INDUCED MO-MAPPINGS

By

Janusz J. CHARATONIK and Włodzimierz J. CHARATONIK

Abstract. A mapping $f: X \to Y$ between continua X and Y is called an MO-mapping provided that it can be represented as the composition of two mappings, $f_1: X \to Z$ and $f_2: Z \to Y$, such that f_1 is open and f_2 is monotone. Induced MO-mappings, 2^f and C(f), between hyperspaces are studied. In particular an example is constructed of an open mapping $f: [0,1] \to [0,1]$ for which C(f) is not an MO-mapping. This answers two questions asked by H. Hosokawa.

All spaces considered in this paper are assumed to be metric. A mapping means a continuous function. To exclude some trivial statements we assume that all considered mappings are not constant. A continuum means a compact connected space. Given a continuum X with a metric d, we let 2^X denote the hyperspace of all nonempty closed subsets of X equipped with the Hausdorff metric H defined by

$$H(A, B) = \max\{\sup\{d(a, B) : a \in A\}, \sup\{d(b, A) : b \in B\}\}$$

(see e.g. [9, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by C(X) the hyperspace of all subcontinua of X, i.e., of all connected elements of 2^X . The reader is referred to Nadler's book [9] for needed information on the structure of hyperspaces.

Given a mapping $f: X \to Y$ between continua X and Y, we consider mappings (called the *induced* ones)

$$2^f: 2^X \to 2^Y$$
 and $C(f): C(X) \to C(Y)$

Revised October 21, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 54B20, 54E40, 54F15.

Key words and phrases. continuum, hyperspace, induced mapping, monotone, MO-mapping, open. Received April 27, 1998.

defined by

 $2^{f}(A) = f(A)$ for every $A \in 2^{X}$ and C(f)(A) = f(A) for every $A \in C(X)$.

A mapping $f: X \to Y$ between spaces X and Y is said to be:

— open, provided that the image of an open subset of the domain is open in the range;

- monotone, provided that it has connected point-inverses;

— *OM-mapping*, provided that it can be represented as the composition of two mappings, $f = f_2 \circ f_1$, such that f_1 is monotone and f_2 is open;

— *MO-mapping*, provided that it can be represented as the composition of two mappings, $f = f_2 \circ f_1$, such that f_1 is open and f_2 is monotone;

— confluent, provided that for each subcontinuum Q of Y each component of $f^{-1}(Q)$ is mapped onto Q under f.

Monotone, as well as open mappings of compact spaces are known to be confluent, [12, Theorem 7.5, p. 148]. OM- and MO-mappings were introduced in [7, Section 3, p. 104] and studied in [8]. It is known that OM-mappings coincide with quasi-interior ones, as introduced in [13, p. 9], see [7, Corollary 3.1, p. 104], and that all MO-mappings are OM-mappings, [7, Corollary 3.2, p. 104].

Let \mathfrak{M}_i , where $i \in \{1, 2, 3\}$ be some three classes of mappings between continua. A general problem which is related to a given mapping and to the two induced mappings is to find all interrelations between the following three statements:

- (0.1) $f \in \mathfrak{M}_1$;
- $(0.2) \quad C(f) \in \mathfrak{M}_2;$
- (0.3) $2^f \in \mathfrak{M}_3$.

There are some papers in which particular results concerning this problem are shown for various classes \mathfrak{M}_i of mappings. In the present paper we will discuss possibly implications between (0.1)-(0.3) for the class of MO-mappings. We start with recalling some related results.

The following results concerning induced mappings for the classes of monotone, of open, and of OM-mappings are known. For monotone mappings see [10, Lemma 2.1, p. 750]; compare [6, Theorem 1.1, p. 121], [3, Lemma 2.3, p. 2], [2, Theorem 3.3, p. 4], and [5, Theorem 3.2, p. 241]. For open mappings see [5, Theorem 4.3, p. 243]; compare also [4, Theorem 3.2]). For OM-mappings see [5, Theorem 5.2, p. 244].

1. THEOREM. Let a surjective mapping $f : X \to Y$ between continua X and Y be given. Then the following conditions are equivalent:

(1.1) $f: X \to Y$ is monotone;

(1.2) $C(f): C(X) \rightarrow C(Y)$ is monotone;

(1.3) $2^f: 2^X \to 2^Y$ is monotone.

2. THEOREM. Let a surjective mapping $f : X \to Y$ between continua X and Y be given. Consider the following conditions:

(2.1) $f: X \to Y$ is open;

(2.2) $C(f): C(X) \rightarrow C(Y)$ is open;

(2.3) $2^f: 2^X \to 2^Y$ is open.

Then (2.1) and (2.3) are equivalent, and each of them is implied by (2.2).

3. THEOREM. Let a surjective mapping $f : X \to Y$ between continua X and Y be given. Then the following conditions are equivalent:

(3.1) $f: X \to Y$ is an OM-mapping;

(3.2) $C(f): C(X) \rightarrow C(Y)$ is an OM-mapping;

(3.3) $2^f: 2^X \to 2^Y$ is an OM-mapping.

An example is known [5, Section 4, Example, p. 244] of an open surjective mapping $f: X \to Y$ between locally connected continua X and Y such that the induced mapping $C(f): C(X) \to C(Y)$ is not open. It is so because of the following result, [1, Theorem 1].

4. THEOREM. If a continuum X is locally connected, and for a mapping $f: X \to Y$ the induced mapping $C(f): C(X) \to C(Y)$ is open, then f is monotone.

As a consequence of this theorem the following corollary has been shown in [1, Corollary 2].

5. COROLLARY. Let a continuum X be hereditarily locally connected, and a mapping $f: X \to Y$ be such that the induced mapping $C(f): C(X) \to C(Y)$ is open. Then f is a homeomorphism.

The following result is a consequence of Theorems 1 and 2, see [5, Theorem 5.3, p. 245].

6. COROLLARY. If a mapping $f : X \to Y$ between continua X and Y is an MO-mapping, then 2^f is also an MO-mapping.

Investigating the class \mathfrak{M} of MO-mappings, H. Hosokawa asked in [4, Remark 3.7] if the condition $f \in \mathfrak{M}$ implies that $C(f) \in \mathfrak{M}$. Later, in [5, Section 8, Problem 2, p. 249] he asked if the implication holds under an additional assumption that the mapping f is open. Our next result presents a negative answer to both these questions. To formulate it we recall a countable family of open mappings of the closed unit interval onto itself. Let a positive integer k be given and let $m \in \{0, 1, \ldots, k - 1\}$. Define a surjection

by the following conditions.

(7.1) If m is even, then $g_k(m/k) = 0$, and if m is odd, then $g_k(m/k) = 1$.

(7.2) For each *m* the restriction $g_k | [m/k, (m+1)/k] : [m/k, (m+1)/k] \rightarrow [0,1]$ is defined to be linear.

Thus this restriction, and hence the mapping g_k , is a surjection. Note that $g_k(0) = 0$ and $g_k(1)$ is either 1 or 0 according to k is either odd or even. Observe that g_1 is the identity, and g_2 is the *tent mapping* defined by

(7.3)
$$g_2(x) = \begin{cases} 2x, & \text{for } x \in [0, 1/2], \\ 2 - 2x, & \text{for } x \in [1/2, 1]. \end{cases}$$

Recall that two mappings $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ are said to be topologically equivalent provided that there exist homeomorphisms $h_X: X_1 \to X_2$ and $h_Y: Y_1 \to Y_2$ such that $f_2(h_X(x)) = h_Y(f_1(x))$ for each point $x \in X$. Observe that this relation is an equivalence in the class of mappings between topological spaces (see [12, p. 127]). It is known (see [12, (1.3), p. 184]) that a mapping of [0,1] into itself is open if and only if it is topologically equivalent to $g_k: [0,1] \to [0,1]$ for some positive integer k.

8. PROPOSITION. If $g_2 : [0,1] \rightarrow [0,1]$ is the tent mapping, then the induced mapping $C(g_2)$ is an MO-mapping which is neither open nor monotone.

PROOF. Since any nonempty subcontinuum of [0, 1] is a closed interval [x, y] with $0 \le x \le y \le 1$, where $[x, x] = \{x\}$, hence one can assign to $[x, y] \subset [0, 1]$ a

point (x, y) of the triangle

$$T = \{ (x, y) \in \mathbf{R}^2 : 0 \le x \le y \le 1 \},\$$

and, under this correspondence, the topology induced by the Hausdorff metric on C([0, 1]) coincides with the Euclidean topology inherited from the plane \mathbb{R}^2 on T (see e.g. [11, p. 62]). To simplify notations we omit the homeomorphism between C([0, 1]) and T. Thus the formula (7.3) for g_2 implies the following one for the induced mapping $C(g_2): T \to T$:

$$C(g_2)((x, y)) = \begin{cases} (2x, 2y) & \text{if } 0 \le y \le 1/2, \\ (\min\{2x, 2-2y\}, 1) & \text{if } 0 \le x \le 1/2 \le y \le 1, \\ (2-2y, 2-2x) & \text{if } 1/2 \le x \le 1. \end{cases}$$

To see that $C(g_2)$ so defined is an MO-mapping let us consider two additional triangles: $T' = \{(x, y) \in T : x + y \le 1\}$ with vertices (0,0), (0,1), (1/2, 1/2), and $T'' = \{(x, y) \in T' : 0 \le y \le 1/2\}$ with vertices (0,0), (0,1/2), (1/2, 1/2). Define a surjection $f_1 : T \to T'$ such that $f_1|T'$ is the identity and $f_1|(T \setminus T')$ is the symmetry with respect to the straight line x + y = 1. Thus f_1 is open, and we have

$$f_1((x, y)) = \begin{cases} (x, y) & \text{if } 0 \le x + y \le 1, \\ (1 - y, 1 - x) & \text{if } x + y \ge 1. \end{cases}$$

Next define a surjection $f_2: T' \to T''$ such that $f_2|T''$ is the identity, and $f_2|(T'\setminus T'')$ projects points on the side of T'' that joins (0, 1/2) with (1/2, 1/2). Thus f_2 is monotone, and its formula is

$$f_2((x, y)) = \begin{cases} (x, y) & \text{if } 0 \le y \le 1/2, \\ (x, 1/2) & \text{if } y \ge 1/2. \end{cases}$$

Finally, let $h: T'' \to T$ be a homeomorphism defined by h((x, y)) = (2x, 2y)for all $(x, y) \in T''$. It can be verified (details are left to the reader) that $C(g_2) = (h \circ f_2) \circ f_1$. Thus $C(g_2)$ is an MO-mapping. The proof is complete.

9. PROPOSITION. Let a mapping $g_k : [0,1] \to [0,1]$ be as in (7). Then for each integer $k \ge 3$ the induced mapping $C(g_k)$ is not an MO-mapping.

PROOF. Suppose on the contrary that for some $k \ge 3$ the induced mapping $C(g_k) : C([0,1]) \to C([0,1])$ can be represented as the composition of two

mappings, $C(g_k) = f_2 \circ f_1$, where f_1 is open and f_2 is monotone. Let $Y = f_1(C([0,1]))$, and put

$$A = \begin{bmatrix} 0, \frac{1}{2k} \end{bmatrix}, \quad B = \begin{bmatrix} \frac{2}{k} - \frac{1}{2k}, \frac{2}{k} \end{bmatrix}, \quad C = \begin{bmatrix} \frac{2}{k}, \frac{2}{k} + \frac{1}{2k} \end{bmatrix}.$$

Observe that $C(g_k)(A) = C(g_k)(B) = C(g_k)(C) = [0, 1/2]$. Let $\mathcal{U} = \{P \in C([0, 1]) : H(P, A) < 1/4k\}$. Then

(9.1) the restriction
$$C(g_k)|\mathcal{U}$$
 is one-to-one,

whence $f_1|\mathcal{U}$ is one-to-one. We claim that

(9.2)
$$f_1(A) = f_1(B).$$

Indeed, if not, we have $f_1(A) \neq f_1(B)$, but $f_2(f_1(A)) = f_2(f_1(B)) = [0, 1/2]$, and since f_2 is monotone, there is a continuum $M \subset Y$ with $f_1(A)$, $f_1(B) \in M$ and $f_2(M) = \{[0, 1/2]\}$. Let $\mathscr{C} \subset C([0, 1])$ be the component of $f_1^{-1}(M)$ which contains A. Since f_1 is open, it is confluent, [12, Theorem 7.5, p. 148], so $f_1(\mathscr{C}) = M$, and thus \mathscr{C} is a nondegenerate continuum containing A. Then $C(g_k)(\mathscr{C} \cap \mathscr{U})$ is a one-point set $\{[0, 1/2]\}$, contrary to (9.1). Thus (9.2) is established.

Let $\mathscr{V} = \{P \in C(B) : H(P, B) < 1/4k\}$. Then $C(g_k)|\mathscr{V}$ is one-to-one, whence $f_1|\mathscr{V}$ is one-to-one as well. Note that \mathscr{V} is not a neighborhood of B.

Let $\{B_m\}$ be a sequence of continua in [0,1] satisfying $B_m \subset B$ and $2/k \notin B_m$ for each $m \in N$, and $B = \text{Lim } B_m$. Observe that $(C(g_k))^{-1}(C(g_k)(B_m))$ has exactly k points. Therefore $f_1^{-1}(f_1(B_m))$ is a subset of the finite set $(C(g_k))^{-1}(C(g_k)(B_m))$, so it is finite. Openness of f_1 implies that f_1^{-1} is continuous, see [12, Theorem 4.32, p. 130], so

(9.3)
$$f_1^{-1}(f_1(B))$$
 is finite.

Let \mathscr{A} be the (unique) order arc in C([0,1]) from B to $B \cup C$. By (9.3) the set $f_1(\mathscr{A})$ is a nondegenerate subcontinuum of Y. By (9.2) we see that $A \in f_1^{-1}(f_1(\mathscr{A}))$. Then the component \mathscr{K} of $f_1^{-1}(f_1(\mathscr{A}))$ which contains A is a nondegenerate subcontinuum of C([0,1]) by confluence of f_1 . Note that $C(g_k)(\mathscr{A}) = \{[0,1/2]\}$, whence $C(g_k)(\mathscr{K}) = C(g_k)(\mathscr{A}) = \{[0,1/2]\}$, contrary to (9.1). Thus the proof is finished.

As a consequence of Propositions 8 and 9 we have the following result.

10. THEOREM. The identity g_1 and the tent mapping g_2 are the only two (up to equivalence) open mappings $f : [0,1] \rightarrow [0,1]$ for which the induced mapping C(f) is an MO-mapping.

11. REMARKS. (11.1) Taking as a mapping $f: X \to Y$ the mapping g_k for some integer $k \ge 3$ we see, by Proposition 9, that even in the case when f is open, the induced mapping C(f) need not be an MO-mapping.

(11.2) Since openness of f is equivalent to that of 2^{f} (see Theorem 2), it follows from (11.1) that even if 2^{f} is an open mapping (an MO-mapping, in particular), then C(f) need not be an MO-mapping.

The following three questions remain open. The first two of them were asked in [5, Section 8, Problem 2, p. 249].

12. QUESTIONS. (12.1) If 2^{f} is an MO-mapping, must f be an MO-mapping?

(12.2) If C(f) is an MO-mapping, must f be an MO-mapping?

(12.3) If C(f) is an MO-mapping, must 2^{f} be an MO-mapping?

References

- [1] W. J. Charatonik, Openness and monotoneity of induced mappings, Proc. Amer. Math. Soc. (to appear).
- [2] H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. (4) 41 (1989), 1-6.
- [3] H. Hosokawa, Mappings of hyperspaces induced by refinable mappings, Bull. Tokyo Gakugei Univ. (4) 42 (1990), 1-8.
- [4] H. Hosokawa, Induced mappings between hyperspaces II, Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1-7.
- [5] H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math. 21 (1997), 239-250.
- [6] A. Y. W. Lau, A note on monotone maps and hyperspaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), 121-123.
- [7] A. Lelek and D. R. Read, Compositions of confluent mappings and some other classes of functions, Colloq. Math. 29 (1974), 101-112.
- [8] T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91.
- [9] S. B. Nadler, Jr., Hyperspaces of sets, M. Dekker, 1978.
- [10] S. B. Nadler, Jr., Induced universal maps and some hyperspaces with the fixed point property, Proc. Amer. Math. Soc. 100 (1987), 749-754.
- [11] S. B. Nadler, Jr., Continuum theory, M. Dekker, 1992.
- [12] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, 1942, reprinted with corrections 1971.
- [13] G. T. Whyburn, Open mappings on locally compact spaces, Memoirs Amer. Math. Soc. 1 (1950), 1-24.

(J. J. Charatonik)

Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

E-mail address: jjc@hera.math.uni.wroc.pl

J. J. CHARATONIK and W. J. CHARATONIK

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México E-mail address: jjc@gauss.matem.unam.mx (W. J. Charatonik) Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail address: wjcharat@hera.math.uni.wroc.pl Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior, Giudad Universitaria, 04510 México, D. F., México

E-mail address: wjcharat@lya.fciencias.unam.mx