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INTRINSIC AND EXTRINSIC STRUCTURES OF
LAGRANGIAN SURFACES IN COMPLEX

SPACE FORMS

By

Bang-Yen CHEN

Abstract. Lagrangian H-umbilical submanifolds introduced in $[1, 2]$

can be regarded as the simplest Lagrangian submanifolds in Kaehler
manifolds next to totally geodesic ones. It was proved in [1] that
Lagrangian H-umbilical submanifolds of dimension $\geq 3$ in complex
Euclidean spaces are complex extensors, Lagrangian pseudo-spheres,
and flat Lagrangian H-umbilical submanifolds. Lagrangian H-
umbilical submanifolds of dimension $\geq 3$ in non-flat complex space
forms are classified in [2]. In this paper we deal with the remaining
case; namely, non-totally geodesic Lagrangian H-umbilical surfaces
in complex space forms. Such Lagrangian surfaces are characterized
by a very simple property; namely, $JH$ is an eigenvector of the shape
operator $A_{H}$ , where $H$ is the mean curvature vector field. The main
purpose of this paper is to determine both the intrinsic and the
extrinsic structures of Lagrangian H-umbilical surfaces.

1. Introduction

Let $f$ : $M\rightarrow\tilde{M}^{m}$ be an isometric immersion of a Riemannian n-manifold $M$

into a Kaehler manifold $\tilde{M}^{m}$ of complex dimension $m$ . The submanifold $M$ is
called totally real (or isotropic in symplectic geometry) if the almost complex
structure $J$ of $\tilde{M}^{m}$ carries each tangent space of $M$ into its corresponding normal
space [5]. A totally real submanifold $M$ of $\tilde{M}^{m}$ is called Lagrangian if $n=m$ .
From the symplectic point of view, a local classification of Lagrangian sub-
manifolds is trivial, using local Darboux coordinates [9]. However, from the
Riemannian point of view, Lagrangian submanifolds are far from trivial. In this
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respect, there exist a number of very interesting results, both local and global (cf.

[8]). For instance it was proved in $[5, 7]$ that a minimal Lagrangian submanifold
with constant sectional curvature in a complex space form has to be totally
geodesic or flat.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds
next to totally geodesic submanifolds in a Riemannian manifold. However, it was
proved in [6] that a complex space form of complex dimension $\geq 2$ admits no
totally umbilical Lagrangian submanifolds except the totally geodesic ones. In
views of above facts the author introduced in $[1, 2]$ the notion of Lagrangian H-
umbilical submanifolds.

According to $[1, 2]$ a Lagrangian H-umbilical submanifold of Kaehler
manifold $\tilde{M}^{n}$ is a non-totally geodesic Lagrangian submanifold whose second
fundamental form takes the simple form:

$h(e_{1}, e_{1})=\lambda Je_{1}$ , $h(e_{2}, e_{2})=\cdots=h(e_{n}, e_{n})=\mu Je_{1}$ ,
(1.1)

$h(e_{1}, e_{j})=\mu Je_{j}$ , $h(e_{j}, e_{k})=0$ , $j\neq k$ , $j,$ $k=2,$ $\ldots,$
$n$

for some suitable functions $\lambda$ and $\mu$ with respect to some suitable orthonormal
local frame field $e_{1},$

$\ldots,$
$e_{n}$ .

A Lagrangian submanifold with nonzero mean curvature vector $H$ is
Lagrangian H-umbilical if and only if (a) $JH$ is an eigenvector of the shape
operator $A_{H}$ and (b) the restriction of $A_{H}$ to $(JH)^{\perp}$ is proportional to the identity
map.

It is important to point out that condition (b) follows from condition (a)

automatically for Lagrangian surfaces (cf. Lemma 3.1).

Lagrangian H-umbilical submanifolds $M$ of dimension $\geq 3$ in a complex
space form of constant holomorphic sectional curvature $4c$ have an important
property; namely, the integral curves of $JH$ are geodesics of $M$ whenever $H\neq 0$ ,
unless $M$ is a real space form of constant sectional curvature $c$ . This important
property does not hold for 2-dimensional Lagrangian H-umbilical submanifolds
in general. Using this important property the author was able to classify in $[1, 2]$

Lagrangian H-umbilical submanifolds of dimension $\geq 3$ in complex space forms.
In particular, he proved that, except the flat ones, Lagrangian H-umbilical
submanifolds in $C^{n}$ with $n\geq 3$ are either Lagrangian pseudo-spheres or complex
extensors. Lagrangian H-umbilical submanifolds of dimension $\geq 3$ in non-flat
complex space forms were determined in [2] via Legendre curves and Hopf’s
fibration (see [4] for Lagrangian submanifolds of constant curvature $c$). The
explicit description of flat Lagrangian H-umbilical submanifolds in $C^{n}$ with $n\geq 2$

were established in [3].
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In this paper we deal with the remaining case; namely, Lagrangian H-
umbilical surfaces in complex space forms. Because the integral curves of $JH$ are
not longer geodesics in general, the method utilized in $[1, 2]$ does not apply to
this case.

We point out in section 3 that, except totally geodesic ones, minimal
Lagrangian surfaces in any Kaehler surface are Lagrangian H-umbilical auto-
matically. The main purpose of section 3 is to establish a general existence and
uniqueness theorem for Lagrangian H-umbilical surfaces in complex space forms.
As a by-product, we are able to determine the intrinsic and the extrinsic
structures of minimal Lagrangian surfaces in complex space forms. The intrinsic
and the extrinsic structures of Lagrangian H-umbilical surfaces with constant
Gauss curvature or with constant mean curvature are established in sections 4
and 5, respectively. In section 6 we determine Lagrangian H-umbilical surfaces
such that the functions $\lambda$ and $\mu$ given in (1.1) are linearly dependent. The
Lagrangian surfaces investigated in sections 4, 5 and 6 share the property that
$e_{2}\mu=0$ . The last section determines completely the intrinsic and the extrinsic
structures of Lagrangian H-umbilical surfaces satisfying $e_{1}\mu=0$ .

2. Preliminaries

Let $\tilde{M}^{n}(4c)$ denote a complete simply-connected Kaehler n-manifold with
constant holomorphic sectional curvature $4c$ . Let $M$ be a Lagrangian submanifold
in $\tilde{M}^{n}(4c)$ . We denote the Levi-Civita connections of $M$ and $\tilde{M}^{n}(4c)$ by $\nabla$ and $\tilde{\nabla}$ ,

respectively. The formulas of Gauss and Weingarten are given respectively by

(2.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ ,

(2.2) $\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ ,

for tangent vector fields $X$ and $Y$ and normal vector field $\xi$ , where $D$ is the
connection on the normal bundle. The second fundamental form $h$ is related to
the shape operator $A_{\xi}$ by $\langle h(X, Y), \xi\rangle=\langle A_{\xi}X, Y\rangle$ . The mean curvature vector
$H$ of $M$ in $\tilde{M}^{2}(4c)$ is defined by $H=1/n$ trace $h$ , where $n=\dim M$ . We put
$ H^{2}=\langle H, H\rangle$ which is called the squared mean curvature.

For Lagrangian submanifolds we have [5]

(2.3) $D_{X}JY=J\nabla_{X}Y$ ,

(2.4) $\langle h(X, Y), JZ\rangle=\langle h(Y, Z), JX\rangle=\langle h(Z, X), JY\rangle$ .

If we denote the curvature tensor of $\nabla$ by $R$ , then the equations of Gauss,
Codazzi and Ricci are given respectively by
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(2.5) $\langle R(X, Y)Z, W\rangle=\langle A_{h(Y,Z)}X, W\rangle-\langle A_{h(X,Z)}Y, W\rangle$

$+c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)$ ,

(2.6) $(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)$ ,

(2.7) $\langle R^{D}(X, Y)JZ,JW\rangle=\langle[A_{JZ}, A_{JW}]X, Y\rangle$

$+c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)$ ,

where $X,$ $Y,$ $Z,$ $W$ are vector fields tangent to $M$ and $\nabla h$ is defined by

(2.8) $(\nabla h)(X, Y, Z)=D_{X}h(Y, Z)-h(\nabla_{X}Y, Z)-h(Y, \nabla_{X}Z)$ .

We need the following existence and uniqueness theorems for Lagrangian
immersions (cf. [1, 4]).

THEOREM 2.1. Let $(M^{n}, g)$ be a simply-connected Riemannian n-manifold. If $\sigma$

is a symmetric bilinear vector-valued form on $M$ satisfying
(1) $g(\sigma(X, Y),$ $Z$ ) is totally symmetric,
(2) $(\nabla\sigma)(X, Y, Z)=\nabla_{X}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ is totally symmetric,
(3) $R(X, Y)Z=c(g(Y, Z)X-g(X, Z)Y)+\sigma(\sigma(Y, Z),$ $X$ ) $-\sigma(\sigma(X, Z),$ $Y$),

then there exists a Lagrangian isometric immersion $L:(M, g)\rightarrow\tilde{M}^{n}(4c)$ whose
second fundamental form $h$ is given by $h(X, Y)=J\sigma(X, Y)$ .

THEOREM 2.2. Let $L_{1},$ $L_{2}$ : $M\rightarrow\tilde{M}^{n}(4c)$ be two Lagrangian isometric
immersions of a Riemannian n-manifold $M$ with second fundamental forms $h^{1}$ and
$h^{2}$ , respectively. If

$\langle h^{1}(X, Y), JL_{1*}Z\rangle=\langle h^{2}(X, Y),JL_{2*}Z\rangle$ ,

for all vector fields X $Y,$ $Z$ tangent to $M$, then there exists an isometry $\phi$ of
$\tilde{M}^{n}(4c)$ such that $ L_{1}=L_{2}\circ\phi$ .

3. Lagrangian H-umbilical surfaces in complex space forms

We provide some lemmas for later use.

LEMMA 3.1. Let $L:M\rightarrow\tilde{M}^{2}$ be a Lagrangian surface in a Kaehler surface
without totally geodesic points. We have

(1) $L$ is Lagrangian H-umbilical if and only if $JH$ is an eigenvector of the
shape operator $A_{H}$ .

(2) If $L$ is minimal, then $L$ is a Lagrangian H-umbilical surface satisfying (1.1)

with $\lambda=-\mu$ .
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PROOF. (1) follows from (2) and the definition of Lagrangian H-umbilical
surfaces (cf. section 1).

(2) Let $M$ be a minimal Lagrangian surface without totally geodesic points in
a Kaehler surface. We define a function $\gamma_{p}$ by

(3.1) $\gamma_{p}$ : $ UM_{p}\rightarrow R:v\mapsto\gamma_{p}(v)=\langle h(v, v),Jv\rangle$ ,

where $UM_{p}=\{v\in T_{p}M:\langle v, v\rangle=1\}$ . Since $UM_{p}$ is a compact set, there exists a
vector $v$ in $UM_{p}$ such that $\gamma_{p}$ attains an absolute minimum at $v$ . Since $p$ is not
totally geodesic, it follows from (2.4) that $\gamma_{p}\neq 0$ . By linearity, we have $\gamma_{p}(v)<0$ .
Because $\gamma_{p}$ attains an absolute minimum at $v$ , it follows from (2.4) that
$\langle h(v, v), Jw\rangle=0$ for all $w$ orthogonal to $v$ . So, using (2.4), $v$ is an eigenvector of
the symmetric operator $A_{Jv}$ . By choosing an orthonormal basis $\{e_{1}, e_{2}\}$ of $T_{p}M$

with $e_{1}=v$ , we obtain

$ h(e_{1}, e_{1})=\lambda$Je 1 $h(e_{1}, e_{2})=-\lambda Je_{2}$ , $ h(e_{2}, e_{2})=-\lambda$Je 1

for some $\lambda$ . Thus $M$ is a Lagrangian H-umbilical surface with $\mu=-\lambda$ . $\square $

LEMMA 3.2. Except totally geodesic ones, a Lagrangian H-umbilical surface
of constant Gauss curvature $c$ in a complex space form $\tilde{M}^{2}(4c)$ is a Lagrangian H-
umbilical surface satisfying (1.1) with $\mu=0$ or with $\lambda=\mu$ .

Conversely, every Lagrangian H-umbilical surface in $\tilde{M}^{2}(4c)$ satisfying (1.1)
with $\mu=0$ or with $\lambda=\mu$ has constant Gauss curvature $c$ .

PROOF. Let $M$ be a Lagrangian H-umbilical surface in $\tilde{M}^{2}(4c)$ . Then by
(2.3) and (2.7) we have

(3.2)
$\langle R(X, Y)Z, W\rangle=\langle[A_{JZ}, A_{JW}]X, Y\rangle+c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)$ ,

for $X,$ $Y,$ $Z,$ $W$ tangent to $M$. If $M$ has constant Gauss curvature $c,$ $(3.2)$ implies
that the shape operators of $M$ commute. Thus, at each point $p\in M$ there exists
an orthonormal basis $e_{1},$ $e_{2}$ such that $A_{Je_{1}},$ $A_{Je_{2}}$ are simultaneously diago-
nalizable. Hence, by (2.4) we obtain

$h(e_{1}, e_{1})=\lambda Je_{1}$ , $h(e_{1}, e_{2})=h(e_{2}, e_{2})=0$

for some $\lambda$ with respect to some suitable orthonormal frame field $e_{1},$ $e_{2}$ unless
$\lambda=\mu$ .

The converse follows immediately from the equation of Gauss. $\square $

Lagrangian H-umbilical isometric immersions of a real space form $M^{n}(c)$ of
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constant sectional curvature $c$ into a complex space form $\tilde{M}^{n}(4c)$ of constant
holomorphic sectional curvature $4c$ were classified in [1] and [2] for $c=0$ and
$c\neq 0$ , respectively. The explicit description of such Lagrangian immersions was
established in [3] for $c=0$ .

Given a real number $b>0$ , let $F:R\rightarrow C$ be the unit speed curve defined by

(3.3) $F(s)=\frac{e^{2bsi}+1}{2bi}$ .

With respect to the induced metric the complex extensor $\phi=F\otimes\iota$ of the unit
hypersphere of $E^{n}$ via $F$ is a Lagrangian isometric immersion of an open portion
of an n-sphere $S^{n}(b^{2})$ of sectional curvature $b^{2}$ into $C^{n}$ which is called a
Lagrangian pseudo-sphere (see [1] for details).

Lagrangian H-umbilical submanifolds in complex Euclidean spaces satisfying
(1.1) with $\lambda=2\mu$ were determined in [1] as follows.

THEOREM 3.3. Up to rigid motions of $C^{n}$ , a Lagrangian isometric immersion
$L:M\rightarrow C^{n}$ is a Lagrangian pseudo-sphere if and only $lf$ it is a Lagrangian H-
umbilical immersion satisfying (1.1) with $\lambda=2\mu$ .

Lagrangian pseudo-spheres have both constant mean curvature and constant
Gauss curvature.

REMARK 3.1. Lagrangian H-umbilical submanifolds satisfying (1.1) with $\lambda=$

$ 2\mu$ in nonflat complex space forms also have constant mean curvature and
constant Gauss curvature [2]. Such Lagrangian H-umbilical submanifolds have
been completely classified in [2] (see Theorems 5.1 and 6.1 of [2]).

The following lemma is easy to verify.

LEMMA 3.4. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface. Then
the squared mean curvature and the Gauss curvature of $M$ satisfy $4H^{2}=9(K-c)$

if and only $lf$ the second fundamental form of $L$ takes the form:
$h(e_{1}, e_{1})=2\mu Je_{1}$ , $h(e_{1}, e_{2})=\mu Je_{2}$ , $ h(e_{2}, e_{2})=\mu$Je 1

for some function $\mu\neq 0$ , with respect to some orthonormal frame field $e_{1},$ $e_{2}$ .

In views of Lemma 3.2, Theorem 3.3, Lemma 3.4 and Remark 3.1, we only
need to consider Lagrangian H-umbilical surfaces in a complex space form
$\tilde{M}^{2}(4c)$ such that $K\neq c,$ $c+(4/9)H^{2}$ .
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Now, assume that $M$ is a Lagrangian H-umbilical surface in $\tilde{M}^{2}(4c)$ sat-
isfying the condition $K\neq c,$ $c+(4/9)H^{2}$ . Then the second fundamental form of
$M$ takes the form:

(3.4) $ h(e_{1}, e_{1})=\lambda$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$

for some functions $\lambda,$
$\mu$ with $\mu\neq 0,$ $\lambda/2$ , with respect to some orthonormal frame

field $e_{1},$ $e_{2}$ .
Let $\omega^{1},$ $\omega^{2}$ denote the dual l-forms of $e_{1},$ $e_{2}$ and let $(\omega_{B}^{A})$ be the connection

forms on $M$ defined by

(3.5) $\tilde{\nabla}e_{i}=\sum_{j=1}^{2}\omega_{i}^{j}e_{j}+\sum_{j=1}^{2}\omega_{i}^{j^{*}}e_{j^{*}}$ , $\tilde{\nabla}e_{i}*=\sum_{j=1}^{2}\omega_{i}^{j_{*}}e_{j}+\sum_{j=1}^{2}\omega_{i}^{j_{*}}e_{j^{*}}$ ,

where $e_{i^{*}}=Je_{i},$ $\omega_{i}^{j}=-\omega_{j^{i}},$ $\omega_{i}^{j_{*}^{*}}=-\omega_{j^{i}}:,$ $j=1,2$ .
For a Lagrangian surface $M$ in $\tilde{M}^{2}(4c)$ , we have [5]

(3.6) $\omega_{j^{i^{*}}}=\omega_{i}^{j^{*}}$ , $\omega_{i}^{j}=\omega_{i}^{j_{*}^{*}}$ , $\omega_{j^{i^{*}}}=\sum_{k=1}^{n}h_{jk}^{i}\omega^{k}$ .

From (3.4) and (3.6) we find

(3.7) $\omega_{1}^{1^{*}}=\lambda\omega^{1}$ , $\omega_{2^{1^{*}}}=\mu\omega^{2}$ , $\omega_{2}^{2^{*}}=\mu\omega^{1}$ .

By (3.4), (3.7) and the equation of Codazzi we obtain

(3.8) $e_{1}\mu=(\lambda-2\mu)\omega_{1}^{2}(e_{2})$ ,

(3.9) $e_{2}\lambda=(2\mu-\lambda)\omega_{2^{1}}(e_{1})$ ,

(3.10) $e_{2}\mu=3\mu\omega_{1}^{2}(e_{1})$ ,

Since Span $\{e_{1}\}$ and Span $\{e_{2}\}$ are one-dimensional distributions, there exists
a local coordinate system $\{x, y\}$ on $M$ such that $\partial/\partial x$ and $\partial/\partial y$ are parallel to
$e_{1},$ $e_{2}$ , respectively. Thus, the metric tensor $g$ on $M$ takes the form:

(3.11) $g=E^{2}dx^{2}+G^{2}dy^{2}$ ,

for some nonzero functions $E$ and $G$ . Without loss of generality we may assume

(3.12) $e_{1}=\frac{1}{E}\frac{\partial}{\partial x}$ , $e_{2}=\frac{1}{G}\frac{\partial}{\partial y}$ .

From (3.11) we find

(3.13) $\omega_{2^{1}}(e_{1})=\frac{E_{y}}{EG}$ , $\omega_{1}^{2}(e_{2})=\frac{G_{x}}{EG}$ , $E_{y}=\frac{\partial E}{\partial y}$ , $G_{X}=\frac{\partial G}{\partial x}$ .
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By (3.10), (3.12) and (3.13) we have

(3.14) $(\ln\mu)_{y}=-3(\ln E)_{y}$ .

Solving (3.14) yields

(3.15) $E=\frac{m(x)}{\mu^{1/3}}$ , $\mu=\frac{m^{3}(x)}{E^{3}}$

for some function $m(x)\neq 0$ .
By applying (3.9), (3.12), (3.13) and (3.15) we find

(3.16) $E\lambda_{y}=\frac{2}{E^{3}}m^{3}(x)E_{y}-\lambda E_{y}$ .

Solving (3. 16) yields

(3.17) $\lambda=-\mu+\frac{f(x)}{E}$ ,

for some function $f(x)$ . From (3.15), (3. 17) and the assumption $ 2\mu\neq\lambda$ , we
obtain $f(x)\neq 3m(x)\mu^{2/3}$ .

Using (3.8), (3.12), (3.13), (3.15) and (3.17), we find

(3.18) $\mu_{X}=(\frac{f(x)}{m(x)}\mu^{1/3}-3\mu)(\ln G)_{X}$ .

Solving (3. 18) yields

(3.19) $G=q(y)\exp(\int^{X}k(x, y)dx)$ , $k(x, y)=\frac{m(x)\mu_{X}}{f(x)\mu^{1/3}-3m(x)\mu}$

for some function $q(y)\neq 0$ . Consequently, the metric tensor of $M$ takes the
following form:

(3.20) $g=E^{2}dx^{2}+G^{2}dy^{2}$ , $E=\frac{m(x)}{\mu^{1/3}}$ , $G=q(y)\exp(\int^{X}kdx)$ .

From (3.11) it follows that the Gauss curvature $K$ of $M$ is given by

(3.21) $K=-\frac{1}{EG}\{\frac{\partial}{\partial y}(\frac{E_{y}}{G})+\frac{\partial}{\partial x}(\frac{G_{X}}{E})\}$ .

By (3.15), (3.17), (3.19) and (3.21), we conclude that the functions $f(x)$ ,
$m(x),$ $q(y)$ and $\mu(x, y)$ satisfy the following second order differential equation:
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(3.22) $(\frac{f(x)}{m(x)}\mu-2\mu^{5/3}+c\mu^{-1/3})m(x)q(y)\exp(\int^{x}kdx)$

$=\frac{m(x)}{3}(\frac{\mu_{y}\exp(-\int^{X}kdx)}{\mu^{4/3}q(y)})_{y}-q(y)(\frac{\mu^{1/3}k\exp(\int^{X}kdx)}{m(x)})_{x}$

Conversely, suppose that $f(x),$ $m(x),$ $q(y)$ and $\mu(x, y)$ are functions defined
on a simply-connected domain $U$ of $R^{2}$ such that $m(x),$ $q(y)$ and $\mu(x, y)$ and
nowhere zero, $f(x)\neq 3m(x)\mu^{2/3}$ , and they satisfy (3.22). We define a metric
tensor $g$ on $U$ by

(3.23) $g=E^{2}dx^{2}+G^{2}dy^{2}$ , $E=\frac{m(x)}{\mu^{1/3}}$ , $G=q(y)\exp(\int^{X}kdx)$ ,

where $k=k(x,y)$ is defined by (3.19).

We define a symmetric bilinear form $\sigma$ on $(U, g)$ by

(3.24) $\sigma(e_{1}, e_{1})=(\frac{f(x)\mu^{1/3}}{m(x)}-\mu)e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ .

By applying $(3.22)-(3.24)$ and a straight-forward computation, we know that
$((U, g),$ $\sigma$) satisfies conditions (1), (2) and (3) of Theorem 2.1.

From the conditions $f(x)\neq 3m(x)\mu^{2/3}$ and $\mu\neq 0$ , it follows that $K\neq c$ ,
$c+(4/9)H^{2}$ .

Consequently, by Theorem 2.1 and Theorem 2.2, we obtain the following.

THEOREM 3.5. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface
such that $K\neq c,$ $c+(4/9)H^{2}$ . Then

(1) there exist functions $f(x),$ $m(x),$ $q(y)$ and $\mu(x, y)$ such that $m(x),$ $q(y)$ and
$\mu(x, y)$ are nowhere zero, $f(x)\neq 3m(x)\mu^{2/3}$ , and they satisfy (3.22),

(2) with respect to some coordinate system $\{x, y\}$ on $M$, the metric tensor of
$M$ is given by

(3.25) $g=E^{2}dx^{2}+G^{2}dy^{2}$ , $E=m(x)\mu^{-1/3}$ , $G=q(y)\exp(\int^{X}kdx)$ ,

where

(3.26) $k=\frac{m(x)\mu_{X}}{f(x)\mu^{1/3}-3m(x)\mu}$ ,

(3) the second fundamental form of $L$ is given by
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(3.27) $h(e_{1}, e_{1})=(\frac{f(x)}{m(x)}\mu^{1/3}-\mu)$ Je 1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

where $e_{1}=E^{-1}\partial/\partial x$ and $e_{2}=G^{-1}\partial/\partial y$ .
Conversely, suppose that $f(x),$ $m(x),$ $q(y)$ and $\mu(x, y)$ are functions defined on

a simply-connected domain $U$ of $R^{2}$ such that $m(x),$ $q(y)$ and $\mu(x, y)$ are nowhere
zero, $f(x)\neq 3m(x)\mu^{2/3}$ , and they satisfy (3.22). Let $g$ be the metric tensor on $U$

defined by (3.25). Then, up to rigid motions of $\tilde{M}^{2}(4c)$ , there exists a unique
Lagrangian H-umbilical isometric immersion of $(U, g)$ into $\tilde{M}^{2}(4c)$ whose second
fundamental form is given by (3.27). The Gauss curvature $K$ and the squared
mean curvature $H^{2}$ of such a Lagrangian surface satisfy the condition $K\neq c$ ,
$c+4/9H^{2}$ .

Now, suppose that $L:M\rightarrow\tilde{M}^{2}(4c)$ is a minimal Lagrangian surface without
totally geodesic points. Then, according to Lemma 3.1, the second fundamental
form of $L$ satisfies

(3.28) $h(e_{1}, e_{1})=-\hat{\mu}Je_{1}$ , $h(e_{1}, e_{2})=\hat{\mu}Je_{2}$ , $h(e_{2}, e_{2})=\hat{\mu}Je_{1}$ .

for some nonzero function $\hat{\mu}$ with respect to some orthonormal frame field $e_{1},$ $e_{2}$ .
Thus, by (3.15), (3.17), (3.18) and (3.19), we obtain

(3.29) $g=\hat{\mu}^{-2/3}\{m^{2}(\overline{x})d\overline{x}^{2}+q^{2}(\overline{y})d\overline{y}^{2}\}$

for some coordinate system $\{\overline{x},\overline{y}\}$ with $e_{1}=\overline{\mu}^{1/3}m(\overline{x})^{-1}\partial/\partial\overline{x},$ $e_{2}=\overline{\mu}^{1/3}q(\overline{y})^{-1}\partial/$

$\partial\overline{y}$ .
After applying the coordinate transformation:

(3.30) $x=\int^{X}m(\overline{x})d\overline{x}$ and $y=\int^{y}q(\overline{y})d\overline{y}$ ,

the metric tensor of $M$ takes the simple form:

(3.31) $g=\mu^{-2/3}(dx^{2}+dy^{2})$

where $\mu(x,y)=\hat{\mu}(\overline{x}(x),\overline{y}(y))$ . With respect the coordinate system $\{x, y\}$ , equation
(3.22) becomes

(3.32) $\Delta(\ln\mu)=3(c-2\mu^{2})\mu^{-2/3}$ ,

where $\Delta=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}$ . With respect to $x$ and $y,$ $(3.28)$ becomes

$h(\frac{\partial}{\partial x},\frac{\partial}{\partial x})=-\mu^{2/3}J(\frac{\partial}{\partial x})$ , $h(\frac{\partial}{\partial x},$ $\frac{\partial}{\partial y})=\mu^{2/3}J(\frac{\partial}{\partial y})$ ,
(3.33)

$h(\frac{\partial}{\partial y},$ $\frac{\partial}{\partial y})=\mu^{2/3}J(\frac{\partial}{\partial x})$ .
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Conversely, if $\mu$ is a nowhere zero function defined on a simply-connected
domain $U$ of $R^{2}$ which satisfies (3.23). We define a metric tensor on $U$ by

$g=\mu^{-2/3}(dx^{2}+dy^{2})$

and define a symmetric bilinear form $\sigma$ on $(U, g)$ by

$\sigma(\frac{\partial}{\partial x},\frac{\partial}{\partial x})=-\mu^{2/3}\frac{\partial}{\partial x}$ , $\sigma(\frac{\partial}{\partial x},\frac{\partial}{\partial y})=\mu^{2/3}\frac{\partial}{\partial y}$ , $\sigma(\frac{\partial}{\partial y},\frac{\partial}{\partial y})=\mu^{2/3}\frac{\partial}{\partial x}$ .

Then, by a straight-forward computation, we know that $((U, g),$ $\sigma$) satisfies
conditions (1), (2) and (3) of Theorem 2.1. Thus, by Lemma 3.1, Theorem 2.1
and 2.2, we obtain the following.

COROLLARY 3.6. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a minimal Lagrangian surface
without totally geodesic points. Then, with respect to a suitable coordinate system
$\{x, y\}$ , we have

(1) the metric tensor of $M$ takes the form of (3.31) for some nowhere zero
function $\mu$ satisfying (3.32) and

(2) the second fundamental form of $L$ is given by (3.33).
Conversely, $ lf\mu$ is a nowhere zero function defined on a simply-connected

domain $U$ of $R^{2}$ satisfying (3.32) and $g=\mu^{-2/3}(dx^{2}+dy^{2})$ is the metric tensor
on $U$, then, up to rigid motions of $\tilde{M}^{2}(4c)$ , there is a unique minimal $(U, g)$ into
$\tilde{M}^{2}(4c)$ whose second fundamental form is given by (3.33).

4. Lagrangian H-umbilical surfaces with constant Gauss curvature

The following result determines the intrinsic and the extrinsic structures of
Lagrangian H-umbilical surfaces with constant Gauss curvature in complex space
forms.

THEOREM 4.1. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface. If
$M$ has constant Gauss curvature $K$ such that $K\neq c,$ $c+(4/9)H^{2}$ , then

(1) with respect to some coordinate system $\{x, y\}$ on $M$, the metric tensor of
$M$ is given by

(4.1) $g=dx^{2}+G^{2}dy^{2}$ ,

where

(4.2) $G=\left\{\begin{array}{l}\frac{1}{x,\sqrt{K}}cos(\sqrt{K}x),\\\frac{1}{\sqrt{-K}}cosh(\sqrt{-K}x),\end{array}\right.$ $lfK<0lfK=0lfK>0$

,
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(2) the second fundamental form of $L$ is given by

(4.3) $h(e_{1}, e_{1})=(\frac{K-c+\mu^{2}}{\mu})$ Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

where $e_{1}=\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ and $\mu$ is a nonzero function satisfying

(4.4) $|K-c-\mu^{2}|=\left\{\begin{array}{l}Ksec^{2}(\sqrt{K}x),\\X^{-2},\\-Ksech^{2}(\sqrt{-K}x),\end{array}\right.$ $\iota fK<0\iota fK=0\iota fK>0$

,

Conversely, suppose that $c,$ $K$ are two unequal constants, $U$ a simply-connected
domain of $R^{2}$ such that (4.1) is a well-defined positive-definite metric on $U$ and $\mu$ is
a function satisfying (4.4). Then

(3) $(U, g)$ has constant Gauss curvature $K$ and
(4) up to rigid motions of $\tilde{M}^{2}(4c)$ , there exists a unique Lagrangian H-

umbilical isometric immersion of $(U, g)$ into $\tilde{M}^{2}(4c)$ whose second fundamental
form is given by (4.3).

PROOF. Assume that $L:M\rightarrow\tilde{M}^{2}(4c)$ is a Lagrangian H-umbilical surface
such that $K\neq c,$ $c+(4/9)H^{2}$ . Then the second fundamental form of $L$ takes the
form:

(4. 5) $ h(e_{1}, e_{1})=\lambda$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $ h(e_{2}, e_{2})=\mu$Je1.

for some functions $\lambda,$

$\mu$ with $\mu\neq 0,$ $\lambda/2$ , with respect to an orthonormal frame
field $e_{1},$ $e_{2}$ .

From the assumption $K\neq c+(4/9)H^{2}$ , we obtain $\mu^{2}\neq K-c$ . If the Gauss
curvature $K$ of $M$ is constant, then

(4.6) $\lambda\mu-\mu^{2}+c=K=constant$ .

By applying (3.9), (3.10) and (4.5), we get $\omega_{1}^{2}(e_{1})=0$ and $e_{2}\lambda=e_{2}\mu=0$ .
From $\omega_{1}^{2}(e_{1})=0$ , it follows that the integral curves of $e_{1}$ are geodesics in $M$.

Thus, there exists a local coordinate system $\{x, y\}$ on $M$ such that the metric
tensor of $M$ takes the form:

(4.7) $g=dx^{2}+G^{2}dy^{2}$

and $e_{1}=\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ . From $e_{2}\lambda=e_{2}\mu=0$ , we obtain $\lambda=\lambda(x)$ and $\mu=$

$\mu(x)$ .
From (3.15), (3.17), (3.19) and (4.7), we get
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(4.8) $m(x)=\mu^{1/3}$ , $f(x)=\lambda(x)+\mu(x)$ , $G=q(y)\exp(\int^{X}kdx)$ ,

where $k$ is defined by (3.19). Equations (3.19), (4.6) and (4.8) imply

(4.9) $k=\frac{\mu\mu^{\prime}}{K-c-\mu^{2}}$ , $\mu^{\prime}=\mu^{\prime}(x)$ .

Solving (4.9) yields

(4.10) $k(x)=-\frac{1}{2}(\ln|K-c-\mu^{2}|)^{\prime}(x)$ .

Thus, the metric tensor of $M$ takes the form:

(4. 11) $g=dx^{2}+\frac{q^{2}(y)}{|K-c-\mu^{2}|}dy^{2}$ .

After applying a suitable change of variable in $y$ if necessary, we get

(4.12) $g=dx^{2}+\frac{1}{|K-c-\mu^{2}|}dy^{2}$ .

From $\mu_{y}=0,$ $(4.6),$ $(4.7),$ $(4.9)$ and equation (3.21) of Gauss, we obtain

(4.12) $k^{\prime}(x)+k^{2}(x)=-K$ .

Solving (4.12) and using (4.9), we get

(4.13) $|K-c-\mu^{2}|=\left\{\begin{array}{l}\frac{a}{cos^{2}(\sqrt{K}(b-x))}\\\frac{a}{(x-b)^{2}}\\\frac{a}{cosh^{2}(\sqrt{-K}(x-b))}\end{array}\right.$
$ifK<0ifK=0ifK>0$

,

where $a,$
$b$ are integration constants.

Therefore, by applying a translation in $x$ and dilation in $y$ if necessary, we
obtain (4.4) and statement (1). (4.3) now follows from (4.5) and (4.6).

Conversely, assume that $K,$ $c$ are unequal constants, $U$ is a simply-connected
domain of $R^{2}$ such that (4.1) is a well-defined positive-definite metric on $U$ and $\mu$

is a function which satisfies (4.4). Then, by a direct computation, we obtain
statement (3).

If we define a symmetric bilinear form $\sigma$ on $(U, g)$ by

(4.14) $\sigma(e_{1}, e_{1})=(\frac{K-c+\mu^{2}}{\mu})e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ ,
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where $e\mathfrak{l}=\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ , then, by a straight-forward long computation,
we conclude that $((U, g),$ $\sigma$ ) satisfies conditions (1), (2) and (3) of Theorem 2.1.
Hence, according to Theorem 2.1, there is a Lagrangian isometric immersion of
$(U, g)$ into $\tilde{M}^{2}(4c)$ with second fundamental form given by $ h=J\sigma$ . Moreover, by
(4.14), we obtain statement (5).

The uniqueness of the Lagrangian immersion now follows from Theorem
2.2. $\square $

REMARK 4.1. Theorem 4.1 of [1] states that Lagrangian H-umbilical sub-
manifolds of dimension $\geq 3$ with constant sectional curvature in complex
Euclidean spaces are either flat or open portions of Lagrangian pseudo-spheres.
In contrast, Theorem 4.1 shows that there exist many Lagrangian H-umbilical
surfaces with constant Gauss curvature in the complex Euclidean plane which are
neither flat nor open portions of Lagrangian pseudo-spheres.

REMARK 4.2. The intrinsic and the extrinsic structures of Lagrangian H-
umbilical surfaces in $\tilde{M}^{2}(4c)$ with constant Gauss curvature $K=c+(4/9)H^{2}$

have been completely determined in [1] and [2] for $c=0$ and $c\neq 0$ , respectively.

It is obvious that a Lagrangian H-umbilical surface in a complex space form
has constant mean curvature and constant Gauss curvature if and only if both $\lambda$

and $\mu$ are constant. However, Theorem 3.5 yields the following.

PROPOSITION 4.2. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian isometric immersion
whose second fundamental form satisfies
(4. 15) $h(e_{1}, e_{1})=\lambda Je_{1}$ , $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ .

with respect to an orthonormal frame field $e_{1},$ $e_{2}$ . If $\mu$ is constant, then $M$ has
constant Gauss curvature. Moreover, $M$ is flat unless $\mu=0$ or $\mu=\lambda/2$ .

PROOF. Let $M$ be a Lagrangian surface in $\tilde{M}^{2}(4c)$ satisfies (4.15). If $\mu=0$ ,

then $M$ has constant Gauss curvature $c$ . If $\mu=\lambda/2$ , then $M$ also has constant
Gauss curvature according to Theorem 3.1 of [1] and Theorems 5.1 and 6.1 of [2]

for $c=0$ and $c\neq 0$ , respectively. Finally, if $\mu\neq 0,$ $\lambda/2,$ $(3.23)$ implies that $E$

and $G$ are functions of $x$ and $y$ , respectively. In this case $M$ is flat according to
(3.21). $\square $

REMARK 4.3. The converse of Corollary 3.6 is false. In fact, there exist
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Lagrangian H-umbilical surfaces with constant Gauss curvature in a complex
space form such that the function $\mu$ of (4.15) is non-constant.

The following result shows in particular that Lagrangian H-umbilical surfaces
with $\lambda$ being constant do not have Gauss curvature in general.

PROPOSITION 4.3. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian isometric immersion
whose second fundamental form satisfies (4.15) for $\mu\neq 0,$ $\lambda/2$ , with respect to an
orthonormal frame field $e_{1},$ $e_{2}$ . If $\lambda$ is constant, then

(1) there is a coordina $te$ system $\{x, y\}$ on $M$ such that the metric tensor of $M$

is given by

(4.16) $g=dx^{2}+\frac{dy^{2}}{|\lambda-2\mu|}$ ,

and
(2) $\mu$ is a function of $x$ satisfying

(4.17) $\mu^{\prime 2}=(\lambda-2\mu)^{3}\{b+\frac{\mu}{2}-\frac{\lambda^{2}+4c}{4(\lambda-2\mu)}\}$ ,

for some constant $b$ .
Converse $ly$, suppose that $b,$ $c,$

$\lambda$ are constants and $\mu(x)$ is a non-constant

function satisfying (4.17) on some open interval I. Let $g$ be the metric tensor on
$U=I\times R$ defined by (4.16). Then, up to rigid motions of $\tilde{M}^{2}(4c)$ , there is a
unique Lagrangian H-umbilical isometric immersion of $(U, g)$ into $\tilde{M}^{2}(4c)$ whose
second fundamental form is given by (4.15).

PROOF. Assume that $M$ is a Lagrangian surface in $\tilde{M}^{2}(4c)$ satisfying (4.15)

with $\mu\neq 0,$ $\lambda/2$ for some constant $\lambda$ . Then (3.9) and (3.10) yield $\nabla_{e_{1}}e_{1}=0$ and
$e_{1}\mu=0$ . Thus, it follows as before that the metric tensor of $M$ takes the form:

(4.18) $g=dx^{2}+G^{2}dy^{2}$

with respect to some coordinate system $\{x, y\}$ with $e_{1}=\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ .
From $e_{2}\mu=0$ , we obtain $\mu=\mu(x)$ . Moreover, from (3. 17), (3. 19), (3.20) and

(4.18) we have

(4.19) $k=\frac{\mu^{\prime}(x)}{\lambda-2\mu}=-\frac{1}{2}(\ln|\lambda-2\mu|)^{\prime}$ , $G=\frac{q(y)}{|\lambda-2\mu|^{1/2}}$ .
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Thus,

(4.20) $g=dx^{2}+\frac{q^{2}(y)}{|\lambda-2\mu|}dy^{2}$ .

After applying a suitable change of variable in $y$ if necessary, we have

(4.21) $g=dx^{2}+\frac{dy^{2}}{|\lambda-2\mu|}$ .

From (4.15), (4.21), and the equation of Gauss we know that the function
$\mu=\mu(x)$ satisfies the following differential equation:

(4.22) $k^{\prime}(x)+k^{2}(x)=\mu^{2}-\lambda\mu-c$ , $k(x)=\frac{\mu^{\prime}(x)}{\lambda-2\mu}$ .

Solving (4.22) for $\mu^{\prime}$ yields equation (4.17) for some constant $a$ .
Conversely, suppose that $b,$ $c,$

$\lambda$ are constants and $\mu(x)$ is a non-constant
function satisfying (4.17) on some open interval $I$. We define a metric tensor $g$ on
$U=I\times R$ by (4.16) and define a symmetric bilinear map $\sigma$ on $(U, g)$ by

(4.23) $\sigma(e_{1}, e_{1})=\lambda e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ ,

where $e_{1}=\partial/\partial x$ and $e_{2}=|\lambda-2\mu|^{1/2}\partial/\partial y$ . Then by a straight-forward compu-
tation we conclude that $((U, g),$ $\sigma$ ) satisfies conditions (1), (2) and (3) of Theorem
2.1.

Consequently, by Theorems 2.1 and 2.2 we conclude that, up to rigid
motions of $\tilde{M}^{2}(4c)$ , there is a unique Lagrangian isometric immersion of $(U, g)$

into $\tilde{M}^{2}(4c)$ whose second fundamental form is given by (4.15) with constant $\lambda$ .
$\square $

Proposition 4.3 implies that Lagrangian H-umbilical surfaces with constant $\lambda$

in a complex space form do not have constant Gauss curvature in general.

5. Lagrangian H-umbilical surfaces with constant mean curvature

Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface with $K\neq c,$ $c+$

$(4/9)H^{2}$ . If $M$ has constant mean curvature $\beta\neq 0$ , then the second fundamental
form of $L$ takes the form:

(5. 1) $h(e_{1}, e_{1})=(2\beta-\mu)$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

for $\mu\neq 0,2\beta/3$ with respect to some suitable orthonormal frame field $e_{1},$ $e_{2}$ .
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From (3.9) and (3.10) we get $0=e_{2}(\beta)=\beta\omega_{2^{1}}(e_{1})$ which yields $\nabla_{e_{1}}e_{1}=0$ .
Hence, by (3.9) and (3.10), we also have $e_{2}\lambda=e_{2}\mu=0$ .

From $\omega_{1}^{2}(e_{1})=0$ , it follows as before that the metric tensor of $M$ takes the
form:

(5.2) $g=dx^{2}+G^{2}dy^{2}$

with respect to some local coordinate system $\{x, y\}$ with $e_{1}=\partial/\partial x,$ $e_{2}=G^{-1}\partial/$

$\partial y$ .
From $e_{2}\lambda=e_{2}\mu=0$ , we obtain $\lambda=\lambda(x)$ and $\mu=\mu(x)$ . Thus, (3.17), (3.19),

and (5.1) imply $k(x)=\mu^{\prime}/(2\beta-3\mu)$ . Hence, after applying a suitable change of
variable in $y$ if necessary, the metric tensor of $M$ takes the form:

(5.3) $g=dx^{2}+\frac{dy^{2}}{(2\beta-3\mu)^{2/3}}$ .

From (5.1), (5.3), and the equation of Gauss we know that the function $\mu=$

$\mu(x)$ satisfies the following differential equation:

(5.4) $\mu^{\prime\prime}(x)+\frac{4\mu^{\prime 2}}{2\beta-3\mu}=(2\beta-3\mu)(2\mu^{2}-2\beta\mu-c)$ .

Solving (5.4) for $\mu^{\prime}$ yields

(5.5) $\mu^{\prime 2}=(3\mu-2\beta)^{2}\{b(2\beta-3\mu)^{2/3}-c-\mu^{2}\}$ ,

where $b$ is an integration constant satisfying $b(2\beta-3\mu)^{2/3}>c+\mu^{2}$ . Such con-
stant exists at least locally, since $(2\beta-3\mu)^{2}=(\lambda-2\mu)^{2}>0$ .

Conversely, suppose that $b,$ $c$ and $\beta\neq 0$ are constants and $\mu(x)$ is a function
with $\mu\neq 0,2\beta/3$ which satisfy (5.5) on some open interval $I$. We define a metric
tensor $g$ on $U=I\times R$ by (5.3) and define a symmetric bilinear map $\sigma$ on $(U, g)$

by

(5.6) $\sigma(e_{1}, e_{1})=(2\beta-\mu)e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ ,

where $e_{1}=\partial/\partial x$ and $e_{2}=(2\beta-3\mu)^{1/3}\partial/\partial y$ . Then by a straight-forward com-
putation we conclude that $((U, g),$ $\sigma$) satisfies conditions (1), (2) and (3) of
Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2 we obtain the following.

THEOREM 5.1. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface
with $K\neq c,$ $c+(4/9)H^{2}$ . If $M$ has constant mean curvature $\beta\neq 0$ , then
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(1) there exist a constant $b$ and a nonzero function $\mu(x)\neq 2\beta/3$ satisfying
(5.5),

(2) there exists a coordinate system $\{x, y\}$ on $M$ such that the metric tensor of
$M$ is given by (5.3), and

(3) the second fundamental form of $L$ is given by

(5. 7) $h(e_{1}, e_{1})=(2\beta-\mu)$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

where $e_{1}=\partial/\partial x,$ $e_{2}=(2\beta-3\mu)^{1/3}\partial/\partial y$ .
Conversely, suppose that $b,$ $c$ and $\beta\neq 0$ are constants and $\mu(x)$ is a function

satisfying (5.5) and $\mu(x)\neq 0,2\beta/3$ on some open interval I. Let $g$ be the metric
tensor on $U=I\times R$ defined by (5.3). Then, up to rigid motions of $\tilde{M}^{2}(4c)$ , there is
a unique Lagrangian H-umbilical isometric immersion of $(U, g)$ into $\tilde{M}^{2}(4c)$ whose
second fundamental form is given by (5.7). Such a Lagrangian H-umbilical surface
has prescribed constant mean curvature $\beta\neq 0$ .

REMARK 5.1. If we put

(5.8)
$\phi_{b}(\mu)=\int^{\mu}\frac{d\mu}{(3\mu-2\beta)\sqrt{b(2\beta-3\mu)^{2/3}-c-\mu^{2}}}$

,

then $\phi_{b}(\mu)$ is a monotonic function, since $ 3\mu-2\beta=2\mu-\lambda$ is assumed to be
nowhere zero. Hence, $\phi_{b}$ has an inverse function which is denoted by $\phi_{b}^{-1}$ In
terms of $\phi_{b}^{-1}$ , the solutions of (5.5) is given either by $\mu(x)=\phi_{b}^{-1}(x+a)$ or by
$\mu(x)=\phi_{b}^{-1}(-(x+a))$ , where $a$ is a constant.

Theorem 5.1 yields the following.

COROLLARY 5.2. If $M$ is a Lagrangian H-umbilical surface in $C^{2}$ with
constant mean curvature, then $M$ is one of the following Lagrangian H-umbilical
surfaces:

(1) a minimal Lagrangian surface,
(2) an open portion of Lagrangian circular cylinder: $S^{1}(r)\times R\subset C^{1}\times C^{1}=$

$C^{2}$ , on a Lagrangian $Cl\iota fford$ torus: $S^{1}(r)\times S^{1}(r)\subset C^{2}$ ,
(3) an open portion of a Lagrangian pseudo-sphere, $or$

(4) a complex extensor which is not an open portion of a Lagrangian
pseudo-sphere.

PROOF. Let $M$ be a Lagrangian H-umbilical surface in $C^{2}$ with constant
mean curvature. If $M$ is flat, then the second fundamental form of $M$ takes the
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form:

(5.9) $h(e_{1}, e_{1})=\beta Je_{1}$ , $h(e_{1}, e_{2})=h(e_{2}, e_{2})=0$ ,

for some constant $\beta\neq 0$ , according to Lemma 3.2 unless $\lambda=\mu$ . Thus, (3.8) and
(3.9) imply $\omega_{1}^{2}=0$ . Hence, by (2.3) we obtain $DH=0$ . These imply that $M$ is a
flat surface with parallel mean curvature vector. Hence, using (5.9), we may
conclude that $M$ is an open portion of a Lagrangian circular cylinder or a
Lagrangian Clifford torus.

If $M$ is a nonflat Lagrangian H-umbilical surface with nonzero constant
mean curvature, then from the discussion given at the beginning of this section,
we know that the integral curves of $e_{1}$ are geodesics in $M$. Therefore, by applying
Theorem 4.3 of [1], $M$ is either an open portion of a Lagrangian pseudo-sphere or
a complex extensor. $\square $

REMARK 5.2. If a Lagrangian H-umbilical surface $M$ with constant mean
curvature $\beta$ is a complex extensor, then, up to rigid motions of $C^{2}$ , it is given by
the tensor product $F\otimes G$ , where $G$ is the unit circle in $E^{2}$ centered at the origin
and $F$ is the unit speed curve in the complex plane $C$ defined by

(5.10) $F(s)=\gamma+\int^{s}(\exp(i\int^{t}(2\beta-\mu(x))dx)dt)$ ,

where $\gamma$ is a complex number and $\mu(x)$ is given either by $\mu(x)=\phi_{b}^{-1}(x+a)$ or by
$\mu(x)=\phi_{b}^{-1}(-(x+a))$ , where $\phi^{-1}$ is defined in Remark 5.1.

6. Lagrangian H-umbilical surfaces with $\lambda=\alpha\mu$

First we give the following existence theorem.

THEOREM 6.1. For any given constants $c$ and $\alpha$ , there exists a Lagrangian H-
umbilical surface in $\tilde{M}^{2}(4c)$ whose second fundamental form satisfies
(6. 1) $ h(e_{1}, e_{1})=\alpha\mu$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

for some nonzero function $\mu$ with respect to some orthonormal frame field $e_{1},$ $e_{2}$ .

PROOF. When $\alpha=-1$ , this follows from Corollary 3.6. When $\alpha=2$ , this
follows from Theorems 5.1 and 6.1 of [2] and Theorem 3.1 of [1].

Now, suppose $\alpha\neq-1,2$ . If we choose a sufficiently large positive number $b$

such that $b>(\alpha-2)^{2}(c+\mu^{2})\mu^{2/(\alpha-2)}$ on some open interval $\hat{I}\subset(0, \infty)$ , then
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(6.2)
$\psi_{b}(\mu)=\int^{\mu}\frac{d\mu}{\mu^{(\alpha-3)/(\alpha-2)\sqrt{b-(\alpha-2)^{2}(c+\mu^{2})\mu^{2/(\alpha-2)}}}}$

is an increasing function on $\hat{I}$ . Let $\mu(x)=\psi_{b}^{-1}(x)$ denote the inverse function of
$\psi_{b}$ defined on the corresponding open interval, say $I$.

We define a metric tensor $g$ on $U=I\times R$ by

(6.3) $g=dx^{2}+\mu^{2/(\alpha-2)}dy^{2}$

and define a symmetric bilinear map $\sigma$ on $(U, g)$ by

(6.4) $\sigma(e_{1}, e_{1})=\alpha\mu e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ ,

where $e_{1}=\partial/\partial x,$ $e_{2}=\mu^{-1/(\alpha-2)}\partial/\partial y$ . Then, by a straight-forward computation
we conclude that $((U, g),$ $\sigma$ ) satisfies conditions (1), (2) and (3) of Theorem 2.1.
Thus, by Theorem 2.1, there exists a Lagrangian isometric immersion from $(U, g)$

into $\tilde{M}^{2}(4c)$ whose second fundamental form is given by (6.1). $\square $

THEOREM 6.2. Let $M$ be a nonflat Lagrangian H-umbilical surface in $C^{2}$

whose Gauss curvature $K$ and squared mean curvature $H^{2}$ are proportional. Then
$M$ is one of the following Lagrangian surfaces:

(1) a minimal Lagrangian surface,
(2) an open portion of a Lagrangian pseudo-sphere, $or$

(3) a complex extensor which is not an open portion of a Lagrangian
pseudo-sphere.

PROOF. Assume that $M$ is a non-minimal Lagrangian H-umbilical surface in
$C^{2}$ whose Gauss curvature $K$ and squared mean curvature $H^{2}$ are proportional,
that is, $K=aH^{2}$ for some real number $a$ . Since $M$ is Lagrangian H-umbilical, the
second fundamental form of $M$ in $C^{2}$ satisfies

(6.5) $ h(e_{1}, e_{1})=\lambda$Je 1 $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ ,

for some function $\lambda,$ $\mu\neq 0$ with respect to some orthonormal frame field $e_{1},$ $e_{2}$ .
From (6.5), the equation of Gauss and the definition of the squared mean

curvature, we obtain

(6.6) $a\lambda^{2}+2(a-2)\mu\lambda+(a+4)\mu^{2}=0$ .

Solving (6.6) yields

(6.7) $\lambda=\frac{1}{a}((2-a)\mu\pm 2\sqrt{(1-2a)\mu^{2}})$ .
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Since $\lambda$ is real, (6.7) yields $a\leq 1/2$ . Thus, there is real number $\alpha$ such that $a=$

$4(\alpha-1)/(\alpha^{2}+1)^{2}$ . Thus, we get

(6.8) $(\alpha+1)^{2}K=4(\alpha-1)H^{2}$ .

From (6.5) and (6.8), we know that the second fundamental form of $M$ in $C^{2}$

satisfies (6.1) for some nonzero function $\mu$ . Hence, by applying (3.9) and (3.10),

we get $(1+\alpha)e_{2}\mu=0$ which implies that either $M$ is minimal or $e_{2}\mu=0$ . If $e_{2}\mu=$

$0,$ $(3.9)$ yields $(2-\alpha)\mu\omega_{2^{1}}(e_{1})=0$ . Thus, we have either $\alpha=2$ or $\nabla_{e_{1}}e_{1}=0$ .
If $\alpha=2,$ $M$ is an open portion of a Lagrangian pseudo-sphere according to

Theorem 3.1 of [1].

If $\nabla_{e_{1}}e_{1}=0$ , then, according to Theorem 4.3 of [1], $M$ is either a flat surface
or a complex extensor. However, the flat case cannot occurs. $\square $

REMARK 6.1. We are able to determine the intrinsic and the extrinsic
structures of a Lagrangian surface in a complex space form $\tilde{M}^{2}(4c)$ which
satisfies (6.1) for $\alpha\neq-1,2$ , too. In fact, by applying the same method utilized in
section 5, we may prove that the function $\mu$ of such a Lagrangian surface is a
function of $x$ which is a solution of

(6.9) $u^{\prime}(x)^{2}=\mu^{2(\alpha-3)/(\alpha-2)}\{b-(\alpha-2)^{2}(c+\mu^{2})\mu^{2/(\alpha-2)}\}$

for some constant $b$ and, moreover, the metric tensor of such a Lagrangian
surface is given by

(6.10) $g=dx^{2}+\mu^{2/(\alpha-2)}dy^{2}$

with respect to a coordinate system $\{x, y\}$ satisfying $e_{1}=\partial/\partial x,$ $e_{2}=\mu^{1/(2-\alpha)}\partial/\partial y$ .

REMARK 6.2. If the Lagrangian H-umbilical surface $M$ mentioned in
Theorem 6.2 is a complex extensor, then, up to rigid motions of $C^{2}$ , it is given by
the tensor product $F\otimes G$ , where $G$ is the unit circle in $E^{2}$ centered at the origin
and $F$ is the unit speed curve in the complex plane $C$ defined by

(6. 11) $F(s)=\gamma+\int^{s}(\exp(i\int^{t}\alpha\mu(x)dx)dt)$ ,

where $\gamma$ is a complex number, $\alpha$ a real number and $\mu(x)$ a solution of (6.9).
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7. Lagrangian H-umbilical surfaces with $\mu=\mu(y)$

All of the Lagrangian H-umbilical surfaces studied in sections 4, 5 and 6
satisfy the condition $e_{2}\mu=0$ .

In this section we determine the intrinsic and the extrinsic structures of
Lagrangian H-umbilical surfaces in $\tilde{M}^{2}(4c)$ whose second fundamental form
satisfies

(7. 1) $h(e_{1}, e_{1})=\lambda Je_{1}$ , $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je1$ , $e_{1}\mu=0$

for $\mu\neq 0,$ $\lambda/2$ with respect to some suitable orthonormal frame field $e_{1},$ $e_{2}$ .
From section 3 we know that, with respect to some coordinate system $\{x, y\}$ ,

the metric tensor of such a Lagrangian H-umbilical surface $M$ takes the form:

(7.2) $g=E^{2}dx^{2}+G^{2}dy^{2}$ , $E=\frac{m(x)}{\mu^{1/3}}$ , $G=q(y)\exp(\int^{X}kdx)$ ,

where $e_{1}=E^{-1}\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ and $k$ is defined by

(7.3) $k(x, y)=\frac{m(x)\mu_{X}}{f(x)\mu^{1/3}-3m(x)\mu}$

for some function $f(x)$ and nonzero functions $m(x),$ $q(y)$ . Moreover, from
section 3 we also have

(7.4) $\lambda=-\mu+\frac{f(x)}{E}$ .

The assumption $e_{1}\mu=0$ is equivalent to $\mu_{X}=0$ , that is, $\mu=\mu(y)$ . Thus (7.3)

yields $k=0$ . Hence, equation (3.22) reduces to

(7.5) 3 ($\frac{f(x)}{m(x)}\mu-2\mu^{5/3}+c\mu^{-1/3})q(y)=(\frac{\mu^{\prime}(y)}{\mu^{4/3}q(y)})^{\prime}$

which implies in particular that $f(x)/m(x)$ is a constant, which is denoted by $b$ .
Therefore, (7.5) can be rewritten as

(7.6) $(\frac{\mu^{\prime}}{\mu^{4/3}})q^{\prime}(y)-(\frac{\mu^{\prime}}{\mu^{4/3}})^{\prime}q(y)=-3(b\mu-2\mu^{5/3}+c\mu^{-1/3})q^{3}(y)$ .

Solving (7.6) yields

(7.7) $q(y)^{2}=\mu^{\prime 2}\{9(a+b\mu^{2/3}-\mu^{4/3}+c\mu^{-2/3})\}^{-1}$ ,

where $a$ is an integration constant.
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Consequently, the metric tensor of $M$ takes the form:

(7.8) $g=\frac{m^{2}(x)}{\mu^{2/3}}dx^{2}+\frac{\mu^{\prime 2}}{9(a+b\mu^{2/3}-\mu^{4/3}+c\mu^{-2/3})}dy^{2}$ .

Thus, by applying a suitable change of variable in $x$ if necessary, we obtain

(7.9) $g=\mu^{-2/3}dx^{2}+G^{2}dy^{2}$ , $G=\frac{\mu^{\prime}}{3}(a+b\mu^{2/3}-\mu^{4/3}+c\mu^{-2/3})^{-1/2}$ .

Using (7.1), (7.4) and (7.9) we conclude that the second fundamental satisfies

(7.10) $h(e_{1}, e_{1})=(b\mu^{1/3}-\mu)Je_{1}$ , $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$ .

Conversely, suppose that $a,$
$b$ are constants and $\mu=\mu(y)$ a nowhere zero

function which satisfy $a>\mu^{-2/3}(\mu^{2}-c-b\mu^{4/3})$ on some open interval $I$. We
define a metric tensor $g$ on $U=R\times I$ by (7.9) and define a symmetric bilinear
map $\sigma$ on $(U, g)$ by

(7.11) $\sigma(e_{1}, e_{1})=(b\mu^{1/3}-\mu)e_{1}$ , $\sigma(e_{1}, e_{2})=\mu e_{2}$ , $\sigma(e_{2}, e_{2})=\mu e_{1}$ ,

where $e_{1}=\mu^{1/3}\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial x$ . Then we can verify by a straight-forward
computation that $\{(U, g), \sigma\}$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2, we obtain the following.

THEOREM 7.1. Let $L:M\rightarrow\tilde{M}^{2}(4c)$ be a Lagrangian H-umbilical surface
whose second fundamental form satisfies
(7. 12) $ h(e_{1}, e_{1})=\lambda$Je1, $h(e_{1}, e_{2})=\mu Je_{2}$ , $h(e_{2}, e_{2})=\mu Je_{1}$

for $\mu\neq 0,$ $\lambda/2$ with respect to an orthonormal frame field $e_{1},$ $e_{2}$ . If $e_{1}\mu=0$ , then
there exist constants $a$ and $b$ such that

(1) $\lambda=b\mu^{1/3}-\mu$ and
(2) the metric tensor of $M$ is given by (7.9) with respect to a coordinate system

$\{x, y\}$ such that $e_{1}=\mu^{1/3}\partial/\partial x,$ $e_{2}=G^{-1}\partial/\partial y$ .
Conversely, $\iota f\mu=\mu(y)$ is a nowhere zero function and $a,$

$b$ are constants which
satisfy $a>\mu^{-2/3}(\mu^{2}-c-b\mu^{4/3})$ on some open interval $I$, then, up to rigid motions

of $\tilde{M}^{2}(4c)$ , there is a unique Lagrangian H-umbilical isometric immersion of $(U, g)$

into $\tilde{M}^{2}(4c)$ whose second fundamental form is given by (7.10), where $U=R\times I$

and $g$ is the metric on $U$ defined by (7.9).

Finally, we remark that, unless the function $\mu$ is constant, the integral curves
of $JH$ are not necessary geodesics for the Lagrangian H-umbilical surfaces given
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in Theorem 7.1. Consequently, these Lagrangian surfaces cannot be complex
extensors in the complex Euclidean plane when $c=0$ .
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