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CAUCHY PROBLEMS RELATED TO DIFFERENTIAL
OPERATORS WITH COEFFICIENTS OF GENERALIZED
HERMITE OPERATORS

By

Xiaowel XU

1. Introduction
As an example, let us consider the Schrédinger equation:
{D:+Di+ V(x)}u(t,x) =0,

where D, = (1/i)(6/0t), Dx = (1/i)(0/0x). In the harmonic oscillator case, where

the potential energy function V(x) is equal to x2, X. Feng ([1]) considered it as
follows.

As is well known, the Hermite function

a o
0.(x) = (@127 (-1 e (L) e
0x
is an eigenfunction of the Hermite operator H = D? + x2, corresponding to an

eigenvalue 2« + 1, that is,
H®,(x) = (200 + 1)Dy(x)

for any a eI, ={0,1,...}. Moreover, {®,|x e I.} is a complete orthonormal
system of L?(R), and ®,(x) belongs to S(R), where S(R) is the L. Schwartz
space of rapidly decreasing functions in R ([2]).

Suppose u(t,x) € S'(Rx) for fixed 7, where S'(R) is the conjugate space of
S(R), and set

uy(t) = {u(t, x), Dy(x)).
Then the Cauchy problem

(Di+ Hu(t,x) =0 (0<t<T, xeR),
(A){ u(0, x) = &(x) (xeR)
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is reduced to the Cauchy problems of ordinary differential equations
(@) { {D:+ 2+ D}u,(t) =0 (0<t<T),
uy(0) = @,(0).

Therefore, the solution u(z, x) of the problem (4) can be formally represented by
making use of solutions {u,(#)} of the problems (a),. More precisely,

u(t,x) = O ug(H®u(x) = Y Dy(0)e™ D'y (x).

ael, ael,

X. Feng proved that u(z,x) € S'(R,), owing to the Hermite expression theory in
S’(R) (B. Simon [3].

How about anharmonic oscillator cases? Suppose that {¢,(x)} is a complete
orthonormal system in L?(R), where ¢,(x) is an eigenfunction of the generalized
Hermite operator L = D? + x? + x* + 1, corresponding to an eigenvalue 4,. Then
the solution of the Cauchy problem of the Schrédinger equation

(Di+ L)u(t,x)=0 (0<t<T, xeR),
{u(O,x) = d(x) (x € R)

can be given by

=5 4,(0)e Mg, ().

ael,
Our aim in this paper is to prove u(t,x) € S'(R,). In the following, this problem
will be considered in a more general situation.
2. Preparations
Let us define a generalized Hermite operator L by
= (L1,---,Ln),
L=D+Vx) (j=12...,n),

where Vj(s) is a C*(R)-function satisfying the following conditions: there exist
0; >0, co >0, and Cx >0 (ke l;) such that

Vi(s) = co(1 + |s))* (VseR),
IDEVi(s)| < Ce(1 + |5))*  (¥seR).

LEMMA 1. There exist {¢y(s)}ics, satisfying the following conditions, where
@ (s) is an eigenfuction of L;, corresponding to an eigenvalue Aj.



Cauchy problems related to differential 771

1) 0< Ao <Ay < -+ <A < ---, and there exists py > 0 such that

o0
2/1];’” < 4o00.
k=0

2) @ (s) is real valued, and {$;(s)}rc;, is a complete orthonomal system of
L*(R).
3) Pu(s) € S(R), and there exist C(I) > 0 and p(l) > 0 for any I € I, such that

8l = > supls®DEg,(s)| < CHAE  (Vkel)

a+p<l xeR

holds.

is proved in [4] under assumptions slightly different to ours, but it
is proved similarly.
Now, for any a = (a1,...,a), B = (By,--.,B,) €I}, we put

¢a(x) =H]{l=1¢j,aj(xj)7 Ay = (Al,dn"w'ln,fln)?
B; B;
LP =G Ly 2 =TI, A,
and denote
A={i|aell}
= {(410, 420, - - -, An0), (A11, 420, - - -, o), (A10, 221, - -, Ano), - - - }-
Using [Lemma 1|, it is easy to prove
LEMMA 2. @,(x) is an eigenfunction of L corresponding to an eigenvalue ,15 ,

and they satisfy
1) there exists p, > 0 such that

D 2l ™ < o0,

n
aell

2) {6,(%)},e 1» is a complete orthonomal system of L*(R™),
3) ¢.(x) € S(R"), and there exist C(I) >0 and p(l) > 0 for any [ €I, such
that

Igoll; < C)| AP (Ya e I).

Here we call {¢,(x)},. » @ family of generalized Hermite functions.
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Let s be a space, whose element
a = (aa)yerr = (40,.,0,41,0,..0,40,1,0,..0, - --)  (dz € C)

satisfies

h/2

lal, := sup |aq| |A«|” " < +00 (VheL).

n
ael}

s is a Fréchet space with a countable set of seminorms {|al,};,, . Let s’ be the
conjugate space of s. Namely, s’ is a set of all linear continuous mappings from s
to C. More precisely, let bes’, that is, b:s3a — (b,a) € C. Then there exist
h >0 and C > 0 such that it holds

|[<b,a)| < Cla|, (Vaces).

LemMmA 3. 1) Let f(x) e S(R") and set

a(f) = {aa(f)}aelj’ aa(f) = <fa ¢a>'

Then
S(R") > f(x) —a(f)es

is linear continuous. More precisely, there exists C, > 0 for any h such that

a0y < Gl lamscosny (a — max 51).

J

2) Conversely, let a€s and set
S(x) =) audy(x).
P
Then
ssa— feS(R")
is linear and continuous. More precisely, there exists C; > 0 for any | such that
1£1l; < Cilalypy+2p, -

Moreover, a(f) = a holds.

Proor. 1) For any hel,, it holds
[a(f)los = sup |a(f)]Aal®

ael

< Chsup(A] 4, + -+ A8 )IKS bl

n
ael?
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and
A IS 8] = K L] = KL S, 820) < L} S 2

Hence
n
la(f)|ap < Ca Z ILE S Il -
j=1

On the other hand, since
DX V(x)] < Ce(1 + x>,

we have

1L} fllgz = 1(DZ + V()" flle < Cn Y I DE Flle < Cill Flanyasripn
r<26h
B<2h

Therefore, we have
la(f)lan < Call fll2ns 261980

2) Conversely, let a = {a,} then we have from 1) and 3) of Lemma 2,

azte_”
> llaatall =S laal 1all;
ae[: (er:
l
< > la| C(1)] a7
aeI;‘

< C(l)sup|ay] |2/"DH70 " 4,7
o

aeI_,’_’
= C'(D)lal 21y +2p0

for any /. Therefore, > _,. I asd,(x) is a convegent sequence in S(R). Hence, set

f(x) =) aupy(x).

n
aell

Then it holds that

1A1; < C'(Dlalypuy 2000
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and

ag(f) =<f,8p> = Y 0l 85> = ap.

n
ael?

Thus a(f) = a holds. O

LEMMA 4. 1) Let T € S'(R"), and put
b= {ba}aelg’ by = (T, $>-

Then
i) there exists h > 0 such that |b|_, := sup |b,| 1A < o0,
a

ii) b:53Va— > axb, € C belongs to s,
iii) for any f e S(R"), it holds

(T, fY =Y baaa(f), au(f) =<S s
2) Conversely, let bes'. Then T : S(R") 3 f — <b,a(f)) belongs to S'(R").

PrROOF. 1) 1) Since T :S(R")>¢ — {T,¢)> e C is continuous, there exist
C >0 and / > 0 such that

1ba] = KT, 95| < Cligyll; < CC(1)| Ao/,

using 3) of Lemma 2. Hence we have |b|_,,;) < +o.
ii) Let A be the number in i). Then we have

lbol 1Al "* < C (VaeIT).

Therefore, we have
D laa] [ba] < €Y lallAa) ™2
o o
< CY |2l sup fay| |2
o o
= Cllalh+2po’

for any a = {as},c/p €5, Where we used 1) of Lemma 2. Hence
b:ssa— (b,a)= Zaabae C

is a linear continuous mapping, that is, b belong to s'.
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i) Let f(x)e S(R"). Then we have

f(x) =) a(f)gu(x) in S(R™),

where a,(f) = (f,4,> (x € I") from 2) of Lemma 3. Hence we have

(T,f>= <T,Zaa<f)¢a> = a(fT, 8> =D au(f)ba:

2) Conversely, for any f(x) e S(R"), we have a(f) = {a.(f)} €5, and there
exists C, > 0 for any h e I, such that

la()n < Cull fll2ns g1y
from 1) of Lemma 3. Let b es’. Then there exist C > 0 and 4 > 0 such that
I<b,a(f)>| < Cla(f)l-

Therefore, we have

[<b,a(f)>| < Cllfllant@+yn:

Hence
T:S(R">f —<Kba(f))eC

is a linear continuous mapping, namely 7 € S’(R"). O

We say that u(z,x) € B*([0, T],S'(R")), iff
u:[0,T) >t — u(t,x) e S'(R")

is continuously differentiable up to order 4 in the sense of simple topology of
S’'(R™).

LeMMA 5. 1) Suppose u(t,x) e B*([0,T],S'(R?)), and sét

ux(1) = Cu(t, x), @y (x) ).
Then there exist C >0 and p > 0 such that
|DJuy(8)| < ClAo|? (a€I’, 0<j<h).
2) Conversely, suppose

|DJuy(t)|- < ClAa|” (x€lIl, 0<j<h),



776 Xiaowei XU
and set
u(t,x) = Zajua(tm(x),
that is,
u:S(R") 3 f — u(t,x), f> = Z ua (1) pa(x), [ (%)) = Z u()aa(f) € C
for te[0,T). Then u(t,x) e B*([0, T],S'(R?)).

ProoF. 1) Suppose u(t,x) € B*([0, T],S’(R")), then H = {u(t,x)|te[0,T]}
is a bounded set in S/(R") in the sense of simple topology. By using the
fundamental lemma of Fréchet space ([5]), there exist C >0 and /, > 0 such
that

[<u(2, x), (x)| < Cligll, (V1€ [0,T], V4 e S(R™)).
Therefore, it holds
|ua(0)| = [<u(t, %), $(x)D] < Cli@ally, (e IT).
Besides, since
18.ll, < C(l0)12|7
from 3) of we have
ua(1)] < CC(Io)|Aal"®.
In the same way, we have
|D}uy(t)] < ClAal” (ael”, j=0,1,2,...,h).
2) Conversely, suppose
|DJuy(t)] < Clho|?. (eI, j=0,1,2,...,h),
and set

u:S(R") > f = <u(t,x), f(x)> = D ua(D)au(f) € C,  au(f) = (S, 8-

n
ael]

Then u(t,x) belongs to S’(R"), from 2) of Since
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Z D{ua(t)aa(f) (J=0,1,... ,h)

aell
are uniformly convergent sequences in [0, T,

D{<u(t,x), f(x)> = D] Y us(t)as(f)
; ZD{ua(t)aa(f)-

Therefore, we have

| Di<u(t, x X)) < Z |a.(f ”D]“a(t )|

< CY Ikl
By using 1) of [Lemma 2, we have

S lasClhel” = sup las (I 1l ™ 3 11l

ael?

Nlapizpy D 12l

ael]
= Cla(f)|2p+2po'
On the other hand, by using 1) of [Lemma 3, we have

la(N)2p+2p0 < ClNS Nans26+1) (o+0)-

Hence
’D{<u(t, X),f(X)>| < C”f”2n+2(6+l)(p+po) <+ (t € [Oa T]’.’ = 0, 1’ s ’h)’
that is, u(z,x) € B*([0, T], S'(R?)). O

3. Cauchy problems

Let us consider Cauchy problems related to differential operators with
coefficients of generalized Hermite operators
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P(Dy, L) = Pu(L)D{" + - - + Po(L),

Pi(L)= ) ajpLf = > a4 g L L,

1Bl <m; B+ 4B, <my

where a;, are constants and m; are non-negatve integers. P(D,, L) is called an
evolution differential operator with coefficients of generalized Hermite operators,
iff

(I) there exist C; >0 and p; > 0 such that

|Pm(A)] = CIIAIT"" (VA e A),
(II) there exists k > 0 such that
Lyiti(A) = —k. (VAeA, 1 <j<m),

where

P(t,4) = Pp(A)(z — 11(4)) - - - (t — t;e(4)).

THEOREM 1. Suppose P(D, L) is an evolution differential operator with
coefficients of generalized Hermite operators. Let

f(t,x) € B*([0,T],S'(RY)), g;(x)eS'(RY) (0<j<m-—1)

Then there exists unique solution u(t,x), belonging to B**™([0, T],S’(R")), of the
Cauchy problem:

y P(D,,L)u(t,x) = f(t,x) (0<t<T,xeR"),
( ){Dfu(t,x)|z=o=gj(x) (xeR"0<j<m-1).

ProOOF. Let
uy(2) = <u(t, x), g, (x)>,
So(8) = {f(8,%),84(%)D,  gj,a = <gj(x), B,(x))-

Then the problem (A) is reduced to the Cauchy problems of ordinary differential
equations:

{Pm(A)Dy" + -+ + Po(Aa) }ua(t) = (1) (0<2<T),
(a)“{D{ua(t)l,zo=gj,a (j=0,1,2,...,m—1).
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The solutions of (a), can be represented as
m . t
uy(t) = ij_MD,m”’ W (t, de) + iPrm(h)”" J S(S)W(t — s, 4y) ds,
J=1 0

where

_ Pm(loz) etz
Wit 4) = =5 ﬁp(z,xa)dz’

J .
bO,a = do,a, bj,ex =Gja— Zbi—l,aD;”ﬂ_lW(O, }“a) (1 < J <m-— 1)>
i=1

and y is a closed curve inside of which all zeros of P(z,A,) with respect to z are
containd. By evaluating the above representation, there exist C >0 and p >0
such that

m—1 max(k—m,0)
|D¥u,(1)| < Clla|p{ |9),o| + Z sup |D§fa(s)|}
=0 j=0 O<s<t

O<t<T, 0<k<m+h).
Since g;(x) € S'(R") (0 < j <m — 1), there exists g; > 0 such that
sup 197,] 2] ™ < 400
from 1) of and since f(t,x) e B*([0,T],S'(R")), there exists g, > 0
such that

sup sup_| D] f,(1)] |Au| ™" < 400,

ael! 0<t<T

from 1) of Lemma 3. Therefore, we have
IDFuy (1) < C'|4a|P? (te[0,T)), 2 el 0 <k <m+h),
where g = max(q;,q>). Finally, set

u(t,x) = 3 ua()y(x).

Then u(t, x) belongs to B**™([0, T}, S’(R")), from 2) of Lemma 3, and becomes a
solution of the problem (A). The uniqueness of the problem (A) follows from the
uniqueness of the problems (a),.
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REMARK 1. Let

P(D,L)y=D,— Y agL?.
<N

Then P is an evolution operator, iff there exists k > 0 such that

In Y apill > —k (YieeA).
BI<N

REMARK 2. Let

P(D;,L) =D} - > agL”.
BTSN

Then P is an evolution operator, iff there exists £ > 0 such that
Z Reaplf , Z Imaﬂlf e (Vi e A),
Bl<N Bl<N
where
Qe ={(X,Y)|Y><kX or X*+ Y? <k}.
For example,
D} —{L}+-- -+ L} +i(L) — L,)},
D} —{L}+---+ L} +i(L — Ly)},
D} — {L{L} + i(Ly — L»)}

are evolution operators.
The paper has finished under the kind guidance of Prof. Reiko Sakamoto and
Prof. Sadao Miyatake. I am deeply greateful to them.
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