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ON GLOBAL SMALL SOLUTIONS OF
NONLINEAR TIMOSHENKO’S TYPE EQUATIONS

By

Renato MANFRIN

1. Introduction

This paper is concerned with the global existence of small, regular solutions
to the Timoshenko’s type equation in R, x R}

U+ a(|DPrul|ls, .. |DPYul|22)A%u = m(||DPruZs, . .. || DPVul|2)Au,  (1.1)

which appears in various models in the study of nonlinear vibrations of beams
and plates.

We assume that the functions a(s), m(s) : RY — R (with 5= (s1,...,5n))
satisfy a strict hyperbolicity condition

a(s)’m(s) € Cl([_5>5]N) (1 2)
a(s),m(s) =n >0, Vs € [-6,0]". .

Moreover, for the multi-indices B, = (B, ,,B, ) € N x N" we require that
B, l<1, |B=1 forl <v<N. (1.3)

Then, we shall prove the following:

THEOREM 1.1. Let n = 2. Under the above hypotheses, the Cauchy problem

e+ a(|DPullgz, .. IDPvul 1) A% = m(| DPrul|Zs, . .., | DPvul| ) Au, 14

u(0,x) =¢e-up(x), u(0,x)=¢e-u(x),

where  uo(x), ui(x) € C°(RY), has a wunique classical solution wu(t, x)e
C*(R;H® (RY)) provided the parameter ¢ is small enough, namely |e| < &y for a
suitable &y = gy(ug,u;) > 0. '

Received November 14, 1997.



748 Renato MANFRIN

Results on the existence of classical global solutions for equations of type
(1.1) are proved by G. Perla Menzala for the evolution equation

uy + A%u— M(||Vu(t,-)||2:)Au =0 in R, x R", (1.5)

assuming M (4) € C'(R*), M(1) > 4y > 0, but without restrictions on the size of
the initial date u(0, x), u,(0, x).

In fact, thanks to the special form of the nonlinearity, setting F(1) =
fo'l M(z)dz it is easy to verify that the quantity

6(0) = [l dx + [ 18uf? dx + PV ) (16)
is constant, that is &(¢) = &(0) V¢ € R,, for any sufficiently regular solution u(t, x)
of equation [1.5). This immediately gives the inequality
’ d

= M(|VullZ2)

<&0) sup |M'(A)|=C. (1.7)
0<1<£(0)/40

Defining for o« € N" the energies

E,(t) = J 0%u,|® dx + J |A0%u|? dx + M(||Vul|;.) j |Vo%ul|? dx, (1.8)
estimate (1.7) implies that

E,(t) < E,(0)e"l YteR, and VaeN", (1.9)

where C is the constant obtained in (1.7). Then, using the a priori estimates
it is not difficult to prove that equation is globally solvable, provided the
initial data u(0,x), #,(0,x) belong to some H*(R") with k > 0 large enough.
Clearly, in the case of more general nonlinearity, like in (1.1), this argument
does not work because we are not able to prove an a priori estimate like (1.7).

REMARK 1.1. For n =1 we are able to prove Theorem 1.1 only in the case
m(sla' . "SN) =,ua(s1,. . 'asN)
for some constant x4 > 0. This is due to a technical difficulty. We suspect that the

result should be valid without this restriction. O

We shall treat problem (1.4) by the Fourier transform and the energy
estimates. As a by-product of these methods of proof we have:
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COROLLARY 1.1. Let n = 2. Then the solution u(t,x) of the Cauchy problem
(1.4) satisfies the estimate

Ce?

—_— 1.10
1+ o™ (1.10)

d
a g 2 0| <
‘dtJR;z |DPu(t, x)|" dx| <

as |t| — oo, for any B = (B,B,) with |p,| <1, |f| = 1.

Let us briefly recall that the problem of the global solvability for nonlinear
evolution equations with non local nonlinearities has been extensively studied in
the last years, starting from the paper of Greenberg and Hu where the case
of the classical Kirchhoff equation [11] in one space dimension,

Uy — (1 +J u,(t, x)zdx> Uy =0,

was considered. More recently, the result of was generalized by D’Ancona
and Spagnolo [5], [6], [7]. In particular, in [5] they studied the Cauchy problem in
R, x R}

ue + (=1)" Y f(ID2u|2:, ..., | DY ul|})Dou =0
loj=2m (1.11)

u(0,x) = e-up(x), u(0,x)=¢e-u(x)

assuming that wug(x), u;(x) € C;°(RY); the multi-indices B, € N" satisfy the
condition

Bl >m—n/2 1<i<N;

the f,(41,...,Ay) are C? real functions on R satisfying the strict hyperbolicity
condition

37 flh, o AE = AT (4> 0). (1.12)

la|=2m

Under these assumptions, they proved that the initial value problem (1.11) is
globally solvable provided the parameter ¢ € R is small enough.
Unfortunately, the technique of [5] does not seem to be directly applicable to
the case of the Timoshenko equation (1.1) because of the lower order term.
On the other hand, in the global solvability (for small data) was proved
for general N x N strictly hyperbolic systems with non local nonlinearities. More
precisely, the Cauchy problem in R, x R”
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n

U= Ai(s(1)Us, + 5" ()B(s())U, U(0,x) = Up(x), (1.13)

i=1
s(t) = J tU(t,x)SU(t,x)dx with S self-adjoint, (1.14)
RY

is globally solvable for every small, smooth initial data Uy(x), provided the
N x N matrix A(s,&) =3 /L, 4i(s)(&;/|&]) has N real and distinct eigenvalues

2(8,8),--.,An(s, &) for all £ e RZ\{0} and |s| <J (6 > 0); 4i(s), B(s) are smooth
N x N matrices.

In this paper, improving the the ideas of [3], we show that the scheme used to

prove the global solvability of problem [1.13), can be applied to more
general situations. For example, by methods of the proof of Theorem 1.1 we can
easily consider:

(1) systems of Timoshenko’s type equations,
02u; + ai(|| DPuy| ) A% = mi(|DPuyl|2)Aw, 1<i<L  (115)
under conditions similar to (1.2), [1.3);
(i1) higher order hyperbolic equations such as

q
OPu+ Y (1) ar(|DPu|f:)A*u =0 in R, x RE, (1.16)
k=1

n > 2, assuming that ax(s) e C!, ar(s) =% >0 for 1 <k <gq and
ai(s) = weaq(s) for k > gq/2,
with g € R\{0}.
2. Reduction to an Equivalent Problem
Let us consider the linear equation
uy + a()A*u — m(H)Au =0 (2.1)

where a(t), m(t) = n > 0 are bounded C' functions. By Fourier transform in the
space variables and defining the vector

U(t,¢) € (I, &), (1, ),
we obtain the ordinary system

ou . 0 —i def .
=i aen o )u il e (22)
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with

a(t,1€) € 1¢%a(r) + m(2). (2.3)

Since a(t,|£|) = n the matrix A(¢,|¢]|) in (2.2) has real and distinct eigenvalues

Ar=—va(t L), A= va[E]), (24)

hence A(t,|C|) is uniformly diagonalizable for all { e R;. In fact, setting
U, &) =N, 1EDV(1,E) (2.5)

where

vl =( oz wa) @ e ===(VE ) e

we easily find the system

ov . o

with principal part in the diagonal form,

A I B

and where (& /4&)B = —N""10,./.

Let us remark that, having a(¢), m(¢) = n in the definition of a(z,|£|), the
coefficients of system are regular functions of £ e R;. In particular, the
derivatives of any order of /& with respect to p = |¢| are uniformly bounded
on R;.

3. The Fixed Point Argument

Let us consider now the equation (1.1) with the assumptions (1.2) on a(s),
m(s) (se RY) and on the multi-indices S, for 1 <v < N. Thanks to the
results of §2, the nonlinear Cauchy problem

Uy + G(J
R

u(0,x) = up(x), u(0,x)=u(x)

|DPu|? dx) A’u+m (J |DPvu|? dx) Au =0,
R! (3.1)

n
X

is equivalent to the following:
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(3.2)
with the conditions
a(s(2), |&]) = &2 a(s(r)) + m(s(2)),
(3.3)
Vo(&) = A (s(0), 1€) ™' To(€)
where
s(t) = (s1(8),...,sn(2)) with s,(2) = J |DPru(t, x)|? dx (3.4)
R}

for 1 <v <N,

Uo(¢) = (Il (&), i (£));

A (s(t),|&]) is the 2 x 2 matrix defined in (2.6), with a(z,|&|) replaced by
a(s(t),|&]). Finally, from the properties of the Fourier transform, we have the
relations

sy(t) = L" V(SO V(E)dE, 1<v<N, (3.5)

4

where S,(z,&) are self-adjoint matrices

50(t,¢) = @IWJV(S(I), 1ED)"Su(&) A (s(2), 1€, (3.6)

with, recalling [1.3), S,(¢) given by

~ _ 1 ézﬂv,x 0 ) _
SV(é)—I—éF< o o) ifAu=0 (3.7)
for and & e R"\{0};
- 0 0 )
56 = (g an.) A=t (38

Moreover, setting

V(1,E) = exp (:m | Do), e dr) W1, &) (3.9)
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where D = D(s(t), |¢|) = diag(—+/a, /), we can rewrite the system and the
relations in the more convenient form

OW _ o il ['Dde g ilel [ D
{W_Z&e v BT W (3.10)

with

5,(f) = J (1, E)e 1 205, (1, )™ o DU (s, &) a (3.11)
R;
for 1 <v<N.

Now, we will prove the global solvability for small initial data of problem
(3.10), [3.11) on R/ X Rf, applying a classical fixed point argument in the
function s(¢) = (s1(2),...,s5(2)).

More precisely, for fixed k > 1, ¢ >0 and any C' function s(¢) :Rf — RY
such that
€

Is())] <6, |s'(n)] < 1%

(3.12)

we set a = a(s(?), |£]), D= D(s(t),|£|) and we consider the linear problem:

W _ 0 el [ Dax g il [ Ddx

W(0,&) = W(¢)

where, to simplify the notation, W (&) = Vy(£). Obviously, the initial value
problem P, has a unique global solution W (z,¢) in R x R}. This defines the
nonlinear map:

s(8) = (s1(0),. .., sn(0)) = T (1) = (T1 (1), ..., T (1)) (3.14)

by the relations

() = J W1, &)e b s, (1, e P ey de, (3.15)
R;
for te R and 1 <v<N.
Clearly, if s(t) =T(¢), i.e. s(¢) is a fixed point of the map [3.14), then the
function W (¢, &) is also a solution of the original nonlinear problem (3.10), [3.11).
In the following, we will show that the nonlinear map s(¢) — I'(¢) defined in
is a contraction in appropriate spaces. To begin with, we shall prove a
priori estimates for |['(¢)| and |T'(2)|.
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First of all, let us observe that for a suitable positive constant M
n < la(s)|,|m(s)| < M, |d'(s)|,|m'(s)] < M, for|s| <. (3.16)

Thus, since [|e™h 24| =1 and

1 a1 _ .
Sv(t,é) _WE_IT(I 1) fOI' ﬁv,t_o (Wlth lﬂv,xl 2 l) (3 17)
1 1 - '
5.0.6) = e ®satsnled( | ) forp=1,

from (3.13) we have the inequality

Tl | IS 6O WO az

<con | weoR(+ e e

R

t
< comyexp(Cn i [ w@lde) [ WP (1416 ) de @1s)
Differentiating the expression [3.15) of I',(¢) with respect to ¢, we find:

%rvm = 2ReJ TW(t,&)e L’Dd’sv(t,f)e"‘flfo'“’a,W(t, &) déE

4

*J W (1,&)e JiP45,8,(1,)e™ b Pa w1, ) a

R;

wi| W ME P4 (5. - DS)eR B P (1,0) e
R;

= v,l(t) + Iv,2(t) + Kv(t) (319)

where 1, 1(¢), 1,2, K,(#) correspond to the three terms above.
Substituting the equations of system (3.13) into the expressions of I, (),
I, 5(t) and using we have immediately the estimates

C(n,M)e

<
|Iv,l(l)|’ |Iv,2(t)| - 1 + tk

| weora+ e

< E'—f—'J_{’—h{‘t—Ik)—8exp(C(ry, M) J; Is’(7)] dr)

| ira e a (3:20)
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for all re[0,00), 1 <v<N. Finally, calculating explicitly the commutators
[Sy, D], we obtain for K,(¢) the following expressions:

Ko(f) = =2 Im Ln a(s(1), |€]) 2wyimpe 21 Iy Ve g1 2 g (3:21)
4

(27)
in the case B,, =0,

K, (1) = —:iﬁlmj a(s(2), |£]) ¥ wiwze 2 Iz Vads g 2B, gz (3.22)
(27) R

if we have g, , = 1. Clearly, in [3.21), (3.22) the functions w1(z,¢{), wa(t, ) are the
components of the vector W (t,&) solution of problem Py.
4. Estimate of K,(z) in the case f§,, =0

We assume that s(z) : R — RY satisfies the conditions [3.12), but now we
require that

k> 2. (4.1)
Then, we define
T _ m(soo)
SOO - tllbngé S(t), /*t - a(soo) ‘ (42)
According to the conditions [3.12), we have
n M
Iseo| <0, 2 <m< ; (4.3)
and
Ce

m(s(1)) — pa(s(2))] < Cls(t) — seo| < (4.4)

1+ ¢h-1”

where C = C(k,n, M). Thus, with a = a(s(t)) and m = m(s(¢)), the quantity

(e, 121 & 18] L VIePa+ mdz — ey 1P +u J Jads

0

! £|(m — pa)
= dr, (4.5)
JO VIERa+m+Ja(lE? + )

is uniformly bounded, with bounded derivatives of any order with respect to p =
¢], over RS x R}.
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More precisely, having k > 2, from and we have easily

!
‘%y(t,p)’ <Cre VleN (4.6)

for suitable constants C; = C(k,n, M). Thus, setting

v E v m gt [0 %)
# ¥, (p)

we can rewrite K,(¢), in the case f,, =0, in the following form:

K,(1) = 75or Im J J gu(t, p)wiiwzePVuP) J; Vads
(27'[) Sn-l 0

. e_ziy(t’p)pn+2|ﬁv, xl_zw# (p)a)zﬁvx dp dw) . (4'8)
REMARK 4.1. Let us observe that the functions y(t,p), g.(¢,p) have uni-
formly bounded derivatives of any order with respect to p = || and, in particular,

the inequality (4.6) does not depend explicitly on s(¢). The same holds for g,(¢, p).
In fact, it is easy to see that

o' .
for suitable positive constants C; = C‘,(n, M), provided (3.12), (3.16) hold. [
Taking into account this considerations, we define:
DEFINITION 4.1.  Let W(t,&) = (w1(¢,&),wa(t,&)) be the solution of the linear
system Py and k € N such that 0 < k <n+ 1. Then, for 1 < i, j <2 we define the

Sfunctionals:

JEOE sup sup (1+1¢1%)
0<t<t {eR,ge¥

L.,-l J:O 9(p)wiwj(z, 0, p)

. eip'lfu(p)f:pn+2|ﬁv‘xI—2,/,#(p)w2ﬂv‘, dp dw‘ (4.10)

where % is the set of functions

% {4(p) e CX([0, 0)) | llg(p)llcr < 1} (4.11)



On global small solutions 757

REMARK 4.2. Having |f, | > 1 (thanks to the condition (1.3)) and taking

W (&) = N (s(0), &))" Uo(&) (4.12)

where Uy (&) = (|¢]in(&), 1 (&)) with up(x), ui(x) € Cy'(Ry), then it is not dif-
ficult to prove that for 0 <k <n+1

Ji(@) :Rf - R

are continuous non decreasing functions. See the Appendix, Lemmas A.l and
A.2.
Next, setting

ai(s,p) & —V/als,p), Aas,p) E Vals, p)
L) ® —/als), Aa(s) ¥ als)

we can rewrite the system (3.13) in the form (for i =1,2)

(4.13)

2 t
266 =503 auls(0),lepma(s Y exp( el [ i — o) az)  (814)
h=1 0

where s'(f) = (s](¢),...,sy(f)) and (recalling the definition of B) the
gii(s,p) € RN are the elements of the 2 x 2 matrix with N dimensional entries

—0s O
Q(s,p)=%( o ) (4.15)

— 050
Then, for 1 <i, j <2 we have, with W(f) = (W1(&), w2(&)),
wi(t, &)w;(1,&) = wi(&)w;(&)

rt

S [ 5@ aniste), [E)wams(r, &) exp(—i|é| [ G~ dy) de
0 0

rt

' (2) g (5(2), 1)) wi(z, &) exp (im j’aj ) dy> i
0 0
(4.16)

+
>
L

ol
M- 1M

Now, let us introduce the simplified notations

def
sup = Ssup sup
{*} 0<t<t (eR,ge¥%

and
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$5(1,0) & jo(xi — )y p)dy, (DY L(i,- — 1)(s(»)) dy, (4.17)

for 1 <i, j <2. Then, we have

pdi(t,p) = PV, (p)b;(1) + 2 71, p) (4.18)

where y;, ;=1 if i<j; x;;=01if i=j and y,; =1 if i>j.
Then, using (4.16) from the definition of J,-}‘(t) we obtain

0
an—l JO g(p)ﬁ),(é)wj(é)elpl/’(P)Cpn+2|ﬂv,xi—2¢v(p)w2ﬂv‘v dpda)

j‘sn—l

) pn+2lﬁv,x|—2¢,ll(p)wzﬁv,x dydp dw‘

JE(1) < sup(1 +1¢]%)
{*}

+sup(1 + |¢[%)

2 -
J B 3 JT 5 () ging (p)wi ;€ PV P4 =2ixi7(2.p)
)

0 4=1J0

+sup(1 + [¢]%)

o 2 -
J J E :JTS’(y)qjhg(p)wiWhei/"l’y(p)(c+¢jh(y))eZin,hy(Y»p)
{*} st Jo 0

h=1

pm b2y (p)wer dydp dcu’ (4.19)

where g; = g;;(s(»),p).
To begin with, in view of Lemma A.2 of the Appendix, we have

e @]
HJo

n—

sup (1+ |C|k)
{eR,ge¥

prt =2y (p)wer dp dw - Ri(i,j) < o0,  (4.20)

by the assumptions on the initial data W(¢) and the condition k <n+ 1.
Besides, for A = 1,2 from the definition of the J,-}‘(t), changing the order of
integration, one has

sup(1 + ¢|¥)

{*}

e o] T -
J N JO JO 5 () qing () wa 9 (s p, )P0 =2 470

pr2busl=2y (p)ew¥Pex dydp dw‘

T (¥)
141 = din(»)]

< @1 sup(1 +141) jo I'()] _dy, (4.21a)
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§u§(1 +1¢1%)

JOO JT s’(y)qjhg(p)w,-wh(y,p,ca)e"”‘/’ﬂ(p)@““q;f"(y))ez""'%"y(y”’)
0 Jo

an—l

pm =2y (pYwex dy dp da)‘

T k
<% 112 | |8 Jin(y) d 4.21b
< isup(1 +10 )JO Ot (4.21b)

where, recalling the [Definition 4.1,

@, = sup l|g;(s, M+ - sup 27| cx. (4.22)

|s|] <o teRf

Thanks to the estimates [4.6), and formula [4.15) it is clear that
€ = (gl(ka”’M) < .

Now, to estimate the right hand side of [4.21a), (4.21b) we need the following:

LEMMA 4.1. Let ¢(z): R — R be a C! function such that ¢(0) =0 and
A<]p' (D) <A

for suitable real constants A > A > 0. Then, for any real number k > 1, there exists
a constant €, = €2(k, A, N), 1 < 6> < oo, such that

N 1+ ¢ dt <% 4.3
c‘iﬁj—w(l+|r|’°><1+|c—¢<r>1k> rE (423

Proor. Inequality (4.23) follows by elementary computations. See also [3],
Lemma 5.3. U

To apply Lemma 4.1, we define:

2% |i|nf6|):,~(s) — Xi(s)| fori# j, (4.24)
5| <

A Y sup |2i(s) — Ai(s)| fori+# j. (4.25)
|s| <o

Hence, from the definitions of ;(s) and ;1'5,.]-(1), it is clear that ¢,(z) =0 and

0<Ai<|gi(t)) <A forisj, (4.26)
ij

with 2,/ < A < A <2V M, thanks to (3.16). Thus, we can state the following:
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LEMMA 4.2. Let n>2 and let k be a fixed integer, 2 <k <n+1. Let
s(t) : R — R" be a C' function satisfying the conditions [3.12). Moreover, assume
that the initial data W(E) of problem Py satisfies the conditions (4.20), i.e.
RX(i, j) < co. Finally, let us define

k def k/: - k def X
R;= max (R(ij)) and J()= max (Jj(1)). (4.27)

Then, for any t >0, we have
JE(1) < RE + 4e6,%6,T%(1) (4.28)

where €y, €, are the constants appearing respectively in (4.22) and in the statement
of Lemma 4.1.

PrOOF. According to (4.19), (4.20), (4.21a), (4.21b) we have the inequalities

JE@) < REG) + 613 sup su ‘”'mjr O
ij = /yLJ lh=1 OSTI:;I ceg 0 Y 1+|C—¢;ih(J’)|k g

2 T k

, Ji(y)

+@Y sup sup(l +|c|")j ()| —2n) (4.29)
£t [eR 0 1+ [+ g

Therefore, from the assumptions on s(#) and using Lemma 4.1, in the case i # j,
we find

2
JE() < RE(, j) + €613 hZ(J,{;(t) + Jk(@)). (4.30)
=1

with €, = ¥,(k,n, M). Hence, taking the maximum for 1 <i, j <2, estimate
immediately gives (4.28). O

Summarizing the above results, we have:

PROPOSITION 4.3. Let n>2 and let k be a fixed integer, 2 <k <n-+1.
Assume that the function s(t) satisfies the conditions (3.12), that the initial data
W (&) of the Cauchy problem belongs to C* and

o0
J J 02 W (p, w)|*(1 + p" =YY dpdw < oo, (4.31)
s Jo
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for 0 < h <k (see the Appendix). Finally, assume that

¢ < (4.32)

86,4,
Then, the function K,(t) defined in (in the case B,,=0) satisfies for

te[0,00) the estimate

C k
R 4.
K, (2)] < T & (4.33)

for a suitable constant C = C(k,n,M). The term R, defined in (4.20), [4.27),
depends only on the initial data W(¢).

Proor. Thanks to (4.32) we have

Rk
)< —=2 _ <2R* vi>0. 4.34
0= g6 =20 V12 (4.34)
Thus, going back to the expression (4.8) of K,(z) (in the case f§,,=0) and
recalling the Definition 4.1 of Jj(z), it follows that

4
|K, ()] < Z—Z—T-t—)—ﬁ

[e 0] ) .
J J g”(t, ,D)W1W_2(t,p, w)e—thll/,,(P)fO Vadr
Sn—l 0

. e‘ZiV(I,P) !p# (p)pn+2lﬁv,x|_2w2ﬂ"yx dp da)

)

<% , (4.35)
1+ 2 [ /a(s(0) defF
where
€3 = ——f—— sup ||gu(t, -)e‘ziy(”')||ck < 00. (4.36)

(zn)n teR;

Thus, taking into account that a(s) > # and using the estimate (4.34) of J*(z), we
get the inequality

k k
——L—('Q—T < 2(53C(7]) RV %"
1+ (2y/m1) 1 +1

This ends the proof of the inequality (4.33) for |K,(?)|. O

|Kv(t)| < (53

(4.37)
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5. Estimate of K,(z) in the case f, , =1

We can estimate the terms K,(¢) for g, , = 1 following the same lines of the
estimates in the previous section. More precisely, we define the functionals:

def
Y E sup  sup (1+ %)
0<t<t {eR,ge¥%

Ln_, J:O g(p)wiw;(z, , p)

PP g2ty ()Y 202 dp da)' (5.1)

where again ¢ = {g(p) € C*([0, 0))| llgllck < 1}.

For 0 <k <n+1 the functionals Y,.J’-‘ (¢) are continuous non decreasing
functions, if we assume that the initial data satisfies a condition similar to (4.31),
namely

[ ] e+ o) dpdo < oo, (5.2)
st Jo

for 0 < h < k. Setting by definition

RE= max_ sup (1+ (%)
1<ij<2 rcR gew

o0
[ 1] stormmennion
st Jo

Iy (p) e dpdw),  (5.3)
we can prove that there exists €3 = ¥3(k,n, M) > 0 such that

RF Vt>0 (5.4)

1
< — <
¢< g = KOl = 7z

for a suitable C = C(k,n, M), provided s(¢) satisfies (3.12) with k > 2.

6. Conclusion of the Proof of Theorem 1.1

Now, summarising up the estimates of the previous section, it is not difficult
to show that the map s(¢) — I'(z) is a contraction in a appropriate spaces.

From the results of §4, §5 we can easily show that fixed the integer £,
2<k<n+1 and taking

e <min{ 1 I 1
- '8€1%, €

in [3.12), for a sufficiently small initial data W (&) we have
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Is(£)] < 9, b%ﬂsrf;$HWNs& WW”STEF' (6.1)
In fact, from (3.18) it follows that
Tl < Clln, M) | 1P+ 1) dé < 6 (62)

X

provided W(¢&) is small enough. Moreover, recalling [3.19), [3.20), Proposition
4.3 and the estimate we find the inequality

C(n,M)e

'] <
r'o)l < 1%

| 1ra+ e

C S-pk . ik
+TI?Z¥&+RJ. (6.3)
Thus, |T'(7)] < e(1+ 1) on R provided the quantities

| i@ra+ieas and RERE (1svsN) (64)
R

are sufficiently small. Now, following similar arguments of Lemma 3.4 of [3], we
define the subset S¥, of C'([0,0))" as

S54([0,0)) = {s(2) € C'([0, 0)) ¥ | Is(D)| <8, (1 +9)s'(1)| < &} (6.5)
Using the estimate we have
I'(Sy,) = S5,

if the initial data W (&) and its derivatives 6},‘ W(p), up to the order k, are small
and decay sufficiently fast as |&| — oo.

To proceed, let ¢(r) : [0,00) — (0,00) be a continuous weight function such
that

t

¢m21+Lmom vt e [0, o). (6.6)

For example we may choose ¢(¢f) = e’. Then we define:

DEerFINITION 6.1. For le A, let Cé([O, o))" be the Banach space

a

ch(10, )" & {st ec(fo, o))" o

sup ¢(1) " s(t)‘ < o0, for OSiSl}, (6.7)
t>0
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with the norm || ||, , defined by

I r>n1¢~2sup b(1)" ( ()| (6.8)

i=0 2

REMARK 6.1. It is not difficult to prove that ngs([O, o)) is a closed subset of
C3([0,00)". In fact, if

sa(t) € nge([O, 00)) and s,(f) = s (f) in C;([O, 00))¥
as n — oo, then s, (z) € C!([0,0))" and
sn(8) = S (8),  54(1) = 55,(1) (6.9)
uniformly on every bounded interval [0, 7] with T > 0. This implies that
s ()] <8, (1+t5)|s’. ()] <e (6.10)

on [0,T] for and T > 0. Hence, s.(¢) € nga( [0, 00)). On the other hand, the norm
of C;([O, )" introduced in (6.8) is rather weak, thus it is easier to prove that
the map

s(t) — T'(2)

is contraction on S¥, with respect to the weighted norm || - ||} 4 O

More precisely, given s,(¢), sp(t) € ngg we can solve the corresponding initial
value problems

( % = %e—ilél L’ D, drBe,m J’O’ D, dt 1y, def 5:%
P, ¢ 0t Au
Wa(O’é) - W(é)a

oWy _ O 0% —ile| [ Doz g il [ D de py, def 510% Qb W,
Pb < 6[ 40([,

[ W5(0,8) = W($),

Qa

(6.11)

in the interval [0, c0). Here, obviously, D, = D(s,(?), |£]), o, = a(sy(2),[&]) for y =
a,b. Then, from the equality

d 0,0, atab) 0r%p

_ (3,0(1,
E(Wa - Wb) - (4aa —4_(1; QaWa+4ab (Qa Qb)

Qb(W W)
(6.12)
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applying Gronwall’s Lemma and using the fact that

t

t
jo 150 — 551 < [}50 — 53]l jo #(0) dt < $(1) 50 — sbllo g
(6.13)

t

t
J, ks =il < o = sul g | 801t < 90l =31l

we can prove that, for any £ e R",

2 -5 .
(1 + |&]°)lIsa — spllo, 4 >|W(§)|

| Wa(t,E) = Wy(t,E)|l; 4 < c(usa—sbul, +
¢ T+ A+ 1EP) e — spllo.g

(6.14)

where C = C(k,¢e,n, M).

Denoting with I'}, l“f the corresponding value of I',, for 1 <v < N, and
proceeding in this way (see also [3], section §6), it is now possible to estimate
\ry —I“f,’llw in terms of |ls; — spll; 4» We will finally obtain that

nrf—rﬂhwscmb—%mﬁjmnﬁmn%1+mﬁm“ﬁd¢ (6.15)
<

Hence, the map s(¢) — I'(¢) is a contraction in S;fe provided the last integral is
sufficiently small.
This ends the Proof of Theorem 1.1.

Appendix: Decay Estimates for Oscillating Integrals

LEMMA A.1. Let k, p be fixed integers such that 0 <k <p+ 1. Let g(&) =
g(p,w) be a regular function defined on R;\{0}, satisfying

an—l JO 107"g(p, )|(1 + pP)dpdw < oo (A1)

for 0 <m < k. Then, the following estimates hold, for any { € R,
() if 0<k <p,

a

(i) f k=p+1,

p+1
|

| ato. ey dp\dw < [ [ ettt wpidpdo

Jo 1021 (9(p, w)p?)| dp do.

(e 0]
J g(p, w)e" p? dp‘ do < ZJ
0

sn—l
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ProoF. Without loss of generality, in the following we may assume { # 0
and k > 1. Let us consider first the case k < p. Integrating by parts, since

0, (g(p, w)p”) — 0,
for 0<m<k-1as p— 0, we find
© ) i k poo .
[ st orerioran=(3) | tato.ipmenap (A2)

Hence, we have the estimates (i) for 0 < k < p.
To obtain the estimate (ii), we observe that, given f(p, ) : (0,0) x $"! —
R satisfying

an—l JO (|f(P, (O)l + Iaﬂf(pa w)|)d,0da) < o0 (A3)
we have, a.e. for we S"!,

® w1 1 "
[T 1001 ap| = | Liim 1(0.0) 4 [ 200,06 dp

< & | 10se.w1dp (A4)

Now, applying the estimate (A.4) to the function 6,’; (g(p,w)p?), we find

| sapomienan| < 2 [ @apommiae @3

and thanks to the equality (A.2), with k = p, we immediately have (ii).
Thus we have proved Lemma A.l.
Next, introducing the function

V. (p) = Vp*+p with u>0, (A.6)

we may prove similar decay estimates for the oscillating integral
w .
J g(p, w)e¥PXpP dp. (A.7)
0
In fact, with the same hypotheses on g(p,w), we have:

LEMMA A.2. Let us assume for g(p,w) the same hypotheses of Lemma A.l
and that u > 0. Then, the following estimates hold, for any ( € R,
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J g(p,a))ei”w“(p)cpp dp‘ do < Ck(ﬂ)J
0

s JO lag(g(p’ w)pp)l d,D dCl),

(A.8)

..

Jor 0 <k <p+1, where Ci(1) >0 is a suitable constant.

Proor. We can follow the same ideas of the preceding proof. Observing that
d 20% +
25 (PP = T=E

we may integrate by parts. For example, in the case p > 1, since g(p, w)p? — 0 as
p— 0, we find

>C(p) >0 (A.9)

0 . l o8] , @ D ;
JO g(p, w)ezp'lf,,(/?)ipp dp = ZJO d, (_(%7) ePVu(p) dp. (A.10)
u

Thus, using (A.9) and integrating by parts, we have easily the estimates (A.8) for
0<k<p.

Finally, to prove the estimate in the case k = p + 1, let us observe that given
f(p,w): (0,00) x §"!' — R satisfying (A.3) we have, a.e. for we S" !,

flpo) 1 J‘” 0 ( f(p, w) )eipwp)c,dp’

o0
J, 7001k ap| =
0

i£r=0(py(p))" i Jo 0 \(p¥u(p))

C,(*®
with C, > 0 a fixed constant. Hence, applying the estimate (A.11) we have, as in
the proof of the previous lemma, (A.8) for k =p+ 1. O
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