d(L_{i}, L_{j})$ , $1\leq i<j\leq s$ . Let $\sigma:[O, a]\rightarrow M$ be a minimizing
geodesic segment between $L_{1}$ and $L_{2}$ such that $\sigma(0)\in L_{1}$ and $\sigma(a)\in L_{2}$ where $a=$

$d(L_{1}, L_{2})$ . Then $X$ is a Jacobi field along $\sigma$ which vanishes at $\sigma(0)$ and $\sigma(a)$ . We
note here that $X$ does not vanish at $\sigma(t),$ $0<t<a$ . Since $K_{M}\leq 4$ , by Lemma 2.6
(1) we get $a\geq\pi/2$ . Hence we have $d(M)=a=\pi/2$ because $d(M)\leq\pi/2$ . By the
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rigidity theorem ([7], [11]), $M$ is of constant curvature 1 because $K_{M}\geq 1$ and $m$ is
odd. Since $\sigma(a)$ is the first conjugate point to $\sigma(0)$ along $\sigma$ , it must be $ a=\pi$ . This
is a contradiction, which implies (1).

Let $\gamma$ : $[O, b]\rightarrow M$ be a geodesic segment such that $\gamma(0),$ $\gamma(b)\in L$ and
$\gamma([0, b])\not\subset L$ . Since $X$ is a nontrivial Jacobi field along $\gamma$ , we have $b\geq\pi/2$ by
Lemma 2.6 (1). This proves (2).

To show (3), we suppose that $r:=i(L)<\pi/4$ . Let $x$ be a cut point of $L$ with
$d(x, L)=r$ . It follows from Lemma 2.6 (2) that for each geodesic $\gamma$ : $[0, \infty$ ) $\rightarrow M$

emanating orthogonally from $L\gamma(r)$ is not a focal point of $L$ along $\gamma$ . Hence
there exist distinct minimizing geodesics $\sigma_{1},$ $\sigma_{2}$ : $[0, r]\rightarrow M$ from $x$ to $L$ . By
Lemma 2.8 we have $\sigma_{2^{\prime}}(0)=-\sigma_{1^{\prime}}(0)$ . Thus there exists a geodesic $\sigma$ : $[0,2r]\rightarrow M$

such that $\sigma(0),$ $\sigma(2r)\in L$ and $\sigma((0,2r))\cap L=\emptyset$ . Since $L$ is totally $\pi/2$-convex in
$M$, we have $2r\geq\pi/2$ , which is a contradiction. This shows (3).

Let $L$ be as above. By homogeneity of $M,$ $L$ is a homogeneous Riemannian
manifold ([14]; p. 60).

LEMMA 4.3. $M$ contains an embedded, connected, compact, totally geodesic
submamfold $N$ (without boundary) with the following properties:

(1) $\dim N$ is either 1 or 3.
(2) It is totally $\pi/2$-convex in $M$.
(3) $i(N)\geq\pi/4$ .
(4) If $\dim N=3$ , then any nontrivial Killing vector field on $N$ nowhere

vanishes.

PROOF. Let $L$ be as above. As stated above, $\dim L$ is odd and codim $L$ is
even. In the case where $\dim L=1$ , we let $N=L$ . Then the claim follows from
Lemma 4.2. $\ln$ the following we assume that $\dim L\geq 3$ . We first consider the
case where any nontrivial Killing field on $L$ nowhere vanishes. Then the isotropy
subgroup of the isometry group of $L$ at $x_{0}$ is a discrete group. Lemma 4.1 shows
$\dim L=3$ . Setting $N=L$ , we obtain a submanifold with the required properties.
Next let us consider the case where there exists a nontrivial Killing vector field $X_{1}$

on $L$ vanishing at some point. Let $L_{1}$ be the set of all points of $L$ at which $X_{1}$

vanishes. Then $\dim L_{1}$ is odd and $\dim L_{1}\geq 1$ . $L_{1}$ has the properties (1), (2) and
(3) in Lemma 4.2 as a submanifold of $L$ . Since $L$ is totally $\pi/2$-convex in $M$, so is
$L_{1}$ . Moreover $L_{1}$ is a connected, compact, totally geodesic submanifold (without
boundary) embedded in $M$. By the same way as in the proof of Lemma 4.2 (3),
we obtain $i(L_{1})\geq\pi/4$ as a submanifold of $M$. If $\dim L_{1}\geq 3$ , then in $L_{1}$ we can
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carry out the same argument as above. By repeating the argument above, we
obtain a submanifold $N$ of $M$ which has the required properties.

From now on let $N$ denote a connected, compact, totally geodesic sub-
manifold (without boundary) embedded in $M$ with the properties stated in
Lemma 4.3. Since $M$ is homogeneous, we may assume that $x_{0}\in N$ . $N$ is also a
homogeneous Riemannian manifold. Let $G_{1}$ be the identity connected component
of the isometry group of $N$ and $H_{1}$ the isotropy subgroup of $G_{1}$ at $x_{0}$ . $G_{1}$ is a
compact Lie group and acts transitively on $N$.

With the notations stated above, we have

LEMMA 4.4. Assume that $\dim N=3$ . Then
(1) $H_{1}$ is a finite group.
(2) $N$ is covered by $S^{3}$ .
(3) $\pi_{1}(N)$ is isomorphic to a finite subgroup of $SU(2)$ .

PROOF. If $\dim H_{1}\geq 1$ , then each nontrivial one-parameter subgroup of $H$

induces a nontrivial Killing vector field which vanishes at $x_{0}$ . This contradicts
Lemma 4.3 (4). Hence $\dim H_{1}=0$ and $H_{1}$ is a finite group. Then (2) and (3)
follow from (1) and Lemma 4.1.

The following is evident.

LEMMA 4.5. If $\dim N=1$ and $\pi_{1}(M, N)=0$ , then $\Gamma$ is a cyclic group.

From Theorem A and Lemma 4.3 we have

LEMMA 4.6. If $\pi_{1}(M, N)\neq 0$ , then $\Gamma$ is isomorphic to either a cyclic group or
a binary dihedral group. Moreover $\iota f\pi_{1}(M, N)\neq 0$ and $\Gamma$ is a binary dihedral
group, then $m=4j-1(j\geq 1)$ .

$PR\infty F$ . Suppose that $\Gamma$ is not cyclic. Theorem A and Lemma 4.3 (3) imply
that $i(N)=\pi/4$ . Then Theorem A shows that $\Gamma\cong D_{s^{*}}(s\geq 2)$ and $m=4j-1$
$(j\geq 1)$ .

LEMMA 4.7. Suppose that $\dim N=3$ and $\pi_{1}(M, N)=0$ . Then $\pi_{1}(M)\cong$

$\pi_{1}(N)$ .

PROOF. Let $\iota\#:\pi_{1}(N, x_{0})\rightarrow\pi_{1}(M, x_{0})$ be the homomorphism induced from
the inclusion $\iota$ : $N\rightarrow M$ . We take an $x_{1}\in p^{-1}(x_{0})$ and fix it. By assumption, it
suffices to show that $\iota\#$ is injective. To do that, we suppose that $ker\iota\#\neq\{e\}$ . Let
$[\gamma]\in ker\iota\#\backslash \{e\}$ . By assumption, $\hat{N}$ $:=p^{-1}(N)$ is connected and $\Gamma$-invariant. Let $\hat{\gamma}$ :
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$[0, a]\rightarrow V$ be the lift of $\gamma$ emanating from $x_{1}$ . Since $\gamma$ is homotopic to the point
curve $x_{0}$ in $M,\hat{\gamma}$ is a loop in $\hat{N}$ . Hence $\hat{N}$ is not simply connected since $\hat{\gamma}$ is
homotopically nontrivial in $\hat{N}$ . Thus the intrinsic diameter of $\hat{N}$ is not greater
than $\pi/2$ ([8]). Therefore we have $d(z, w)\leq\pi/2$ for any $z,$

$w\in\hat{N}$ . Let $x,$ $y$ be
points of $\nabla$ such that $d(x, y)=d(V)$ . Then we have $d(x, y)\geq\pi/2$ because $ 1\leq$

$K_{M}\leq 4$ (Theorem 2.1 (1)). We shall show that $d(x, y)=\pi/2$ . By homogeneity
of $V$ we may assume that $x\in\hat{N}$ . If $y\in\hat{N}$ , then $d(x, y)=\pi/2$ . Let $y\not\in\hat{N}$ . If
$d(y,\hat{N})\geq\pi/2$ , then by applying Lemma 2.4 to the present situation we conclude
that $V$ is isometric to $S^{m}$ . Since $\hat{N}$ is totally geodesic, it is isometric to $S^{3}$ , which
contradicts that $\hat{N}$ is non-simply connected. Thus we have $d(y,\hat{N})<\pi/2$ . Let
$\sigma_{1}$ : $[0, a]\rightarrow V$ be a minimizing geodesic between $\hat{N}$ and $y$ such that $\sigma_{1}(0)\in\hat{N}$

and $\sigma_{1}(a)=y$ where $0<a<\pi/2$ . Let $\sigma_{2}$ : $[0, b]\rightarrow\hat{N}$ be a minimizing geodesic in
$\hat{N}$ from $\sigma_{1}(0)$ to $x$ where $0<b\leq\pi/2$ . Then $\sigma_{1^{\prime}}(0)$ is orthogonal to $\sigma_{2^{\prime}}(0)$ . By
applying Toponogov’s comparison theorem to the hinge $(\sigma_{1}, \sigma_{2}, \pi/2)$ , we obtain
$d(x, y)\leq\pi/2$ . Hence it must be $d(x, y)=\pi/2$ . Thus we have $d(V)=\pi/2$ . By
Berger’s minimal diameter theorem (Theorem 2.1 (2)), $V$ is isometric to m-sphere
$S^{m}(4)$ with constant curvature 4. Then $\hat{N}$ is isometric to 3-sphere $S^{3}(4)$ with
constant curvature 4 because $\hat{N}$ is totally geodesic in $V$. This is a contradiction.
Thus we have $kerl\#=\{e\}$ , which shows that $\pi_{1}(M)\cong\pi_{1}(N)$ .

LEMMA 4.8. Suppose that $\dim N=3$ and that there exists a $\varphi\in G$ such that
$\varphi(N)\neq N$ and $\varphi(N)\cap N\neq\emptyset$ . Moreover assume that $\Gamma$ is not cyclic. Then $m=$

$4j-1(j\geq 2)$ .

PROOF. Let $N_{1}$ be a connected component of $\varphi(N)\cap N$ . From the property
of $N$ (Lemma 4.3 (2)), $N_{1}$ is totally $\pi/2$-convex in $M$. Moreover $N_{1}$ is a compact,
totally geodesic submanifold (without boundary) embedded in $M$. Since $\dim N=$

$3$ and $\varphi(N)\neq N$ , we have $\dim N_{1}\leq 2$ . By the same way as in the proof of
Lemma 4.2 (3), the inequality $i(N_{1})\geq\pi/4$ holds as a submanifold of $M$. We first
assume that $\dim N_{1}=0$ . By homogeneity of $M$ we obtain that $Inj(M)\geq\pi/4$ .
Since $\Gamma$ is not cyclic, Theorem 4.1 shows that $Inj(M)=\pi/4$ and $m=4j-1$
$(j\geq 2)$ . If $\dim N_{1}=1$ , then $\pi_{1}(M, N_{1})\neq 0$ because $\Gamma$ is not cyclic. If $\dim N_{1}=2$ ,

then the order of $\pi_{1}(N_{1})$ is at most two, which implies $\pi_{1}(M, N_{1})\neq 0$ . Hence we
have $\pi_{1}(M, N_{1})\neq 0$ if $1\leq\dim N_{1}\leq 2$ . Then Theorem A shows that $m=4j-1$
$(j\geq 2)$ .

As a consequence of Lemma 4.8, we have

LEMMA 4.9. Assume that $m=5$ and $\dim N=3$ . Then $\Gamma$ is a cyclic group.
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PROOF. Suppose that $\Gamma$ is not cyclic. Let $x\in M\backslash N$ . By homogeneity of $M$,

there exists a $\varphi\in G$ such that $\varphi(x_{0})=x$ . Clearly, we have $\varphi(N)\neq N$ . It follows
from our assumption and Frankel’s theorem ([5]) that $\varphi(N)\cap N\neq\emptyset$ . Then
Lemma 4.8 shows that $m=4j-1(j\geq 2)$ , which is a contradiction. Thus $\Gamma$ is a
cyclic group.

We shall prove Theorems $B$ and C. We use the same notations as above.

PROOF OF THEOREM B. Let $N$ be as above. By Lemmas 4.5 and 4.6 it suffices
to consider the case where $\dim N=3$ and $\pi_{1}(M, N)=0$ . It follows from Lemmas
4.4 (3) and 4.7 that $\Gamma$ is isomorphic to a finite subgroup of $SU(2)$ .

PROOF OF THEOREM C. We suppose that $\Gamma$ is not cyclic. Let $N$ be as above.
Since $m=4j+1(j\geq 1)$ , Lemmas 4.5 and 4.6 imply that $\dim N=3$ and
$\pi_{1}(M, N)=0$ . By Lemma 4.9 we may assume that $m=4j+1\geq 9$ . It follows
from Lemma 4.8 that $\varphi(N)\cap N=\emptyset$ or $\varphi(N)=N$ for all $\varphi\in G$ . Thus we have
$\varphi(N)=N$ for all $\varphi\in H$ . Let $T(\subset T_{x_{0}}M)$ be the tangent space to $N$ at $x_{0}$ . Let
$\varphi,$ $\psi\in G$ be such that $\varphi(x_{0})=\psi(x_{0})$ . Since $\varphi(N)=\psi(N)$ , we have $(d\varphi)_{x_{0}}(T)=$

$(d\psi)_{x_{0}}(T)$ . Hence the action $\Psi$ : $G\times M\rightarrow M((\varphi, x)\mapsto\varphi(x))$ induces a smooth
field of 3-planes on $M$. This field of 3-planes can be lifted to $V$. Since $V$ is
homeomorphic to $S^{4j+1}$ by the sphere theorem ([2], [8]), there exists a continuous
field of 3-planes on $S^{4j+1}$ . But this is a contradiction because $S^{4j+1}$ does not
admit a continuous field of 3-planes ([19]; p. 144). Therefore $\Gamma$ is a cyclic group.

5. Examples

We give examples of connected, compact, non-simply connected homoge-
neous Riemannian manifolds whose sectional curvature $K$ satisfies $\delta A\leq K\leq A$ ,

where $A$ and $\delta$ are positive constants and $1/4\leq\delta<1$ . These manifolds are
obtained as quotient spaces of Berger spheres.

5.1. By using the formula given in [15] we see that $SU(2)$ admits a left
invariant Riemannian metric whose sectional curvature $K$ satisfies $\delta A\leq K\leq A$ .
Let $\Gamma$ be a nontrivial finite subgroup of $SU(2)$ . Then the quotient space $M:=$

$ SU(2)/\Gamma$ is a homogeneous Riemannian manifold with sectional curvature
$\delta A\leq K_{M}\leq A$ .

5.2. Let $HP^{m}$ be the quatemion projective space with the standard Rie-
mannian metric whose sectional curvature $K$ satisfies $1\leq K\leq 4$ where $m\geq 2$ .
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The symplectic group $Sp(m+1)$ acts transitively on $HP^{m}$ as an isometry group.
Fix an $x\in HP^{m}$ . The isotropy subgroup of $Sp(m+1)$ at $x$ is $Sp(m)\times Sp(1)$ . Let
$\nabla_{r}$ denote the geodesic hypersphere in $HP^{m}$ with radius $r$ and center $x,$ $0<r<$
$\pi/2$ . $V_{r}$ is diffeomorphic to $S^{4m-1}$ . The principal curvatures of $\nabla_{r}$ with respect to
the inner unit normal are 2 $\cot 2r$ and $\cot r$ whose multiplicity are 3 and $4m-4$

respectively. Let $K_{\sigma}$ be an arbitrary sectional curvature of $\nabla_{r}$ with the metric
induced from $HP^{m}$ . By using the equation of Gauss, we obtain $ 1+4\cot^{2}2r\leq$

$K_{\sigma}\leq 4+\cot^{2}r$ . Thus there exists an $r$ such that $0<r<\pi/2$ and $ 4(1+4\cot^{2}r)\geq$

$4+\cot^{2}r$ . Let $r$ be such a positive. Since $HP^{m}$ is a two point homogeneous
Riemannian manifold, $Sp(m)\times Sp(1)$ acts transitively on $V_{r}$ as an isometry
group. Let $\Gamma_{0}$ be a nontrivial finite subgroup of $Sp(1)$ . Then $\Gamma:=\{I\}\times\Gamma_{0}$ acts
freely on $\nabla_{r}$ . Since $Sp(m)\times\{I\}$ acts on $V_{r}$ transitively and $Sp(m)\times\{I\}\subset Z(\Gamma)$ ,
the quotient space $ M=V_{r}/\Gamma$ is a homogeneous Riemannian manifold ([21];
p. 73). Then all sectional curvature $K_{M}$ of $M$ satisfy $\delta A\leq K_{M}\leq A$ , where
$A=4+\cot^{2}r$ and $\delta=(1+4\cot^{2}2r)/(4+\cot^{2}r)$ .

5.3. For the complex projective space $CP^{m}$ with $1\leq K\leq 4$ the same method
as in 5.2 gives us non-simply connected homogeneous Riemannian manifolds $M$

with $\delta A\leq K_{M}\leq A$ whose fundamental groups are cyclic groups.
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