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A NOTE ON NORMALLY GENERATED LINE BUNDLES
ON COMPACT RIEMANN SURFACES II

By

Tatsuya ARAKAWA

1. Introduction

Let $X$ denote a compact Riemann surface of genus $g(X)$ and $L$ an ample line
bundle on $X$. Then two C-algebras $S(L)$ and $R(L)$ are defined as follows:

$S(L)$ $:=\bigoplus_{n=0}^{\infty}Sym^{n}H^{0}(X, L)$ , $R(L)$ $:=\bigoplus_{n=0}^{\infty}H^{0}(X, L^{n})$ .

DEFINITION 1. (i) $L$ is said to be normally generated if the natural map
$S(L)\rightarrow R(L)$ is surjective.

(ii) A normally generated line bundle $L$ is said to be normally presented if the
kernel I of the map in (i) is generated by its degree two part $I_{2}$ as an ideal of $S(L)$ .

Note that, by definition, a normally presented line bundle is normally
generated and moreover, a normally generated line bundle is always very ample.

There are the following two sufficient conditions for line bundles on $X$ to be
normally generated or to be normally presented:

THEOREM 1 (cf. [8], [12]). (i) The canonical bundle $K_{X}$ on $X$ is normafly
generated if and only if $X$ is nonhyperelliptic.

(ii) $K_{X}$ is normally presented if and only if $X$ is neither hyperelliptic, trigonal
nor smooth plane quintic.

THEOREM 2 (cf. [9], [11]). (i) If $\deg L\geq 2g(X)+1$ , then $L$ is normally
generated.

(ii) If $\deg L\geq 2g(X)+2$ , then $L$ is normally presented.
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On the other hand, Homma [6] classified all the normally generated line
bundles on $X$ when the genus of $X$ is three.

THEOREM 3 (cf. [6]). Suppose $g(X)=3$ . $(i)$ If $X$ is hyperelliptic, then $L$ is
normally generated if and only $\iota f\deg L\geq 7$ .

(ii) If $X$ is nonhyperelliptic, then $L$ is normally generated if and only if $L$

satisfies one of the following conditions:
(a) $\deg L\geq 7$ .
(b) $\deg L=6$ and $H^{0}(X, L\otimes K_{X}^{-1})=0$ .
(c) $L\cong K_{X}$ .

Now let $\pi:X\rightarrow Y$ be a (possibly ramified) double covering of compact
Riemann surfaces.

In [2], we study the following problem in the case of $g(X)=3$ and in the
cases of $g(X)\geq 4$ and $g(Y)\leq 1$ :

PROBLEM 1. Classify ample line bundles on $Y$ such that the pull back on $X$

are normally generated.

Now we set:

PROBLEM 2. Classify pairs of an ample line bundle $M$ on $Y$ and a point $P$

on $X$ such that the line bundles given as $\pi^{*}M\otimes \mathcal{O}_{X}(P)$ are normally generated
on $X$.

The degree of $\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is 2 $\deg M+1$ . Hence the following are obvious
by Theorems 2 and 3:

PROPOSITION 1. If $\deg M\geq g$ , then $\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is normally generated.

PROPOSITION 2. If $g(X)=3,$ $\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is normally generated $\iota f$ and only
$\iota f\deg M\geq 3$

In the following sections, we study Problem 2 in the cases of $g(X)\geq 4$ and
$g(Y)\leq 1$ . In \S 2, we will see some fundamantal properties of double coverings
and in \S 3, we will summarize some basic facts on Clifford index of compact
Riemann surfaces. In \S 4, Problem 2 will be studied in our cases.

The author would like to express his gratitude to Professors Sampei Usui and



A note on normally generated line bundles 61

Kazuhiro Konno for their helpful advices and encouragements. He also thanks
to Professor Akira Ohbuchi, Dr. Masanori Asakura and Mr. Koichiro Yoshioka
for useful discussions. Finally he thanks to the referee for many suggestions. In
particular, Remark 1 and the first proof of Proposition 3 below are based on the
referee’s comments.

2. Double coverings of compact Riemann surfaces

In this section, we will recall some fundamental facts on double coverings.

LEMMA 1 (cf. [10]). Let $B$ denote the branch locus of the double covering
$\pi$ : $X\rightarrow Y$ on Y. Then there exists a line bundle $F$ on $Y$ with $2F\cong B$ such that the
following conditions hold:

(i) $X$ is embedded into $F$ and the projection of $F$ to $Y$ restricted on $X$ coincides
with $\pi$ .

(ii) The canonical bundle $K_{X}$ on $X$ is linearly equivalent to $\pi^{*}(K_{Y}\otimes F)$ where
$K_{Y}$ is the canonical bundle on $Y$.

(iii) For any line bundle $L$ on $Y$, we have:

$\pi_{*}\mathcal{O}_{X}(\pi^{*}L)\cong \mathcal{O}_{Y}(L)\oplus \mathcal{O}_{Y}(L\otimes F^{-1})$ .

COROLLARY 1. For a double covering $\pi$ : $X\rightarrow Y$ which is not unramified, the
induced homomorphism $\pi^{*}$ : Pic $Y\rightarrow PicX$ is injective.

PROOF OF COROLLARY 1. Let $M$ be a line bundle on $Y$ such that the pull
back $\pi^{*}M$ is trivial on $X$. Then we have $\deg M=0$ and $h^{0}(X, \pi^{*}M)=1$ .
Moreover, by the assumption that $\pi$ is not unramified, we have $\deg F>0$

and hence $h^{0}(Y, M\otimes F^{-1})=0$ . Therefore, by Lemma 1 (iii), we conclude
$h^{0}(Y, M)=h^{0}(X, \pi^{*}M)-h^{0}(Y, M\otimes F^{-1})=1$ , that is, $M$ is also trivial on $Y$.

$\square $

REMARK 1. Corollary 1 was already given in [2, Corollary to Lemma 1] (as
well as Lemma 1 in [2, Lemma 1]). However its statement was incomplete there.
As in above, we need the assumption that the double covering $\pi$ is not unramified.

The following may be well known:

PROPOSITION 3. Let $\pi$ : $X\rightarrow Y$ be a double covering with $g(Y)=1$ . Then we
have:
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(i) If $g(X)\geq 4$ , then $X$ is nonhyperelliptic.
(ii) If $g(X)\geq 5$ , then $X$ is neither trigonal nor smooth plane quintic.

Here we will give two proofs of Proposition 3. One is based on the following
theorem of Castelnuovo-Severi and the other is on Theorems 1, 2 and Lemma 1
above.

THEOREM 4 (cf. [4]. See also [1, Theorem 3.5] and [3, C. 1 on p. 366].) Let $X$,
$Y$ and $Z$ be three compact Riemann surfaces of genus $g(X),$ $g(Y)$ and $g(Z)$ . Let

$\varphi$ : $X\rightarrow Y$ and $\psi$ : $X\rightarrow Z$ be two surjective holomorphic maps of degree $m$ and $n$

respectively. Suppose further that there does not exist a compact Riemann surface
$W$ of genus $g(W)<g(X)$ with three coverings $\varphi^{\prime}$ : $W\rightarrow Y,$ $\psi^{\prime}$ : $W\rightarrow Z$ and $\phi$ :
$X\rightarrow W$ such that $\varphi=\varphi^{\prime}\phi$ and $\psi=\psi^{\prime}\phi$ .

Then we have:

$g(X)\leq mg(Y)+ng(Z)+(m-1)(n-1)$ .

COROLLARY 2. Let $\pi$ : $X\rightarrow Y$ be a double covering and $\psi$ : $X\rightarrow Z$ be a
surjective holomorphic map of degree $n$ . If $g(X)\geq 2g(Y)+n(g(Z)+1)$ , then $\psi$

factors through $\pi$ , that is, there exists a covering $\psi^{\prime}$ : $Y\rightarrow Z$ such that $\psi=\psi^{\prime}\pi$ .

PROOF OF COROLLARY 2. Since the inequality in Theorem 4 does not hold,
we have a compact Riemann surface $W$ of genus $g(W)<g(X)$ with coverings
$\phi$ : $X\rightarrow W$ and $\pi$

‘ : $W\rightarrow Y$ such that $\pi=\pi^{\prime}\phi$ . But, since the degree of $\pi$ is two
and that of $\phi$ is more than one, we conclude that $\deg\phi=2$ and $\deg\pi^{\prime}=1$ , that
is, $\pi$

‘ : $W\rightarrow Y$ is an isomorphism and hence we get the assertion. $\square $

THE FIRST PROOF OF PROPOSITION 3. Let $\psi$ : $X\rightarrow P^{1}$ be a surjective holo-
morphic map which does not factor through the double covering $\pi$ : $X\rightarrow Y$ .
Then, by Corollary 2 above, we have $\deg\psi\geq g(X)-1$ .

Suppose $X$ is hyperelliptic (resp. trigonal). Then there exists a map $\psi$ : $ X\rightarrow$

$P^{1}$ of degree two (resp. three), which does not factor through $\pi$ . Hence we have
$g(X)\leq 3$ (resp. $g(X)\leq 4$) by the above remark.

Now suppose $X$ is a smooth plane quintic and hence $g(X)=6$ . Let $P$ and
$Q$ be mutually distinct points on $X$ with $\pi(P)=\pi(Q)$ . Let $R$ be another point
on $X$ such that $P,$ $Q$ and $R$ are not collinear. Then the projection from $R$ induces
a covering $\varphi:X\rightarrow P^{1}$ of degree four. But, since $\varphi(P)\neq\varphi(Q),$

$\varphi$ does not
factor through $\pi$ and hence we have $6=g(X)\leq\deg\varphi+1=5$ , which is a
contradiction. $\square $
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THE SECOND PROOF OF PROPOSITION 3. By Lemma 1 (ii), we have $K_{X}\cong\pi^{*}F$

and by Lemma 1 (iii), $H^{0}(X, K_{X}^{n})\cong H^{0}(Y, F^{n})\oplus H^{0}(Y, F^{n-1})$ . Hence we get that
$K_{X}$ is normally generated (resp. normally presented) if $F$ is normally generated
(resp. normally presented) on $Y$. Since $\deg F=g-1$ , the assertions follow from
Theorems 1 and 2. $\square $

3. Clifford index of compact Riemann surfaces

In this section, we will summarize some basic facts on $Cl_{l}fford$ index of
compact Riemann surfaces. See for example, [8, \S 2] or [7, \S 2] for detail.

For a line bundle $L$ on a compact Riemann surface $X$ of genus $g(X)\geq 2$ and
$X$ itself, their $Cl_{l}fford$ index is defined as follows:

DEFINITION 2. (i) The Clifford index of $L$ is the integer

$Cliff(L)$ $:=\deg L-2h^{0}(L)+2$ .

(ii) If $g(X)\geq 4$ , the Clifford index of $X$ is

Cliff(X) $:=\min\{Cliff(L);h^{0}(L)\geq 2, h^{1}(L)\geq 2\}$ .

(iii) If $g(X)=2$ then Cliff(X) is always $0$ and if $g(X)=3$ ,

Cliff(X) $:=\left\{\begin{array}{l}0 \iota fXishyperelliplic\\1 lfXisnonhyperelliplic.\end{array}\right.$

By Clifford’s theorem, Cliff(X) $\geq 0$ and the equality holds if and only if $X$ is
hyperelliptic. Moreover we have:

LEMMA 2. Cliff(X) $\leq(g-1)/2$ .

LEMMA 3. Cliff(X) $=1$ if and only if $X$ is either trigonal or smooth plane
quintic.

LEMMA 4. If there exists a surjective map $\varphi$ : $X\rightarrow P^{1}$ with $\deg\varphi\leq 4$ , then we
have Cliff(X) $\leq 2$ .

PROOF OF LEMMA 4. By Lemmas 2 and 3, we may assume $g(X)\geq 7$ and
$\deg\varphi=4$ . Let $D$ denote the divisor $\varphi^{-1}(\infty)$ on $X$ where $\infty$ is the infinity on $P^{1}$ .
Then we have $\deg D=4,$ $h^{0}(D)\geq 2,$ $h^{1}(D)=h^{0}(K_{X}-D)\geq 3$ and $Cliff(D)=$

$\deg D-2h^{0}(D)+2\leq 2$ . $\square $
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Hence we can rewrite Theorem 1 and Proposition 3 with the notion of
Clifford index as follows:

THEOREM 1’. (i) $K_{X}$ is normally generated $\iota f$ and only $lfCliff(X)\geq 1$ .
(ii) $K_{X}$ is normally presented if and on $ly$ if Cliff(X) $\geq 2$ .

PROPOSITION $3^{\prime}$ . Let $\pi$ : $X\rightarrow Y$ be a double covering with $g(Y)=1$ . Then we
have:

(i) Cliff(X) $=1$ if $g(X)=4$ .
(ii) Cliff(X) $=2$ if $g(X)\geq 5$ .

$PR\infty F$ OF PROPOSITION $3^{\prime}$ . Since $Y$ is a double covering of $P^{1}$ , there is
a surjective map $X\rightarrow P^{1}$ of degree four and hence we have Cliff(X) $\leq 2$ by
Lemma 4. Hence we get the assertion by Proposition 3. $\square $

Now we can state a result of Green-Lazarsfeld [5]:

THEOREM 5. Let $L$ be a very ample line bundle on $X$ with

$\deg L\geq 2g(X)+1-2h^{1}(L)-Cliff(X)$ .

Then $L$ is normally generated.

4. The case of $g(X)\geq 4$ and $g(Y)\leq 1$

In the following arguments, we will denote the line bundle $\pi^{*}M\otimes \mathcal{O}_{X}(P)$ on
$X$ by $L$ . Moreover we set $\pi(P)=R\in Y$ and $\pi^{-1}(R)=\{P, Q\}$ . Then we have:

$H^{0}(X, \pi^{*}M)\subset H^{0}(X, L)\subset H^{0}(X, \pi^{*}(M\otimes \mathcal{O}_{Y}(R)))$ . (1)

4.1. The cases of $g(Y)=0$

If $g(Y)=0$ , then $\deg F=g(X)+1$ where $F$ is the line bundle in Lemma 1.
Hence, if $\deg M\leq g(X)-1$ , we have

$H^{0}(X, L)\subset H^{0}(X, \pi^{*}(M\otimes \mathcal{O}_{Y}(R)))\cong H^{0}(Y, M\otimes \mathcal{O}_{Y}(R))$

by Lemma 1 (iii) and (1). Hence the (rational) map defined by the linear system
$|L|$ factors through the double covering $\pi$ : $X\rightarrow Y$ . We therefore conclude that $L$

is not very ample and hence not normally generated in this case.
On the other hand, by Proposition 1, $L$ is normally generated if $\deg M\geq$

$g(X)$ .
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Consequently we have:

PROPOSITION 4. Suppose $g(Y)=0$ . Then $L=\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is normally
generated if and only if $\deg M\geq g(X)$ .

4.2. The cases of $g(Y)=1$

If $g(Y)=1$ , then we have $\deg F=g(X)-1$ and $K_{X}\cong\pi^{*}F$ .
Let $M$ be a line bundle on $Y$. If $H^{0}(X, M\otimes \mathcal{O}_{Y}(R)\otimes F^{-1})=0$ , then, by the

same arguments as in \S 3.1, we can conclude that $L=\pi^{*}M\otimes \mathcal{O}(P)$ is not very
ample and hence not normally generated. Hence we may assume either $\deg M\geq$

$g(X)-1$ or $\deg M=g(X)-2$ and $M\otimes \mathcal{O}_{Y}(R)\cong F$ .
On the other hand, by Proposition 1, $L$ is normally generated if $\deg M\geq g(X)$

so that it suffices to consider only the cases of $\deg M=g(X)-1$ or $M\otimes \mathcal{O}_{Y}(R)\cong F$ .
Suppose $\deg M=g(X)-1$ . Then we have $\deg L=2g(X)-1$ and hence

$h^{0}(L)=g(X),$ $h^{0}(L^{2})=3g(X)-1$ .
By Lemma 1 (iii) and (1), we have

$H^{0}(X, L)\supset H^{0}(X, \pi^{*}M)\cong H^{0}(Y, M)\oplus H^{0}(Y, M\otimes F^{-1})$ .

If $M\cong F$ , then we have $K_{X}\cong\pi^{*}M$ and hence $L\cong K_{X}\otimes \mathcal{O}_{X}(P)$ . Then, since
$h^{0}(X, L)=g(X)=h^{0}(X, K_{X})=h^{0}(X, L\otimes \mathcal{O}_{X}(-P))$ , we get that $P$ is a base point
of $L$ and therefore $L$ is not very ample.

If $M\not\cong F$ , then we have $h^{0}(X, \pi^{*}M)=h^{0}(Y, M)=g(X)-1$ . Hence there
exists an element $\lambda\neq 0$ in $H^{0}(X, L)$ such that $ H^{0}(X, L)\cong H^{0}(Y, M)\oplus C\lambda$ . Then
the image of the natural map $Sym^{2}H^{0}(X, L)\rightarrow H^{0}(X, L^{2})$ is, as a C-vector
space, generated by $H^{0}(Y, M^{2}),$ $\lambda H^{0}(Y, M)$ and $\lambda^{2}$ . But since $h^{0}(Y, M^{2})=$

$2g(X)-2$ and $h^{0}(Y, M)=g(X)-1$ , the dimension of that image is at most
$3g(X)-2$ , which is less than $3g(X)-1=h^{0}(X, L^{2})$ . Consequently we get that, if
$\deg M=g(X)-1$ , then $L$ is not normally generated.

Now suppose $M\otimes \mathcal{O}_{Y}(R)\cong F$ . Then we have:

$L=\pi^{*}M\otimes \mathcal{O}_{X}(P)\cong K_{X}\otimes \mathcal{O}_{X}(-Q)$ .

To apply Theorem 5 to the above $L$ , we will see whether $L$ is very ample or
not.

Let $P_{1},$ $P_{2}$ be arbitrary two points on $X$. Then we have an exact sequence

$0\rightarrow L\otimes \mathcal{O}_{X}(-P_{1}-P_{2})\rightarrow L\rightarrow \mathcal{O}_{P_{1}}\oplus \mathcal{O}_{P_{2}}\rightarrow 0$ ,

which implies that the map
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$H^{0}(X, L)\rightarrow C_{P_{1}}\oplus C_{P_{2}}$

is surjective if and only if the $su\dot{\mathfrak{o}}ective$ map

$H^{1}(X, L\otimes \mathcal{O}_{X}(-P_{1}-P_{2}))\rightarrow H^{1}(X, L)$

is injective. But since $h^{1}(L)=h^{0}(Q)=1$ , we conclude that $L=K_{X}\otimes \mathcal{O}_{X}(-Q)$ is
very ample if and only if, for any two points $P_{1},$ $P_{2}$ on $X$ (which are not
necessarily mutually distinct), $h^{1}(X, L\otimes \mathcal{O}_{X}(-P_{1}-P_{2}))=h^{0}(X, \mathcal{O}_{X}(Q+P_{1}+P_{2}))$

$=1$ , that is $X$ is not trigonal. (By Proposition 3’ (i) and the assumption of $g(X)$

being more than three, $X$ is always nonhyperelliptic).
Now suppose Cliff(X) $=2$ . Then, since $\deg L=2\deg M+1=2g(X)-3$ and

$h^{1}(L)=1$ , we have $2g(X)+1-2h^{1}(L)-Cliff(X)=2g(X)-3=\deg L$ . More-
over, since $X$ is not trigonal, $L$ is very ample by the above remark. Consequently,
if Cliff(X) $=2$ , the assumptions of Theorem 5 are satisfied and hence we can
conclude that $L$ is normally generated.

Therefore we have:

PROPOSITION 5. Suppose $g(Y)=1$ . $(i)$ If Cliff(X) $=1$ then we have $g(X)=4$

and $L=\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is normally generated if and only if $\deg M\geq g$ .
(ii) If Cliff(X) $=2$ then $L$ is normally generated if and only if one of the

following is satisfied:
(a) $\deg M\geq g$ .
(b) $M\otimes \mathcal{O}_{Y}(R)\cong F$ where $R=\pi(P)$ .

PROOF. It suffices to show (i). If Cliff(X) $=1$ , then we have $g(X)=4$ by
Proposition 3’ (ii) and hence $X$ is trigonal by Lemma 3. Therefore $K_{X}\otimes \mathcal{O}_{X}(-Q)$

is not very ample, so that $L=\pi^{*}M\otimes \mathcal{O}_{X}(P)$ is normally generated only if
$\deg M\geq g$ . $\square $
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