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ANALYTIC SMOOTHING EFFECTS FOR SOME
DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS

By

Nakao HavasHi, Pavel I. NAUMKIN and Patrick-Nicolas PrpoLo

§1. Introduction

In this paper we study an analytic smoothing property of solutions to the
Cauchy problem for the derivative nonlinear Schrodinger equation:

iUy + Uy = N (u, i, uy,it,), x€R, teR,
u(0, x) = up(x), x€R,

(1.1)

where the nonlinearity has a form

N = Z Cklmnukuia’"ﬁ)’:, k,l,m,ne NU{0}

k+I1-m—n=1
satisfying the gauge condition such that

) Z Crimntt*ula™a" = Z Cramn(c0u) * (wusy,)' (c00) ™ (00) "

k+l—-m—n=1 k+l—m—n=1

m

for any w € C and the coefficients Cyjpn = Cklm,,(|uI2 ) = Crmn(f) are analytic and
have analytic continuations Cgj,,(z) with z = f + ig in the circle |z| < p, so that
we can write the Taylor expansions
- ; 1 1 d/
Crimn(2) = .20: aj kimnZ?,  Qj kimn = Fi Cl(cf,im(o) =z Crimn(0)
J=
for |z| < p. We also assume that } 7, |a; kimn|2)Y < C(p) for |z| < p, where C(p)

is a continuous function on p. When p = 1 equation (1.1) involves the case of the
-2

nonlinearity A" = which appears in the classical pseudospin magnet

model, see [14].

1+ |u|?
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Smoothing effects of solutions to the nonlinear Schrédinger equation (1.1)
with & =3, | Ckmu*a™ was studied in [5], [8] by using the operator ¢ =
x + 2itdx, which commutes with the linear Schrodinger operator % = id, + 0;7;.
Recently in we have shown the C® smoothing effect for equation (1.1) by
making use of a smoothing property of solutions to the linear Schédinger
equations [Lemma 2.2, 6] (see also [4]). For generalized KdV-type equations
similar C* smoothing effect was shown in [2].

Our purpose is to extend the result of paper to the analytical case. In this
paper we will show that if the initial data u, satisfies the condition (cosh fix)uy €
H?*? and the norm ||(cosh Bx)uo||3 o <p, when the nonlinearity .4~ does not depend
on #,, and the norm ||(cosh fx)uol|; o, is sufficiently small when the nonlinearity
A" depends on ii,, then there exist a positive time 7 depending on the size of the
initial function ||(cosh fx)uo||; o and a unique solution u of the Cauchy problem
(1.1) which is analytic with respect to x and has an analytic continuation on the
complex plane z = x+iy with |y| <2|pt|, for all te[-T,T]\{0}. Here the
weighted Sobolev space H™* = {¢ € L?; ol s = 11(1 + x2)¥%(1 - 6§)m/2¢|l < 0},
m,seR™.

Analytic smoothing effects of solutions to nonlinear dispersive equations
were studied in [1], for generalized KdV equations and in [I], [7], [8],
for nonlinear Schrédinger equations. However there are no result on analytic
smoothing effects of solutions to nonlinear Schrodinger equations of derivative
type except for the following derivative nonlinear Schrodinger equation
{iu,+uxx= i(|u|2u)x, xeR, teR, (1.2)

u(0, x) = up(x), x € R.

By using some gauge transformation technique the derivative nonlinear Schro-
dinger equation (1.2) can be translated to a system of nonlinear Schrodinger
equations without derivatives of unknown functions. So in paper the results
similar to that of stated below were shown for the Cauchy problem
(1.2).

For linear Schrédinger-type equations with variable coefficients, C®
smoothing effects were studied in [3], [11], and their results were extended to
analytic cases in [10], (see also [9]).

Before stating our results precisely, we give some notations and function
spaces. We let 0, = 0/0x and % ¢ or ¢§ be the Fourier transform of ¢ defined by
Fd(x) = 1/V2n [ e ™ ¢(x)dx and F~'¢(x) or §(x) be the inverse Fourier trans-
form of ¢, i.e. F'¢(x)=1/v2x [ e™*¢(x) dx. We introduce some function spaces.
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We let L? be the Lebesgue space with the norm |[|¢||, = (f|¢)(x)|pdx)l/p if 1<
p < oo and ||@|,, = ess.sup{|¢(x)|;x € R} if p = co. For simplicity we let ||§|| =
|#ll,- Weighted Sobolev space H"* = {peL?; ||¢||m’svp:l|(1+x2)s/2(1—6,2€)m/2¢||p
< w}, mseR" 1< p<oo. For simplicity we write H™*®= H3"" and let
| s = Il - ln5,2- Also we define the analytic function space AP = {p e L?;
l|(cosh/3x)¢A(x)||m,O <}, >0, meR" with the following norm ||@| sm =
|| (cosh Bx) é( ) llm,0» Which can be expressed in the x-representation in terms of the
analyticity in the strip {z = x +iy; —00 < x < 00, —f < y < f} via the following
norm ||¢(- + iB)lly ,, + l6(- — iB)llo,,,- Indeed we have the inequality ||@|| pm <
I8¢+ iB)lo,m + $(: — iB)lo,m < 2[4l 46.m. We denote (¥, ) = [¥(x) - §(x) dx. By
C(I; E) we denote the space of continuous functions from an interval I to a
Banach space E. We also use the following relations |0,| = #'|¢|F = —#0.
The Hilbert transformation J# with respect to the variable x is defined as follows

1 ¢(z) -1
H () =;PVJ-RX_Zdz ——iF 57
where Pv means the principal value of the singular integral. Let ¢ = #(f) =
x + 2itdy = U(1)xU(—1t) = M(1)(2itd.)M(—t), where M = M(t) = exp(ix?/4t).
We also freely use the following identities [ #, 0] = —1, [Z, #] =0, where &£ =
i0; + 6,25. Different positive constants might be denoted by the same letter C, when
it does not cause any confusion.
We now state our results in this paper.

THEOREM 1.1. We assume that the nonlinear term A does not depend on iiy,
and the initial data ug are such that ugcosh fx € H>°, where f € R and the norm
||uo cosh Bx||3 o < p. Then there exist a time T > 0O depending on ||uo cosh Bx||3 o and
a unique solution u of the Cauchy problem (1.1) such that ue C([-T,T}; H*°)N
L®(—T,T; H*®) and the solution u has an analytic continuation u(t,z) to the strip
{z=x+iy;—0<x< o0, 2tp|<y<2|tf|,te[-T,TI\{0}} satisfying the estimate

sup  |u(t,x +iy)| < Ccosh fx||lugcosh Bx]|; o
—2|i|< y<2|2p|

for all (t,x)e[-T,T]\{0} x R.

For the case of the nonlinearities depending on #, we have to assume the
additional smallness condition on the initial data. We prove the following result.

THEOREM 1.2. We assume that the nonlinear term N depends on iy, the
initial data uy are such that uycosh fx € H>°, p € R and the norm ||up cosh Bx|l3 o is
sufficiently small. Then the same results as in Theorem 1.1 are true.
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REMARK 1.1. In the case of C* smoothing effect of nonlinear Schrédinger
equation, existence time 7 depends on the size of the initial data such that
ol /2143,0, Where [s] denotes the largest integer less than or equal to s and n
denotes the spatial dimensions. However in the case of an analytic smoothing
effect, situation is completely different from C® case as the reader can see in our
main theorems. We try to explain the reason why: the difference arises by
considering the simple nonlinearity 4" = |u|?u. As in we have the following
estimates of solution to (1.1) by a classical energy estimate

> IFu=nu@l< Y lejuolll,o+j o Y IFu(=0u(o)| dr

0<j<m 0<j<m 0 0<j<m

which yields C* smoothing effect since % (¢)x/%(—t) = M(itd,)’ M and T depends
on ||u()||i0 (for derivative nonlinearities, 7" depends on ||u0||§y0). For an analytic
case we have as in (8]

lcosh(Bx)%(—1)u(2)|| < ||cosh(Bx)uoll;
+ L llcosh(Bx)% (= 0)u(1)|17 ollcosh(Bx) 2 (—r)u(r)|| dt

which yields an analytic smoothing effect and therefore T depends on
||cosh(ﬂx)u0||12‘0. We can not expect the estimate

t
lcosh(Bx)% (—t)u(?)|| < |lcosh(Bx)uoll; o + JO ()17 ollcosh(Bx)2(—t)u(1)|| dt
since the solution becomes analytic for ¢ # 0.

REMARK 1.2. Roughly speaking, in order to prove Theorems we introduce
the function space

X = {fe C([0, T); L?); sup_||(cosh fx) % (~t)u(1)]l5,0 < 00}
tel0, 7]

We make X into a complete metric space by the distance function

d(f,9) = ll(cosh fx)%(=1)(f = )lI2,0-

We must use this metric in a sub-space of X (defined precisely in Section 3) since
we use a contraction mapping method to prove this existence of u with analytic
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properties. That is the reason why even if the data uy € H>°, the solutions of
(1.1) are not continuous in time in H*>° space. Expected result from a-priori
estimates of solutions obtained in Section 3 is u e C([0, T]; H*?), where 2 < 5 <
3. Indeed we have this result by

() — u(D)l5.0 < Cllu(t) — u(D)|l5 ¢ llu(t) — u(®)||5o

which is obtained by Sobolev’s inequality.

The rest of the paper is organized as follows. In Section 2 we describe a
smoothing property of the linear Schrédinger equation and some estimates of
nonlinearities. Then in Section 3 we prove in the local existence of
solutions to the Cauchy problem (1.1) in the functional space {u € C([—T, T]; L?);
[|(cosh x)%(—t)u(t)||3,9 < 00}, where %(t) is the free Schrodinger evolution
group. And as a simple consequence we obtain the result of [Theorem 1.1. Sec-
tion 4 is devoted to the outline of the proof of Theorem 1.2l

§2. Linear smoothing effect

The aim of this section is to present the smoothing effect for solutions to the
Cauchy problem for the linear Schrédinger equations

{iu,-}—uxx:f, xeR, teR,

u(0,x) = up(x), xeR, 21

where the function f(z,x) is a force. In order to state Lemma 2.1 and [Lemma 2.2
which have been shown in paper [6], we define a pseudo-differential operator
& (p) = cosh(g) + isinh(p)# which yields a smoothing effect of solutions to (2.1),
where the real-valued function ¢(z,x) € L*(0,T; H%°)NC'([0,T];L®) and is
positive. From its definition we easily see that the operator % acts continuously
from L? to L? with the following estimate ||%(p)¥| < 2exp(|l¢|l,.)/l¢ll. The
inverse operator & !(p) = (1 + itanh(p)#) '1/cosh(¢) also exists and is
continuous

1~ (@)l < (1 - tanh(lloll )~ W1l < exp(llgll.) v - (2.2)

The operator % helps us to obtain a smoothing property of the Schrédinger-
type equation (2.1) by virtue of the usual energy estimates. In the next lemma we
prepare an energy estimate, involving the operator &, in which we have an
additional positive term giving us the norm of the half derivative of the unknown
function u. We also assume that ¢(x) is written as ¢(x) = ;' (w?), so that

@(x) = /(0xp).
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LemMMA 2.1. The following inequality
d
7 |Lull* + 0 V]o:lull® < 2lIm(Fu, & )|

2
+ Cllull*e™= (loll 5, + lloollz, + lleolly o, o ll0ll e, + llelloo)
is valid for the solution u of the Cauchy problem (2.1).

LemMA 2.2. We have the following estimates
(Su, SPpdw)| < |||V 10xlull® + | 1]/ [ox]v]|>

2 2 2 2 2
+ C(llull* + 101 )e¥l= (1117 0,00 + IW117,0,00) (1 + 119117 0,0,

and

|(Fu, #$p0:0)| < |||4]5v/10x[ull* + e411= || || #v/10xI0]|*
+ C(llull® + Nol*)e = (1117 0,00 + 111 0, c0) (1 + I9IIT 0,20,

provided that the right hand sides are bounded.

For the proofs of [Lemma 2.1 and Lemma 2.2, see [6].
The following lemma is the analytic version of Lemma 2.2l

LEMMA 2.3. We have the following estimates
(S FePrFu, S FePrF (pyo,v))
< || 1(- + iBNF V18xlu(- + B> + Y- + i) V/|oxlv(- + iB)||?
+ C(llu(- + B)II* + llo(- + iB)[|*)eCI¥l=

X (IC + B3 6.0 + I+ iB)IE 0. )1+ ol 0. 00)s

and

(P F P Fu, P F 1P F (pyo,d))
< || 18(- + iB)| LV 10xlu(- + iB)|1> + 1= || |y (- + iB)| \/10xIv(- — iB)|1?
+ C(llu(- + B + llo(- + iB)||*)eblel

X (18- + iB)II3 0,00 + W (- + )15 0,00) (1 + 1017 0,0)5
provided that the right hand sides are bounded.
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PrROOF. The lemma follows from and the identity
F P F (Yorv) = ¢(- + iBW (- + iB)oxv(- + if). O

Finally we show the estimates of the nonlinear terms in the analytic function
space.

LEMMA 2.4. We have the estimate
|| (cosh Bx) % (—2)(gyro) ||
< C||(cosh fx)%(—1)¢||; oIl (cosh Bx)U(—1)y||; ol (cosh Bx) % (—1)v]],

provided that the right hand side is finite and if ||(cosh Bx)%(—1t)ul|, o < p we have
the estimate

|(cosh Bx) % (—1)(Cimn(|u|*)0) | < C(p)||(cosh fx) 2 (~2)v]
provided that the right hand side is finite.
PrROOF. By the identity %(f)ef*@U(—t) = MF ' F M we have
U(1)eU(—1)(Py) = MF ™' ¥ F (M) (M) (Mv)
= M((M¢)(x + 2itB)) (M) (x + 2itB)) ((Mv)(x — 2ip))
= (MF'\*PrF M) (MF ' *PrF M) (MF ' e~ 252 F Mv)
= (U u(-1)p)(u (e U(—)y) (U (e PU(~1)v).  (2.3)

We take the L? norm, and apply the Sobolev’s inequality and the identity

ll(cosh Bx)(—1) f||* = l(lleﬁ"%(—t)fllz + 2|l + lleP*u(—0) f1I)
4

to (2.3) to see that the norm ||ef*%(—t)(¢yd)| is bounded from above by the

right hand side of the first estimate of the lemma. The value |e™#*%(—1)(¢yd)]| is

estimated in the same way. Thus we obtain the first estimate of the lemma.
From the analyticity condition on the functions Cklm,,(|u|2) and by the first

estimate of we have
|| (cosh Bx) 2 (—£)(Cretmn(|ul*)v)|

< > 1@,k l|(cosh fx) 2 (~1)ull 'y | (cosh fx)2(~1)u]
j=0

which implies the second estimate of the lemma. is proved. O
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§3. Proof of Theorem 1.1

In what follows we consider the case ¢ > 0 only since the case 1 < 0 can be
treated similarly. First we prove the local existence of solutions.

LemMMmA 3.1. We assume that the nonlinear term A" does not depend on iy,
and the initial data are such that ugcoshfx € H>°. Then there exists a time T > 0
depending on ||ug cosh fx||; o and a unique solution u of the Cauchy problem (1.1)
such that

sup ||(cosh Bx)%(—t)ul|; ¢ < o0.
te0,T)

PrOOF. Applying the operator (1 — @2) to the equation (1.1), we get for the
function v = (1 — 8%)u

{ Lo =G (u,ux)v, + R(v) (3.1)

v(0,x) = (1 = 03)uo(x),

where the coefficient at the main term is 9(u,u,) = 0,/ and 2(v) is the re-
mainder term. It is easy to see that

G(u,uy) = E lelm,,uku)’(_la"’ft; + E an,m,,u"u,’(a'"a;'—1
k+l—-m—n=1 k+I-m—n=1
I>1 n>1

when the nonlinearity 4" depends on i, and we have

G(u,uy) = Z lelmouku)’C_lam

k+l-m—n=1
I>1

when the nonlinearity 4" does not depend on ii.
We now consider the linearized version of equation (3.1)

{ Lo = G(@, iix)vx + R(D) (3.2)

v(0,x) = (1- 6ﬁ)u0(x),

where the function & = (1 — 3?)™'5 is defined by the known function # which is in
the ball

B = {66 C'([0, T];L?) : sup ||(coshfx)(—1)d| < 2p,
te0,7)

sup_[l(cosh Bx)%(~1)3l, o < i,
te0,7]
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sup 10,05 (1% (1)eP*u (—tyia)* + | (1)U (— 1)) )|, < 2v,
tel0,T]

sup 205 (WO P (0T + 0P U < ),
tel0, T

where p = ||(cosh fx)ug|; o, and u,v are some positive constants depending on p.
Thus the Cauchy problem (3.2) defines a mapping & : v = /(). First let us
show that there exists a time 7 > 0, such that the mapping &/ transforms the
closed ball B into itself. Then we prove that there exists a time 7 > 0 such that
o/ is a contraction mapping in the norm sup,.y, 7jl|(cosh x)%(~1) - || under the
constraint that it acts on the subspace B. By the classical energy method and
we have from equation (3.2)

% (cosh pr)(~)o(0)]| < €+ Cl(cosh ) (~o(0)],

hence we get

sup_||(cosh fx)%(=1)u(t)|| < p+ VT sup ||(coshpx)@(—t)ox(n)ll, ~ (3.3)

tel0, 7] te(0,T)

if we choose a time 7 > 0 to be sufficiently small.

In order to obtain the estimates of the norm sup,p, 7ll(coshpBx)%(—t)vx(1)|
we use the operator & () = cosh(p) + isinh(¢)s# introduced in Section 2, where
the function ¢(¢,x) = @4(t, x) + ¢_g(¢,x) and

op(t, ) = 505" (I%(t)eﬂ"%(—t)ﬁ(t, 0 + (P U (~1)a (2, x)

+ > lueu(—1) Cramndll® + |@z(r)eﬂxozz(—t)co,0,,ax|2)
k+l—m—n=1 [—n=1
k+m+#0

is in the space L*(0,T;C*(R))NC'([0,T]);L®). As in Section 2 we denote
w(t, x) = (0xp(t, x))!/2. Therefore applying we obtain the energy type
inequality for the function h = %(t)e? U (—1t)0xv

L + o TETA
< 2|Im(Fh, SU(1)eP*U(—1)0(% (@, ity )vx))]
+ 2(Im(Lh, FU(t)eP U (—1)0-R (D))

+ Celfle (loofl4, + lleollS, + 1ol o, 0l + Il IAIZ. (3.4)
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By Sobolev’s inequality, and the identity (2.1) we get |w|, <
C(p)/V3, 0lly.0 < C(1)/V, 9]l < C(p)/6 and |lg,l., < C(v)/3, where C(p),
C(u) and C(v) are some positive constants depending on p, u and v respectively.
Via the Schwarz inequality, (2.1) and Lemma 2.4, we obtain

Im(Fh, SU(1)e"*U(—1)0:R(5))| < eV ||h|| |2 (1)e?*U(—O)R(D)|l, o
< C(u)|[(cosh Bx)U(—1)ull; o- (3.5)
In the same way as in the proof of
€7 (—1)(0:(% (@, it )vx) — (%(&, tix)vxx)) | < C(w)||(cosh Bx)%(~1)ul|; o
Thus we have
[Im(Lh, PU(1)eP*U(—1)0,% (i1, itx)vy)|
< |Im(Fh, PU(t)eP*U(—1) (% (i, i1x)vxx) )|
+ C(p)||(cosh Bx) 2 (—t)ull3 o. (3.6)

To estimate the main term Im(%h, PU(t)eP*U(—1)(%(il, it )vxc)) in the left hand
side of we apply to get

[Im(Fh, SU(1)eP U (—1)(% (i, 1) vsx) )|
= [Im(Lh, FMF ' 2BXF M(%G(it, iix)vxx))|
< Collos Vo (1)eP U (=)o) + C(w)l|(cosh Bx)u(~t)ull3 .
Hence we get by
Im(Fh, SU(1)eP* U (—1)0x(% (@, 5x)vx)) |
< Col|0F /10U (0)e* U (—1)vr||* + C()||(cosh Bx)U(—D)ul5 . (3.7)

Substitution of (3.5)—(3.7) into (3.4) yields
a,itII9””?1(0«‘?’9"””(—t)vx||2 + (1 = GOl V/10x|U(t)eP U (—1)v|*

< (C(u) + C(v))ll(cosh Bx) 2 (=1)ull3 - (3.8)

If we now choose 6 = 1/C, then integration of and (3.3) give us the estimate
P> (—t)ull; o < u/C. In the same way |le™#*%(—t)ul|; , < u/C. Therefore we
have |[(cosh Bx)%(—t)ull; o < u by (2.1). By virtue of this estimate and (3.3) we
get ||(cosh Bx)%(—t)ul|, o < 2p, if the time interval 7 > 0 is sufficiently small.



Analytic smoothing effects for NLS equations 31

Now directly from the system (3.2) we see that the function u satisfy the
equation Lu = (1 —0%)"(9(a, iix)vx + #(7)). Hence we get by Lemma 2.4

10:0% 1 (e (—t)ul?||

= 2|07 'Re(%(0)eP U (—tyu - (U(1)e™ U(—1)u),)

lloo

< 1% (0)eP~u (—tyu( (1)U (—t)u) )|\
+ 2l P u(=tyul| P (~1)(1 - 33) ' G (@, i) va |
+ 2l e’ (=)l |ePu(-1)(1 - 33) ' & ()|
< ||(cosh Bx)%(—t)ull, ol| (cosh Bx) 2 (—t)uxll
+ C(p)||(cosh Bx)U(—1)ull5,o + C(u)||(cosh Bx) & (~t)it])3 o < v.
In the same manner we have the estimates
19:05 1% (1)U (—t)ur] |l o < v,
0:05" |2 (t)e P (— )|, < v

and
10051 1 () P U (— Y, < v.

Thus the mapping o/ transforms the ball B into itself. Let us show now that <7 is
a contraction mapping in the norm sup, g rl|(cosh fx)%(—t) - ||. Let v' satisfy the
equation (3.2) with the known function &' € B instead of ©. Then for the difference
g=1vl —v we get

Lg =4, al)g.+ (9, al) — 9(a,ix))vx
{ + R0 — R(0), xeR, tel0,T] (3.9)
g(0,x) =0, xeR.

Denoting § =4 — & we get by Lemma 2.4
le”* @ (~1)(% (", @, )vx — 9 (@, #x)os)|| < C|l(cosh fx)%(—1)g]|
and ||e#*U(—1)(R(5") — R(9))|| < C||(cosh fx)#(—1)j||. Considering the value g
similarly to the function 4 we get from the estimate analogous to
d . .
AUl U(~1)g||* + (1 = C8)||wS Vx| (1)U (~1)g|*

< (C(w) + C€()(l|(cosh px)%(—1)g|| + || (cosh px)%(—1)g])),
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therefore integrating with respect to time ¢, we have
lle”a(~1)g||*> < CT(||(cosh fx)%(=1)gl| + l|(cosh px) 2 (~1)gl)).

Similarly, the value ||e‘/3"011(—t)g||2 is estimated by the right hand side of the
above inequality. On a sufficiently small interval 7 > 0, we get by (2.1) the
desired estimate

1 ~
sup ||(coshfx)%(—0)gll < 5 sup ||(coshfx)%(~1)g].
tel0,T) tel0, 7]

Thus the transformation .o/ is a contraction mapping. Therefore there exists
a unique solution ue C([0,T]; H*®) of the Cauchy problem (1.1) such that
(cosh Bx)%(—t)ue L®(0,T; H*®) for all 0 << T. This completes the proof
of Lemma 3.1. O

Proor OF THEOREM 1.1. Using the identity % (t)ef*U(—t) = MF ¥ F M
and equality (2.1), we get

1 (¢)(cosh Bx) & (— tyul|* = 7 (||e*#% Mul|? + 2l|ul|? + [|e~2%% Mul*)

| =

7 (le™u(t, x + 2iB) || + 2||ull* + lle™*u(t, x — 2itf)||*).

Therefore we have by
lleF*u(t, x + 2itB) |15 o + lle P u(t, x — 2itB)|15 o < Cl(cosh fx)uoll3 o-

Hence the result of follows. O

§4. Proof of Theorem 1.2
In the same way as in the proof of we have by the Sobolev embedding
inequality, and the second estimate of
%Hy%(t)eﬂx@l(—t)vxuz + (1 — Coel¥l) || 0L v/ |axI%(z‘)eﬂ"oll(—t)vx||2

< C||(cosh Bx)(—t)ull3 o.

So to treat the growing with § — 0 coefficient e?l¥l= we now have to choose
p =06 > 0 to be a small constant. The rest of the proof is the same as in Theorem
1.1, so we leave it to the reader. O
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