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SPACES OF UPPER SEMI-CONTINUOUS MULTI-VALUED
FUNCTIONS ON SEPARABLE METRIC SPACES

By

Katsuro SAKAI and Shigenori UEHARA

Abstract. Let $X=(X, d)$ be a metric space. By USCC(X, I), we
denote the space of upper semi-continuous multi-valued functions
$\varphi:X\rightarrow I=[0,1]$ such that each $\varphi(x)$ is a closed interval. Each
$\varphi\in USCC(X, I)$ can be identified with its graph, which is a closed
subset of $X\times I$ . The space USCC(X, I) admits the Hausdorff metric
induced by the product metric on $X\times I$ . In this paper, by proving
the converse of Fedorchuk’s result, we show that USCC(X, I) is
homeomorphic to the Hilbert cube $Q=[-1,1]^{\omega}$ if and only if $X$ is
infinite, locally connected and compact. In case $X$ is a dense subset
of a locally connected metric space $Y$ such that $Y\backslash X$ is locally non-
separating in $Y$ , USCC $(X, I)$ can be regarded as a subspace
of USCC $(Y, I)$ . It is also proved that the pair (USCC $(Y, I)$ ,
USCC $(X, I))$ is homeomorphic to $(Q, s)$ if and only if $X\neq Y,$ $X$ is
$G_{\delta}$ in $Y$ , and $Y$ is compact, where $s=(-1,1)^{\omega}\subset Q$ .

Introduction

Let $X=(X, d)$ be a metric space. By $(2^{X})_{m}$ , we denote the hyperspace of
non-empty bounded closed subsets of $X$ with the Hausdorff metric $d_{H}$ defined by
$d$ (cf. [Ku, p. 214]). Let $2^{X}$ be the totality of non-empty closed subsets of $X$ . In
case $X$ is unbounded, $2^{X}\neq(2^{X})_{m}$ and $d_{H}$ is not a metric on the whole $2^{X}$ (e.g.,
$ d_{H}(\{x\}, X)=\infty$ for any $x\in X$) but $d_{H}$ induces a topology on $2^{X}$ . This topology
depends on the metric $d$ (cf. $[SU_{2}$ , \S 1]).
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We endow the product space $X\times \mathbb{R}$ with the metric

$p((x, t),$ $(x^{\prime}, t^{\prime}))=\max\{d(x, x^{\prime}), |t-t^{\prime}|\}$ .

Let $\varphi$ : $X\rightarrow \mathbb{R}$ be a multi-valued function such that each $\varphi(x)$ is compact. Then,
$\varphi$ is upper semi-continuous (u.s. $c.$ ) if and only if the graph of $\varphi$ is closed in
$X\times \mathbb{R}$ , whence we can regard $\varphi\in 2^{X\times R}$ . By $USC_{B}(X)$ , we denote the space of
bounded u.s. $c$ . multi-valued functions $\varphi:X\rightarrow \mathbb{R}$ such that each $\varphi(x)$ is non-
empty and compact, where $\varphi:X\rightarrow \mathbb{R}$ is bounded means that the image $\varphi(X)=$

$\bigcup_{x\in X}\varphi(x)$ is bounded. The space $USC_{B}(X)$ is now regarded as a subspace
of $2^{X\times \mathbb{R}}$ . One should note that $USC_{B}(X)\not\subset(2^{X\times \mathbb{R}})_{m}$ in general, but $p_{H}(\varphi, \psi)<$

$\infty$ can be defined for each $\varphi,$ $\psi\in USC_{B}(X)$ because $\varphi$ and $\psi$ are bounded. Let
USC(X, I) be the subspace of $USC_{B}(X)$ consisting of all $\varphi\in USC_{B}(X)$ with the
image $\varphi(X)\subset I$ . By $USCC_{B}(X)$ , we denote the subspaoe of $USC_{B}(X)$ consisting
of all $\varphi\in USCC_{B}(X)$ such that each $\varphi(x)$ is connected (i.e., a closed interval). Let
USCC(X, $I$ ) $=USCC_{B}(X)\cap USC(X, I)$ .

In case $X$ is compact, every u.s. $c$ . multi-valued function $\varphi:X\rightarrow \mathbb{R}$ is
bounded, so we denote $USC_{B}(X)=USC(X)$ and $USCC_{B}(X)=USCC(X)$ . In
this case, every admissible metric for $X$ induces the same topology for $USC_{B}(X)$ ,
that is, the topology for $USC_{B}(X)$ does not depend on the metric $d$ . In case $X$ is
non-compact, it depends on the metric $d$ (see the end of Introduction).

Fedorchuk $[Fe_{1,2}]$ proved that if $X$ is an infinite locally connected compact
metric space then USCC(X, I) is homeomorphic to $(\approx)$ the Hilbert cube $Q=$

$[-1,1]^{\omega}$ and USCC $(X)\approx Q\backslash \{0\}(\approx Q\times[0,1))$ (cf. $[SU_{1}$ , Appendix]). In this
paper, by showing the converse of this result, we have the following:

THEOREM 1. For a metric space $X$, the following are equivalent:
(a) USCC(X, $I$ ) $\approx Q$ ;
(b) $USCC_{B}(X)\approx Q\backslash \{0\}(\approx Q\times[0,1))$ ;
(c) $X$ is infinite, locally connected and compact.

In case $X$ is a dense subset of a metric space $Y$ , we have the natural
isometric embedding $e_{Y}$ : $USC_{B}(X)\rightarrow USC_{B}(Y)$ defined by $ e_{Y}(\varphi)=c1_{Y\times \mathbb{R}}\varphi$ .
Then $e_{Y}(USC(X, I))\subset USC(Y, I)$ . But, in general,

$e_{Y}(USCC_{B}(X))\not\subset USCC_{B}(Y)$ nor $e_{Y}(USCC(X, I))\not\subset USCC(Y, I)$ .

For example, let $Y=S^{1}$ be the unit circle of Euclidean plane $\mathbb{R}^{2}$ with the usual
metric, $X=S^{1}\backslash \{(1,0)\}$ , and $f:X\rightarrow \mathbb{R}$ be the map defined by $f(x, y)=y$ if
$x\leq 0$ and $f(x, y)=y/|y|$ if $x>0$ . Then $e_{Y}(f)(1,0)=\{-1,1\}$ is not connected.
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In case $Y$ is locally connected, it will be shown that

$e_{Y}(USCC_{B}(X))\subset USCC_{B}(Y)$ $and/or$ $e_{Y}(USCC(X, I))\subset USCC(Y, I)$

if and only if the complement $Y\backslash X$ is locally non-separating in $Y$ , that is, $ U\cap$

$ X\neq\emptyset$ is connected for each non-empty connected open set $U$ in $Y$ (Proposition
2). Let $s=(-1,1)^{\omega}$ be the pseudo-interior of $Q$ , which is homeomorphic to the
separable Hilbert space $\ell_{2}$ . We generalize Theorem 1 to pairs as follows:

THEOREM 2. Let $X$ be a dense subset of a locally connected metric space $Y$

with the locally non-separating complement in Y. Then the following are equivalent:
(a) (USCC $(Y,$ $I),$ $e_{Y}(USCC(X,$ $I))$ ) $\approx(Q, s)$ ;
(b) $(USCC_{B}(Y), e_{Y}(USCC_{B}(X)))\approx(Q\times[0,1),s\times[0,1))$ ;
(c) $X\neq Y,$ $X$ is $G_{\delta}$ in $Y$ and $Y$ is compact.

In the above, it should be observed that if $Y$ is locally connected and $Y\backslash X$ is
locally non-separating in $Y$ then $X$ is dense in $Y$ .

A metric space $X=(X, d)$ (or a metric d) has Property $S$ if $X$ is covered
by finitely many connected sets with arbitrarily small diameters. It should be
remarked that a metric space with Property $S$ is totally bounded, hence $a$

complete metric space with Property $S$ is compact. The subspace of $2^{X}$ consisting
of compacta is denoted by $\exp(X)$ . In case $X$ is compact, $\exp(X)=2^{X}$ . In [Cu],
Curtis proved that $X$ admits a Peano compactification $\tilde{X}$ such that $(\exp(\tilde{X})$ ,
$\exp(X))\approx(Q, s)$ if and only if $X$ is connected, locally connected, completely
metrizable, nowhere locally compact and admits a metric $d$ with Property $S$ . We
have the following version of this Curtis’ result:

THEOREM 3. A metrizable space $X$ has a metrizable compactification $\tilde{X}$ such
that

(USCC $(\tilde{X},$ $I),$ $e_{\overline{X}}(USCC(X,$ $I))$ ) $\approx(Q, s)$

$\iota f$ and only if $X$ is completely metrizable, non-compact and admits a metric with
Property $S$.

One should note that some admissible metric $d$ for $X$ cannot be extended
to $\tilde{X}$ even if $d$ has Property $S$ . For example, let $X=(0,1)$ and $\tilde{X}=[0,1]$ . Then,
$X\approx S^{1}\backslash \{(1,0)\}$ . The metric on $X$ inherited from $S^{1}$ has Property $S$ but cannot
be extended to $\tilde{X}$ . The following is a direct consequence of Theorems 2 and 3:
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COROLLARY 1. Let $X$ be completely metrizable, non-compact and admits a
metric with Property S. Then $X$ admits a metric which induces the topology on
$USCC_{B}(X)$ such that USCC(X, $I$ ) $\approx USCC_{B}(X)\approx l_{2}$ . $\square $

In the above, the topology of USCC(X, I) is not defined by using a complete
metric on $X$ . In $[SU_{2}]$ , it is proved that the spaces $USCC_{B}(X)$ and USCC(X, I)
are homeomorphic to a non-separable Hilbert space for a uniformly locally
connected, non-compact and complete metric space $X$ (even if $X$ is separable).
One should observe that $USCC_{B}(\mathbb{R})$ is non-separable but $USCC_{B}((0,1))$ is
separable, where IR and $(0,1)$ have the usual metrics.

Proofs of Theorems

We start with the following:

PROPOSITION 1. For a locally compact metric space $X,$ $USCC(X, I)$ is closed
in $2^{X\times 1}lf$ and only if $X$ is locally connected.

PROOF. The “if” part is Proposition 1.1 in $[SU_{2}]$ , where the local com-
pactness of $X$ need not be assumed.

To see the “only if” part, assume that $X$ is not locally connected. Then some
$x_{0}\in X$ has a compact neighborhood $B_{0}$ such that any neighborhood of
$x_{0}$ contained in $B_{0}$ is not connected. Let $\delta=d(x_{0}, X\backslash B_{0})>0$ . Then we have
disjoint non-empty closed sets $A_{1}$ and $B_{1}$ in $X$ such that $B_{0}=A_{1}\cup B_{1}$ ,
$ d(x_{0}, A_{1})<2^{-1}\delta$ and $x_{0}\in B_{1}$ . In fact, since $B_{0}$ is compact, the intersection of
clopen sets in $B_{0}$ containing $x_{0}$ is the component of $B_{0}$ , which is not a
neighborhood of $x_{0}$ . Then we have a clopen set $B_{1}$ in $B_{0}$ and $x_{1}\in B_{0}\backslash B_{1}$ with
$ d(x_{0}, x_{1})<2^{-1}\delta$ , whence $A_{1}=B_{0}\backslash B_{1}$ and $B_{1}$ satisfy the condition. Using the
same argument inductively, we have disjoint non-empty closed sets $A_{n}$ and $B_{n}$ in
$X,$ $n\in N$ , such that $B_{n-1}=A_{n}\cup B_{n},$ $ d(x_{0}, A_{n})<2^{-n}\delta$ and $x_{0}\in B_{n}$ . For each
$n\in N$ , let

$\varphi_{n}=\bigcup_{i=1}^{n}A_{i}\times\{0\}\cup B_{n}\times\{1\}\cup(X\backslash int_{X}B_{0})\times I\in USCC(X, I)$ .

Note that $\varphi_{n}(int_{X}B_{0})=\{0,1\}$ . Since $2^{B_{0}\times I}=\exp(B_{0}\times I)$ is compact, $(\varphi_{n}|B_{0})_{n\in N}$

has a subsequence $(\varphi_{n_{j}}|B_{0})_{i\in N}$ converging to some $\varphi^{\prime}\in 2^{B_{0}\times 1}$ . Then $(\varphi_{n_{j}})_{i\in N}$ con-
verges to $\varphi=\varphi^{\prime}\cup(X\backslash int_{X}B_{0})\times I$ in $2^{X\times 1}$ . Since $(x_{0},0)\in\varphi_{n}$ for all $n\in N$ , we
have $(x_{0},0)\in\varphi$ . For each $n\in N$ , choose $x_{n}\in A_{n}$ so that $ d(x_{n}, x_{0})<2^{-n}\delta$ .
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Since $p((x_{0},1),$ $(x_{n}, 1))<2^{-n}\delta$ and $(x_{n}, 1)\in\varphi_{n}$ , we have $(x_{0},1)\in\varphi$ . However
$(x_{0},1/2)\not\in\varphi$ because $int_{X}B_{0}\times(0,1)\cap\varphi_{n}=\emptyset$ for any $n\in N$ . This means that
$\varphi\cap\{x_{0}\}\times I$ (i.e., $\varphi(x_{0})$ ) is not connected, hence $\varphi\not\in USCC(X, I)$ . This is a
contradiction. $\square $

For a metric space $X$ , there exists the natural closed embedding $ i_{X}:X\rightarrow$

$USCC(X, I)$ defined as follows:

$i_{X}(x)=X\times\{0\}\cup\{x\}\times I\subset X\times I$ for each $x\in X$ ,

whence each $i_{X}(x)\in USCC(X, I)$ is defined by

$i_{X}(x)(y)=\left\{\begin{array}{l}\{0\} ify\neq x,\\I ify=x.\end{array}\right.$

Observe that $p_{H}(i_{X}(x), i_{X}(x^{\prime}))=d(x, x^{\prime})$ if $d(x, x^{\prime})<1$ , hence $i_{X}$ is locally iso-
metric. It is easy to see that $i_{X}(X)$ is closed in USCC(X, I).

PROOF OF THEOREM 1. The implications $(c)\Rightarrow(a)$ and $(c)\Rightarrow(b)$ are
Fedorchuk’s results $[Fe_{1,2}]$ (cf. $[SU_{1}$ , Appendix]).

$(a)\Rightarrow(c)$ : By using the embedding $i_{X}$ above, $X$ can be embedded in
USCC(X, I) as a closed set, hence $X$ is compact. By Proposition 1, $X$ is locally
connected. If $X$ is a singleton, the space USCC(X, I) is homeomorphic to the
hyperspace of subcontinua (i.e., closed subintervals) of I, so USCC(X, $I$) $\approx I^{2}$

(cf. [Du, \S 3]). Hence, if $X$ is finite then USCC(X, $I$ ) $\approx I^{2n}$ , where $n$ is the number
of points of $X$ . Therefore, $X$ must be infinite.

$(b)\Rightarrow(c)$ : Since $USCC_{B}(X)$ is locally compact, $\varphi_{0}=X\times\{0\}\in USCC_{B}(X)$

has a compact neighborhood $N$ in $USCC_{B}(X)$ . Choose $\delta>0$ so that every $\varphi\in$

$USCC_{B}(X)$ with $\rho_{H}(\varphi, \varphi_{0})<\delta$ belongs to $N$ . Then, USCC $(X, [0,\delta])\subset N$ and
USCC(X, $[0,\delta]$ ) is closed in $USCC_{B}(X)$ . Hence, USCC(X, I) $\approx USCC(X, [0,\delta])$

is compact. As seen in the above, it follows that $X$ is compact and locally
connected. Since

$USCC_{B}(X)=USCC(X)\approx USCC(X, (0,1))\subset USCC(X, I)$ ,

USCC(X, I) is infinite-dimensional, which implies that $X$ is infinite. $\square $

By $C_{B}(X)$ , we denote the Banach space of bounded continuous real-valued
functions of $X$ with the sup-norm and let $C(X, I)=\{f\in C_{B}(X)f(X)\subset I\}$ .
Although $C_{B}(X)\subset USCC_{B}(X)$ as sets, the Banach space $C_{B}(X)$ is not a subspace
of $USCC_{B}(X)$ in case $X$ is non-compact (cf. [FK, Remark 3.6] and Supplement).
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In [ $SU_{2}$ , Corollary 1.5], it is also shown that if $X$ is locally connected and has no
isolated points then the closures of $C(X, I)$ and $C_{B}(X)$ in $2^{X\times I}$ are USCC(X, I)
and $USCC_{B}(X)$ , respectively. In case $X$ is locally compact, the converse also
holds by Proposition 1.

COROLLARY 2. For a locally compact metric space $X$,

$c1_{2^{XxI}}C(X, I)=USCC(X, I)$ $and/or$ $c1_{2^{XxR}}C_{B}(X)=USCC_{B}(X)$

$lf$ and only if $X$ is locally connected and has no isolated point. $\square $

Next, we show the following:

PROPOSITION 2. Let $X$ be a dense subset of a locally connected metric space
Y. Then, the following are equivalent:

(a) $e_{Y}(USCC(X, I))\subset USCC(Y, I)$ ;
(b) $e_{Y}(USCC_{B}(X))\subset USCC_{B}(Y)$ ;
(c) $Y\backslash X$ is locally non-separating in Y.

$PR\infty F$ . $(c)\Rightarrow(b)$ : Suppose $e_{Y}(USCC_{B}(X))\not\subset USCC_{B}(Y)$ , that is, there exists
$\varphi\in USCC_{B}(X)$ such that $e_{Y}(\varphi)\not\in USCC_{B}(Y)$ . Then $e_{Y}(\varphi)(y)$ is not connected
for some $y\in Y\backslash X$ , whence we have $t_{1}<t<t_{2}$ such that $t_{1},$ $t_{2}\in e_{Y}(\varphi)(y)$ but $ t\not\in$

$e_{Y}(\varphi)$ . Since $e_{Y}(\varphi)$ is closed in $Y\times I$ and $Y$ is locally connected, we have a
connected open neighborhood $U$ in $y$ in $Y$ and $\delta>0$ such that

$ U\times(t-\delta, t+\delta)\cap e_{Y}(\varphi)=\emptyset$ ,

whence $t\not\in\varphi(x)$ for all $x\in U\cap X,$ $ t_{1}<t-\delta$ and $ t_{2}>t+\delta$ . By the definition of
$e_{Y}(\varphi)$ , we have $x_{j}\in U\cap X$ and $s_{j}\in\varphi(x_{j}),$ $l=1,2$ , such that $|s_{i}-t_{i}|<\delta$ , whence
$t\not\in\varphi(x_{i})$ and $s_{1}<t<s_{2}$ . Since $\varphi(x_{i})$ is connected, $\varphi(x_{1})\subset(-\infty, t)$ and $\varphi(x_{2})\subset$

$(t, \infty)$ . Since $\varphi$ is u.s. $c.$ ,

$U_{1}=\{x\in U|\varphi(x)\subset(-\infty, t)\}$ and $U_{2}=\{x\in U|\varphi(x)\subset(t, \infty)\}$

are open in $U$ . It follows that $U=U_{1}\cup U_{2},$ $ U_{1}\cap U_{2}=\emptyset$ and $x_{i}\in U_{i}\cap X$ ,
$i=1,2$ . Hence, $U\cap X$ is not connected, which means that $Y\backslash X$ is not locally
non-separating in $Y$ .

$(b)\Rightarrow(a)$ : This is observed as follows:

$e_{Y}(USCC(X, I))=e_{Y}(USCC_{B}(X))\cap USC(Y, I)$

$\subset USCC_{B}(Y)\cap USC(Y, I)=USCC(Y, I)$ .
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$(a)\Rightarrow(c)$ : First, note that $X$ is dense in Y. 0therwise, $ e_{Y}(\varphi)(y)=\emptyset$ for
each $\varphi\in USCC(X, I)$ and $y\in Y\backslash c1X$ . Now, suppose that $Y\backslash X$ is not locally non-
separating in $Y$ , that is, there exists a connected open set $U$ in $Y$ such that $U\cap X$

is not connected. (Note that $ U\cap X\neq\emptyset$ because $X$ is dense in $Y.$ ) Let $U\cap X=$

$U_{1}\cup U_{2}$ , where $U_{1}$ and $U_{2}$ are disjoint non-empty open sets in $X$ . Note that
$c1_{X}U_{1}\cup c1_{X}U_{2}\supset U$ . Let

$\varphi=(X\backslash U)\times I\cup U_{1}\times\{0\}UU_{2}\times\{1\}\in USCC(X, I)$ .

Since $U$ is connected, we have $y\in U\cap cI_{Y}U_{1}\cap c1_{Y}U_{2}\subset U\backslash X$ because $X$ is
dense in $Y$ . It follows that $e_{Y}(\varphi)(y)=\{0,1\}$ . Thus $e_{Y}(\varphi)\not\in USCC(Y, I)$ , which
contradicts to $e_{Y}(USCC(X, I))\subset USCC(Y, I)$ . Therefore, $Y\backslash X$ is locally non-
separating in Y. $\square $

PROPOSITION 3. Let $X$ be a dense subset of a locally connected compact
metric space $Y$ with the locally non-separating complement $Y\backslash X$ in Y. Then,
$e_{Y}(USCC_{B}(X))$ is $G_{\delta}$ in USCC $(Y)lf$ and on$lylfX$ is $G_{\delta}$ in $Y$.

PROOF. The “only if“ part follows from
$i_{Y}(X)=i_{Y}(Y)\cap e_{Y}(USCC_{B}(X))$ ,

where $i_{Y}$ : $Y\rightarrow USCC(Y, I)\subset USCC_{B}(Y)$ is the natural closed embedding.
To see the “if” part, let $X=\bigcap_{n\in N}U_{n}$ , where each $U_{n}$ is open in $Y$ . For each

$m,$ $n\in N$ , let

$G_{m,n}=\{\varphi\in USCC_{B}(Y)|p_{H}(\varphi, e_{Y}(\varphi|U_{n}))<1/m\}$ .

Since $e_{Y}(USCC_{B}(X))=\bigcap_{m,n\in N}G_{m,n}$ , it suffices to show that each $G_{m,n}$ is open
in $USCC_{B}(Y)$ , or each $F_{m,n}=USCC_{B}(Y)\backslash G_{m,n}$ is closed in $USCC_{B}(Y)$ .

Assume that a sequence $\varphi_{j}\in F_{m,n},$ $i\in N$ , converges to $\varphi\in USCC_{B}(Y)$ . Since
$\varphi$ is bounded, $\varphi\subset Y\times[-a, a]$ for some $a>0$ . Then, we may assume that
$\varphi_{j}\subset Y\times[-a, a]$ for all $i\in N$ . Since each $\varphi_{j}$ is compact, we can choose $(x_{j}, t_{i})\in\varphi_{j}$

so that
$\rho((x_{j}, t_{i}),$ $e_{Y}(\varphi_{j}|U_{n}))=\rho_{H}(\varphi_{i}, e_{Y}(\varphi_{j}|U_{n}))\geq 1/m$ .

Since $Y\times[-a, a]$ is compact, we may assume that $(x_{i}, t_{j})$ converges to $(x_{0}, t_{0})\in$

$Y\times[-a, a]$ , whence $(x_{0}, t_{0})\in\varphi$ . We show that $\rho((x_{0}, t_{0}),$ $e_{Y}(\varphi|U_{n}))\geq 1/m$ , which
means that $\varphi\in F_{m,n}$ . Then, $F_{m,n}$ would be closed in USCC $(Y, [-a, a])$ .

Now, assume that $\rho((x_{0}, t_{0}),$ $e_{Y}(\varphi|U_{n}))<1/m$ . Then, we have $(y_{0}, s_{0})\in\varphi|U_{n}$

such that $\rho((x_{0}, t_{0}),$ $(y_{0}, s_{0}))<1/m$ . Let

$\delta=\min\{d(y_{0}, Y\backslash U_{n}),\frac{1}{2}(1/m-\rho((x_{0}, t_{0}), (y_{0},s_{0})))\}>0$ .
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Choose $i$ so large that $ p_{H}(\varphi_{j}, \varphi)<\delta$ and $p((x_{l}, t_{j}),$ $(x_{0}, t_{0}))<\delta$ . Then, we have
$(y_{i}, s_{j})\in\varphi_{i}$ such that $p((y_{0},s_{0}),$ $(y_{j}, s_{j}))<\delta$ . Since $d(y_{0}, y_{i})<d(y_{0}, Y\backslash U_{n})$ , it
follows that $y_{j}\in U_{n}$ , hence $(y_{j},s_{j})\in\varphi_{i}|U_{n}$ . Therefore,

$p((x_{i}, t_{i}),$ $(y_{j},s_{j}))\geq p((x_{j}, t_{j}),$ $e_{Y}(\varphi_{j}|U_{n})\geq 1/m$ .

On the other hand,

$p((x_{i}, t_{i}),$ $(y_{i},s_{l}))\leq p((x_{i}, t_{i}),$ $(x_{0}, t_{0}))+p((x_{0}, t_{0}),$ $(y_{0},s_{0}))+p((y_{0},s_{0}),$ $(y_{j},s_{i}))$

$<2\delta+p((x_{0}, t_{0}),$ $(y_{0},s_{0}))<1/m$ ,

which is a contradiction. The proof is completed. $\square $

Now, we prove Theorems 2 and 3.

PROOF OF THEOREM 2. $(a)\Rightarrow(b)$ : As saw in the proof of [ $Fe_{2}$ , Proposition
2.4], $D=USCC(Y, I)\backslash USCC(Y, (0,1))$ is a contractible Z-set in USCC $(Y, I)$ and
then

USCC $(Y, (0,1))\approx USCC(Y, I)\backslash D\approx Q\times[0,1)$ .

It follows from [Ch, Theorem 6.6] that

(USCC $(Y,$ $(0,1)),$ $e_{Y}(USCC(X,I))\backslash D$) $\approx(Q\times[0,1),$ $s\times[0,1$ )),

where it should be noted that $e_{Y}(USCC(X, I))\backslash D\neq e_{Y}(USCC(X, (0,1))$ but

$e_{Y}$ (USCC(X, $I)$ ) $\backslash D=$ { $ e_{Y}(\varphi)|\varphi\in$ USCC(X, $(a,$ $b))$ for some $0<a<b<1$ }.

By Theorem 1, $Y$ is compact, whence $USCC_{B}(Y)=USCC(Y)$ and there exists a
homeomorphism $h:USCC(Y)\rightarrow USCC(Y, (0,1))$ such that

$h(e_{Y}(USCC_{B}(X)))=$ { $e_{Y}(\varphi)|\varphi\in USCC(X,$ $(a,$ $b))$ for some $0<a<b<1$ }.

Consequently, we have

$(USCC_{B}(Y), e_{Y}(USCC_{B}(X)))\approx(USCC(Y, (0,1)), e_{Y}(USCC(X, I))\backslash D)$

$\approx(Q\times[0,1),s\times[0,1))$ .

$(b)\Rightarrow(c)$ : By Theorem 1, the condition (b) implies that $X\neq Y$ and $Y$ is
compact and locally connected. Moreover, $Y\backslash X$ is locally non-separating in $Y$

by Proposition 2, and $X$ is $G_{\delta}$ in $Y$ by Proposition 3.
$(c)\Rightarrow(a)$ : We first consider the case that $Y$ is connected, hence it is a Peano

continuum. In this case, USCC $(Y, I)$ is the closure of $C(Y, I)$ in $\exp(Y\times I)=$
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2[ $Fe_{2}$ , Theorem 1.10]. Since (USCC $(Y,$ $I),$ $C(Y,$ $I)$ ) $\approx(Q, s)[SU_{1}$ , Corollary
1’], the complement USCC $(Y, 1)\backslash C(Y, I)$ is a $Z_{\sigma}$-set in USCC $(Y, 1)$ . By Prop-
osition 3, $e_{Y}(USCC_{B}(X))$ is $G_{\delta}$ in $USCC_{B}(Y)$ , whence

$e_{Y}(USCC(X, I))=e_{Y}(USCC_{B}(X))\cap USCC(Y, I)$

is also $G_{\delta}$ in USCC $(Y, I)$ . Then, the complement

$M=USCC(Y,I)\backslash e_{Y}(USCC(X, I))$

is $F_{\sigma}$ in USCC $(Y, I)$ and $M\subset USCC(Y, I)\backslash C(Y, I)$ , hence $M$ is a $Z_{\sigma}$-set in
USCC $(Y, I)$ . Let $(A, B)$ be a pair of compacta in USCC $(Y, 1)$ such that $B\subset M$

and $\epsilon>0$ . By all the same way as the proof of Main Theorem of $[SU_{1}]$ , but using
a point $x_{0}\in Y\backslash X$ , we can define an embedding $h:A\rightarrow M$ such that $h|B=id$ and
$h$ is $\epsilon$-close to id. Applying the characterization of $B(Q)=Q\backslash s$ [An] (cf. [Ch,
Lemma 8.1]), we have (USCC $(Y,$ $I),$ $M$ ) $\approx(Q, B(Q))$ , hence

(USCC $(Y,$ $I),$ $e_{Y}(USCC(X,$ $I))$ ) $\approx(Q,s)$ .

In the general case, we write $Y=\bigcup_{i^{n}=1}Y_{i}$ , where each $Y_{i}$ is a component of
$Y$ , which is closed and open in $Y$ because of locally connectedness of $Y$ . Since
$Y\backslash X$ is locally non-separating in $Y$ , each $X_{i}=X\cap Y_{i}$ is a component of $X$ . Then

(USCC $(Y,$ $I),$ $e_{Y}(USCC(X,I))$ ) $\approx(\prod_{i=1}^{n}USCC(Y_{i}, I),$ $\prod_{i=1}^{n}e_{Y_{i}}(USCC(X_{i}, I)))$ .

In case $Y_{i}$ is a singleton, $X_{i}=Y_{i}$ and USCC $(Y_{i}, I)$ is homeomorphic to the
hyperspace of subcontinua of I, hence USCC $(Y_{i}, I)\approx I^{2}$ (cf. [Du, \S 3]). Hence the
general case can be obtained the connected case. $\square $

PROOF OF THEOREM 3. First, assume that $X$ is completely metrizable and
has an admissible metric with Property $S$ . Then, $X$ has only finitely many
components, which are closed and open in $X$ . Replacing the metric, we may
assume that the distance between any two components of $X$ is positive. Thus, as
in the proof of Theorem 2, it suffices to treat the case $X$ is connected. In this
case, $X$ has a Peano compactification $\tilde{X}$ with a locally non-separating remainder
$\tilde{X}\backslash X$ by [Cu, Proposition 2.4]. By complete metrizability, $X$ is $G_{\delta}$ in $\tilde{X}$ . Then, the
“if” part follows from Theorem 2.

Conversely, assume that $X$ has a compactification $\tilde{X}$ such that

(USCC $(\tilde{X},$ $I),$ $e_{\overline{X}}(USCC(X,$ $I))$ ) $\approx(Q,s)$ .

By Theorem 2, $X\neq\tilde{X},$ $X$ is $G_{\delta}$ in $\tilde{X},\tilde{X}$ is locally connected and the remainder
$\tilde{X}\backslash X$ is locally non-separating in $\tilde{X}$ . Then $X$ is completely metrizable and, as is
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easily observed, each component of $\overline{X}$ is a Peano compactification of a com-
ponent of $X$ with locally non-separating remainder. By [Cu, Proposition 2.4],
$X$ admits an admissible metric $d$ with Property $S$ . Thus we have the “only if”
part. $\square $

Supplement

As mentioned before Corollary 2, the Banach spaoe $C_{B}(X)$ is not a subspace
of $USCC_{B}(X)$ in case $X$ is non-compact (cf. [FK, Remark 3.6]). Here we show
the following:

PROPOSITION 4. In the following cases, the topology for $C(X, I)$ induced by
the sup-norm is $d_{l}fferent$ from the one induced by the Hausdorff metric $p_{H}$ :

(1) $X$ has a non-complete component;
(2) $X$ has a non-totally bounded component;
(3) $X$ has infinitely many components $X_{i},$ $i\in N$ , such that $\inf_{i\in N}$ diam $X_{i}>0$

and $\inf_{i\neq j}dist(X_{i}, X_{j})>0$ .

PROOF. (1) Let $X_{0}$ be a non-complete component of $X$ . Then $X_{0}$ has a non-
convergent Cauchy sequence $(x_{j})_{i\in N}$ . For each $n\in N$ , we have $m>n$ such that
$d(x_{j}, x_{j})<(1/3)d(x_{n}, x_{m})$ for all $i,$ $j\geq m$ . In fact, $x_{n}$ is not an accumulation point
of $(x_{i})_{i\in N}$ , whence there is come $\delta>0$ such that $ d(x_{n}, x_{j})>\delta$ for almost all $i\in N$ .
Since $(x_{i})_{i\in N}$ is a Cauchy sequence, we can choose $m>n$ such that $d(x_{n}, x_{m})>$

$\delta$ and $ d(x_{j}, x_{j})<(1/3)\delta$ if $i,$ $j\geq m$ , whence $d(x_{i}, x_{j})<(1/3)d(x_{n}, x_{m})$ for all $i$ ,
$j\geq m$ . Therefore, by taking a subsequence, we can assume that $d(x_{i}, x_{j})<$

$(1/3)d(x_{n}, x_{n+1})$ for every $n\in N$ and $i,$ $j>n$ . For each $n\in N$ , let $\epsilon_{n}=$

$(1/3)d(x_{n}, x_{n+1})$ . Then, the collection $\{B(x_{n}, \epsilon_{n})|n\in N\}$ is discrete in $X$ and

$(*)$
$\bigcup_{i>n}B(x_{j}, \epsilon_{i})\subset B(x_{n+1},2\epsilon_{n})\subset X\backslash \bigcup_{j\leq n}B(x_{j},\epsilon_{j})$

.

Moreover, since $X_{0}$ is connected, it follows that

$(\# 1)$ $[0,\epsilon_{n}]\subset[0,2\epsilon_{1}]\subset\{d(x_{n}, y)|y\in X_{0}\}$ for every $n\in N$ .

We define a map $f\in C(X, I)$ as follows:

$f(x)=\left\{\begin{array}{l}1-\epsilon_{i}^{-l}d(x,x_{j}) ifx\in B(x_{i},\epsilon_{i}),i\in N,\\0 otherwise.\end{array}\right.$

One should note that any map $g\in C(X, I)$ with $\sup_{x\in X}|f(x)-g(x)|=$

$\gamma<1/2$ is not uniformly continuous. In fact, by $(\# 1)$ , we have $y_{i}\in X_{0},$ $i\in N$ ,
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such that $d(x_{j}, y_{j})=\epsilon_{j}$ , whence $\lim_{t\rightarrow\infty}d(x_{j}, y_{j})=0$ but

$|g(x_{j})-g(y_{j})|\geq|f(x_{j})-f(y_{j})|-|f(x_{i})-g(x_{j})|-|f(y_{j})-g(y_{j})|$

$\geq 1-\gamma-\gamma=1-2\gamma>0$ .

However, for each $\epsilon>0$ , there exists a uniformly continuous map $h\in C(X, I)$

with $ p_{H}(f, h)<\epsilon$ . In fact, choose $n\in N$ so that $ 2\epsilon_{n}<\epsilon$ , and define a map $ h\in$

$C(X, I)$ as follows:

$h(x)=\left\{\begin{array}{l}1-2^{-1}\epsilon_{n}^{-1}d(x,x_{n+1}) ifx\in B(x_{n+1},2\epsilon_{n}),\\f(x) otherwise.\end{array}\right.$

It follows from $(\# 1)$ that $f$(cl $B(x_{j},$ $\epsilon_{i})$ ) $=h$ (cl $B(x_{n+1},2\epsilon_{n})$ ) $=I$ for every $i>n$ .
Then, by $(*)$ , it can be easily seen that $ p_{H}(f, h)<2\epsilon_{n}<\epsilon$ .

(2) Let $X_{0}$ be a non-totally bounded component of $X$ . Then, we have $\delta>0$

and $x_{j}\in X_{0},$ $i\in N$ , such that $ d(x_{i}, x_{j})>\delta$ if $i\neq j$ . Observe that

$(\# 2)$ $[0,\delta]\subset\{d(x_{i}, y)|y\in X_{0}\}$ for every $i\in N$ .

For each $i\in N$ , let $\delta_{j}=\min\{i^{-1},1/3\delta\}>0$ . Now, we define a map $f\in C(X, I)$

as follows:

$f(x)=\left\{\begin{array}{l}1-\delta_{i}^{-1}d(x,x_{j}) ifx\in B(x_{i},\delta_{i}),i\in N,\\0 otherwise.\end{array}\right.$

By the same reason as the case (1), any map $g\in C(X, I)$ with $\sup_{x\in X}|f(x)-$

$g(x)|<1/2$ is not uniformly continuous. However, for each $\epsilon>0$ , choose $n\in N$

so that $ n^{-1}<\epsilon$ , and define a uniformly continuous map $h\in C(X, I)$ defined by

$h(x)=\left\{\begin{array}{l}1-\min\{\epsilon,\delta\}^{-l}d(x,x_{i})\\f(x)\end{array}\right.$ $ifx\in B(x_{i}, \min\{\epsilon,\delta\})otherwise.$

$i\geq n$ ,

From $(\# 2)$ , it follows that

$f$ (cl $B(x_{i},\delta_{j})$ ) $=h$ (cl $B(x_{n+1},$ $\min\{\epsilon,\delta\})$ ) $=I$ for every $i\geq n$ ,

Then, we have $\rho_{H}(f, h)<\epsilon$ .
(3) For each $i\in N$ , take $x_{j}\in X_{i}$ . Choose $2\delta>0$ so that $\delta<\inf_{i\in N}$ diam $X_{i}$

and $\delta<\inf_{i\neq j}dist(X_{i}, X_{j})$ . Since $\sup_{x\in X_{i}}d(x, x_{j})>\delta$ , it follows that

$(\# 3)$ $[0,\delta]\subset\{d(x_{j}, y)|y\in X_{i}\}$ for every $i\in N$ .

Then, by replacing $X_{0}$ by $X_{i}\prime s$ in the proof of the case (2), we have the proof of
this case. $\square $
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