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ANNIHILATOR CHARACTERIZATIONS OF
DISTRIBUTIVITY, MODULARITY AND

SEMIMODULARITY

By

Juhani NIEMINEN and Matti PELTOLA

The concept of geodetic annihilators was introduced in [3]. This concept is
based on the graph theoretic properties of the Hasse diagram of a finite lattice.
The result of [3, Thm. 3] shows that every geodetic annihilator in a finite
semimodular lattice is an intersection of prime geodetic annihilators. This and
appropriate additional conditions of geodetic annihilators characterize semi-
modularity, modularity and distributivity in finite lattices. The graphs of these
lattices are also characterized.

1. Characterizations of finite lattices

Mandelker introduced in [2] the concept of an annihilator in lattices: an
annihilator $\langle a, b\rangle$ of $a$ with respect to $b$ is the set $\{x|x\wedge a\leq b\}$ . The dual
annihilator $\langle a, b\rangle_{d}$ is the set $\{y|y\vee a\geq b\}$ . We shall consider in this paper finite
lattices only.

Let $L$ be a lattice. We denote the undirected Hasse diagram graph of a lattice
$L$ by $G_{L}$ and call it briefly the graph of the lattice $L$ . The distance $d(a, b)$ between
two elements (vertices) $a$ and $b$ in a graph is the length of the shortest $a-b$ path.
In graph theory, a shortest path is frequently called a geodesic. We call a set
$\langle a, b\rangle_{g}$ of a lattice $L,$ $a,$ $b\in L$ , a geodetic annihilator, briefly a g-annihilator, if
$\langle a, b\rangle_{g}=$ { $x|b$ is on an $x-a$ geodesic in $G_{L}$ }. A set $B\subset L$ is order convex, if for
any two elements $b,$ $c\in B$ with $b\leq c$ every element $x$ satisfying the relation $ b\leq$

$x\leq c$ belongs to $B$ . A set $B$ of vertices in a graph is distance convex, if for any
two vertices $b,$ $c\in B$ every vertex on any $b-c$ geodesic belongs to $B$ . We first
briefly recall some results proved in [3], which are necessary for obtaining results
of this note.
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LEMMA 1 ([3, Thm. 1]). In a finite distributive lattice $L$ the equality
$\langle a, b\rangle_{g}=\langle a, b\rangle\cap\langle a, b\rangle_{d}$ holds for every pair $a,$ $b\in L$ .

Mandelker proved that a lattice is distributive if and only if the annihilator
$\langle a, b\rangle$ is an ideal for any two elements $a$ and $b$ [ $2$ , Thm. 1]. The dual of this
result holds also, and so every g-annihilator in a distributive lattice is, as the
intersection of an ideal and a dual ideal, an order convex sublattice. As known,
an order convex sublattice of a distributive lattice is also distance convex.

As usual, we say that an element $a$ covers an element $b$ , in symbols $a\succ b$ , if
$a>b$ and if $a\geq c\geq b$ implies $a=c$ or $b=c$ . A g-annihilator $\langle a, b\rangle_{g}$ is called
prime, if $\langle a, b\rangle_{g}=L$ or

$\langle a, b\rangle_{g}\cap\langle b, a\rangle_{g}=\emptyset$ and $\langle a, b\rangle_{g}\cup\langle b, a\rangle_{g}=L$ .

As one can easily show, (see e.g. the proof of Theorem 2 in [3]), the relation
$\langle a, b\rangle_{g}\cap\langle b, a\rangle_{g}=\emptyset$ holds in every graph (and thus in every lattice, too) when
$a\neq b$ . Thus the condition $\langle a, b\rangle_{g}\cap\langle b, a\rangle_{g}=\emptyset$ can be replaced by the condition
$a\neq b$ .

A g-annihilator $\langle a, b\rangle_{g}$ with $a\neq b$ is prime only if $a\succ b$ or $b\succ a$ . Indeed, if
neither $a\succ b$ nor $b\succ a$ holds, there is an $a-b$ geodesic containing an element
$x\neq a,$ $b$ , and by the definition of a g-annihilator, $x$ belongs neither to $\langle a, b\rangle_{g}$ nor
to $\langle b, a\rangle_{g}$ . Then $\langle a, b\rangle_{g}\cup\langle b, a\rangle_{g}\neq L$ , and thus $\langle a, b\rangle_{g}$ cannot be prime. It has
been proved in [3, Thm. 3]: “In a finite lattice $L$ satisfying the Jordan-Holder
condition, every g-annihilator is an intersection of prime g-annihilators”. This
result implies the following lemma.

LEMMA 2. In a finite semimodular lattice $L$ , every g-annihilator $\langle a, b\rangle_{g}$ is an
intersection of prime g-annihilators.

Now we can prove the first characterization.

THEOREM 3. $A$ finite lattice $L$ is semimodular if and only if the following
conditions hold

(i) every g-annihilator in $L$ is an intersection of prime g-annihilators;
(ii) if $b\prec a$ , then $b\vee x\in\langle a, b\rangle_{g}$ for every $x\in\langle a, b\rangle_{g}$ .

PROOF. Assume first that $L$ is semimodular. The property (i) follows from
Lemma 2, and so it remains to prove (ii). Let $b\prec a$ and $x\in\langle a, b\rangle_{g}$ . We prove
the assertion by induction on the distance $d(x, b)$ . If $d(x, b)=0$ or 1, then either
$x=x\vee b$ or $b=x\vee b$ , whence an $x-b$ geodesic goes over $x\vee b$ , and thus
$x\vee b\in\langle a, b\rangle_{g}$ . Assume now that one $y-b$ geodesic goes over $y\vee b$ for all
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elements $y\in\langle a, b\rangle_{g}$ with $d(y, b)<n$ , and let $d(x, b)=n$ . Let $x,$ $y_{1},$ $y_{2},$ $\ldots$ ,
$y_{n-1},$ $b,$ $a$ be an $x-a$ geodesic, where, let us say, $y_{k}=y_{1}\vee b$ and
$y_{1}\prec y_{2}\prec,$

$\ldots,$
$\prec y_{k}=y_{1}\vee b$ . If $x\prec y_{1}$ , then $x\vee b=y_{1}\vee b$ , and $ x\vee b\in$

$\langle a, b\rangle_{g}$ . If $x\succ y_{1}$ , then $x\vee y_{2}\succ x,$ $y_{2}$ , and by the same reason we obtain:
$x\prec x\vee y_{2}\prec x\vee y_{3}\prec\cdots\prec x\vee y_{k}\succ y_{k}$ . Now $x\vee y_{k}=x\vee y_{1}\vee b=x\vee b$ ,

and the $x-y_{1}-y_{2}-\cdots-y_{k}$ geodesic has the same length as the $x-x\vee y_{2}-$

$x\vee y_{3}-\cdots-x\vee y_{k}-y_{k}$ geodesic. Hence $x\vee b\in\langle a, b\rangle_{g}$ , and (ii) follows.

Assume conversely that the properties (i) and (ii) hold in $L$ . We shall prove
the semimodularity of $L$ by induction on the length of the longest 0–1 chain in
$L$ . If the longest 0–1 chain is of length one, then $L$ is clearly semimodular.
Assume that $L$ is semimodular if the lenght of the longest 0–1 chain is less than
$n$ , and let $L$ be a lattice where the length of this longest chain is $n$ . Assume that
$e,$ $f\succ e\wedge f$ . The intersection property of (i) goes down to the order convex
sublattices of $L$ as well as the property (ii). Hence, if $e\wedge f\neq 0$ or $e\vee f\neq 1$ , the
length of the longest 0–1 chain in $[e\wedge f]$ (or in $[e\vee f]$ ) is less than $n$ , and the
relation $e\vee f\succ e,f$ follows from the induction assumption. Thus we assume
that $0=e\wedge f\prec e,$ $f$ and $e\vee f=1$ . We may also assume that an $x-y$ geodesic
with $x$ from $O-e-1$ chain and $y$ from $O-f-1$ chain always goes either over
the element 1 or the element $0$ . Choose now two elements $a_{0}$ and $b_{0}$ as follows:
$a_{0}\succ b_{0}=e$ . If $a_{0}=1$ , choose $a_{0}\succ b_{0}=f$ , and if also in this case $a_{0}=1$ , the
relation $e,f\prec e\vee f$ follows. So we may assume that $1>a_{0}\succ b_{0}=e$ . Now
clearly $f\in\langle a_{0}, b_{0}\rangle_{g}$ , and by (ii), $f\vee b_{0}=1\in\langle a_{0}, b_{0}\rangle_{g}$ . If there is not a $1-a_{0}$

geodesic over $b_{0}$ , we have a contradiction, and if there is a $1-a_{0}$ geodesic over
$b_{0}$ , choose new elements $a_{1}$ and $b_{1}$ as follows: $a_{1}\succ b_{1}=a_{0}\succ b_{0}=e\succ 0$ . By
continuing the choosing process, we certainly obtain a contradiction (at least in
the case $1=a_{j}\succ b_{j}=a_{j-1}\succ b_{j-1}\succ b_{j-2}\succ\cdots\succ b_{0}=e$), where $1\in\langle a_{j}, b_{j}\rangle_{g}$ by
the condition (ii) and $1\in\langle b_{j}, a_{j}\rangle_{g}$ by the definition of a g-annihilator. Thus this
case is absurd, and the semimodularity of $L$ follows.

By dualizing the condition (ii), a characterization of the dual semimodularity
is obtained. A finite lattice is modular if and only if it is semimodular and dually
semimodular. Thus Theorem 3 and its dual imply the next characterization.

THEOREM 4. $A$ finite lattice $L$ is modular if and only $lf$ the following con-
ditions hold

(i) every g-annihilator in $L$ is an intersection of prime g-annihilators;
(ii) if $b\prec a$ then $b\vee x,$ $b\wedge x\in\langle a, b\rangle_{g}$ for every $x\in\langle a, b\rangle_{g}$ .

Finally we characterize the distributivity.
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THEOREM 5. $A$ finite lattice $L$ is distributive if and only if the following
conditions hold

(i) every g-annihilator in $L$ is an intersection of prime g-annihilators;
(ii) every g-annihilator $\langle a, b\rangle_{g}$ is an order convex sublattice of $L$

PROOF. Let $L$ be distributive. The property (i) follows from Lemma 2, and
Lemma 1 and the considerations immediately after it prove the validity of (ii).

Assume conversely that (i) and (ii) hold for $L$ . By Theorem 4, $L$ is at least
modular, and as one can prove, if a finite lattice is modular and nondistributive,
it contains the least modular and nondistributive lattice, the diamond $M_{3}$ , as a
sublattice. Let $M_{3}=\{a, b, c, d, e\}$ with three noncomparable elements $b,$ $c$ and $d$

and with the order relations: $a<b<e,$ $a<c<e$ and $a<d<e$ . Because of the
distance properties of a finite modular lattice, $\langle b, e\rangle_{g}\supset\{e, c, d\}$ , and $ a=c\wedge d\not\in$

$\langle b, e\rangle_{g}$ , which contradicts (ii). Thus $L$ cannot contain $M_{3}$ as a sublattice, and the
distributivity of $L$ follows.

As the proof above shows, the condition can be reduced to the form “every
g-annihilator $\langle a, b\rangle_{g}$ is a sublattice of $L’$ .

2. The graphs of flnite lattices

The definitions of a g-annihilator and a prime g-annihilator do not depend on
lattice operations, and so we can speak about g-annihilators and prime g-
annihilators in finite undirected graphs, too.

A median $m$ for vertices $x,y$ and $z$ is a vertex satisfying the equations
$d(x, y)=d(x, m)+d(m, y),$ $d(x, z)=d(x, m)+d(m, z)$ and $d(y, z)=d(y,m)+$

$d(m, z)$ . As well known [1], the median of any three elements $x,$ $y$ and $z$ exists, is
unique and is equal to $(x\wedge y)\vee(x\wedge z)\vee(y\wedge z)$ in a finite distributive lattice.
In a finite modular lattice a median exists for all three elements but it need not be
unique. In a dually semimodular finite lattice there are triples having no median
but the median $m(x, y, O)$ of $x,$ $y$ and $0$ exists for all $x$ and $y$ , it is unique
and equal to $x\wedge y$ . Dually, in a finite semimodular lattice the unique median
$m(x, y, 1)$ exists for all pairs $x$ and $y$ and is equal to $x\vee y$ . Now we can present
our first characterization for graphs.

THEOREM 6. $A$ finite undirected graph $G$ is isomorphic to the graph $G_{L}$ of a
dually semimodular finite lattice $Llf$ and only if the following conditions hold

(i) every g-annihilator in $G$ is an intersection of prime g-annihilators;
(ii) there are two vertices $p$ and $q$ in $G$ such that for no vertex $x\neq p,$ $q$ the

vertex $p$ lies on an $x-q$ geodesic and the vertex $q$ lies on an $x-p$ geodesic;
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(iii) a unique median $m(x, y, p)$ exists for all pairs $x$ and $y$ of vertices in $G$, and
$\iota fx,$ $y\in\langle p, z\rangle_{g}$ , lhen also $(x, y, p)\in\langle p, z\rangle_{g}$ ;

(iv) $lf$ $a$ and $b$ are adjacent and $b\in\langle p, a\rangle_{g}$ , then the median $m(x, b, p)$ belongs
to $\langle a, b\rangle_{g}$ for all $x\in\langle a, b\rangle_{g}$ .

PROOF. Assume that $G$ satisfies the properties $(i)-(iv)$ . We order the vertices
of $G$ as follows: $x\leq y\Leftrightarrow\langle p, x\rangle_{g}\supset\langle p, y\rangle_{g}$ . According to the set theoretical
inclusion, the order defined above is a partial order with $p$ as the least element.
The definition implies that $x\leq y\Leftrightarrow y\in\langle p, x\rangle_{g}$ . Assume that two vertices $x$ and
$y$ of $G$ have a common lower bound $b$ , which implies that $x,$ $y\in\langle p, b\rangle_{g}$ . Now
(iii) implies that $m(x, y,p)\in\langle p, b\rangle_{g}$ , and thus $b\leq m(x, y,p)$ . Clearly,
$m(x, y, p)\leq x,$ $y$ . Because $G$ is finite, the considerations above imply that
$m(x, y, p)$ is the unique maximal lower bound for $x$ and $y$ , and so the order
defined above is a meetsemilattice order. The condition (ii) and the definition of
the order relation imply that $x\leq q$ for all vertices $x$ of $G$, whence $q$ is the greatest
element, and so the vertices of $G$ constitute a lattice $L$ . The condition (iv) says
that if $a$ covers $b$ , then $x\wedge b\in\langle a, b\rangle_{g}$ for all $x\in\langle a, b\rangle_{g}$ . This, (i) and the dual of
Theorem 3 imply that $L$ is dually semimodular.

If $x$ and $y$ are adjacent in $G$, then there is a median $m(x, y, p)$ which lies
on an $x-y$ geodesic, and thus either $x=m(x, y,p)=x\wedge y$ or $y=m(x, y,p)=$

$x\wedge y$ . Assume that $x>y=x\wedge y$ . The element $x$ covers $y$ , because otherwise
there is a vertex $z$ such that one $x-y-p$ geodesic is also and $x-z-y-p$
geodesic, which is $abs\dot{u}rd$ when $x$ and $y$ are adjacent. So we can conclude that $x$

covers $y$ or $y$ covers $x$ if and only if $x$ and $y$ are adjacent in $G$ . Therefore the
graph $G$ and the graph of the lattice $L$ are isomorphic, and the first part of the
theorem follows.

The converse proof is obtained easily by putting $p=0,$ $q=1$ , and by
applying the dual of Theorem 3. This completes the proof.

Theorem 6, its dual and Theorem 4 imply the following characterization of
the graphs of finite modular lattices.

THEOREM 7. $A$ finite undirected graph is isomorphic to the graph $G_{L}$ of a
finite modular lattice $\iota f$ and only if the following conditions hold

(i) every g-annhilator in $G$ is an intersection of prime g-annihilators;
(ii) there are two vertices $p$ and $q$ in $G$ such that for no vertex $x\neq p,$ $q$ , the

vertex $p$ lies on an $x-q$ geodesic and the vertex $q$ lies on an $x-p$ geodesic;
(iii) unique medians $m(x, y, p)$ and $m(x, y, q)$ exist for all pairs $x$ and $y$ of

vertices in $G$, and if $x,$ $y\in\langle p, z\rangle_{g}$ , then also $m(x, y, p)\in\langle p, z\rangle_{g}$ ;
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(iv) if $a$ and $b$ are adjacent and $b\in\langle p, a\rangle_{g}$ , then the medians $m(x, b, p)$ and
$m(x, b, q)$ belong to $\langle a, b\rangle_{g}$ for all $x\in\langle a, b\rangle_{g}$ .

In a finite distributive lattice $L$ , every g-annihilator is a distance convex set,

and this property implies that $x\wedge b,$ $x\vee b\in\langle a, b\rangle_{g}$ for all elements $x\in\langle a, b\rangle_{g}$ .
On the other hand, a modular lattice, where every g-annihilator is a distance
convex set, is distributive. Hence we can substitute the condition (iv) of Theorem
7 by the condition of distance convexity and obtain the following characterization
for the graphs of finite distributive lattices.

THEOREM 8. $A$ finite undirected graph $G$ is isomorphic to the graph $G_{L}$ of a

finite distributive lattice $L$ if and only if the following conditions hold
(i) every g-annihilator in $G$ is an intersection of prime g-annihilators;
(ii) there are two vertices $p$ and $q$ in $G$ such that for no vertex $x\neq p,$ $q$ , the

vertex $p$ lies on an $x-q$ geodesic and the vertex $q$ lies on an $x-p$ geodesic;
(iii) unique medians $m(x, y, p)$ and $m(x, y, q)$ exist for all pairs $x$ and $y$ of

vertices in $G$;
(iv) every g-annihilator $\langle a,b\rangle_{g}$ in $G$ is a distance convex set.
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