INTRINSIC AND EXTRINSIC STRUCTURES OF LAGRANGIAN SURFACES IN COMPLEX SPACE FORMS

By
Bang-Yen Chen

Abstract

Lagrangian H-umbilical submanifolds introduced in [1, 2] can be regarded as the simplest Lagrangian submanifolds in Kaehler manifolds next to totally geodesic ones. It was proved in [1] that Lagrangian H-umbilical submanifolds of dimension ≥ 3 in complex Euclidean spaces are complex extensors, Lagrangian pseudo-spheres, and flat Lagrangian H-umbilical submanifolds. Lagrangian H umbilical submanifolds of dimension ≥ 3 in non-flat complex space forms are classified in [2]. In this paper we deal with the remaining case; namely, non-totally geodesic Lagrangian H-umbilical surfaces in complex space forms. Such Lagrangian surfaces are characterized by a very simple property; namely, $J H$ is an eigenvector of the shape operator A_{H}, where H is the mean curvature vector field. The main purpose of this paper is to determine both the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces.

1. Introduction

Let $f: M \rightarrow \tilde{M}^{m}$ be an isometric immersion of a Riemannian n-manifold M into a Kaehler manifold \tilde{M}^{m} of complex dimension m. The submanifold M is called totally real (or isotropic in symplectic geometry) if the almost complex structure J of \tilde{M}^{m} carries each tangent space of M into its corresponding normal space [5]. A totally real submanifold M of \tilde{M}^{m} is called Lagrangian if $n=m$. From the symplectic point of view, a local classification of Lagrangian submanifolds is trivial, using local Darboux coordinates [9]. However, from the Riemannian point of view, Lagrangian submanifolds are far from trivial. In this

[^0]respect, there exist a number of very interesting results, both local and global (cf. [8]). For instance it was proved in [5, 7] that a minimal Lagrangian submanifold with constant sectional curvature in a complex space form has to be totally geodesic or flat.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds next to totally geodesic submanifolds in a Riemannian manifold. However, it was proved in [6] that a complex space form of complex dimension ≥ 2 admits no totally umbilical Lagrangian submanifolds except the totally geodesic ones. In views of above facts the author introduced in [1, 2] the notion of Lagrangian H umbilical submanifolds.

According to [1, 2] a Lagrangian H-umbilical submanifold of Kaehler manifold \tilde{M}^{n} is a non-totally geodesic Lagrangian submanifold whose second fundamental form takes the simple form:

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, & h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu J e_{1} \\
h\left(e_{1}, e_{j}\right)=\mu J e_{j}, & h\left(e_{j}, e_{k}\right)=0, \quad j \neq k, \quad j, k=2, \ldots, n \tag{1.1}
\end{array}
$$

for some suitable functions λ and μ with respect to some suitable orthonormal local frame field e_{1}, \ldots, e_{n}.

A Lagrangian submanifold with nonzero mean curvature vector H is Lagrangian H-umbilical if and only if (a) $J H$ is an eigenvector of the shape operator A_{H} and (b) the restriction of A_{H} to $(J H)^{\perp}$ is proportional to the identity map.

It is important to point out that condition (b) follows from condition (a) automatically for Lagrangian surfaces (cf. Lemma 3.1).

Lagrangian H-umbilical submanifolds M of dimension ≥ 3 in a complex space form of constant holomorphic sectional curvature $4 c$ have an important property; namely, the integral curves of $J H$ are geodesics of M whenever $H \neq 0$, unless M is a real space form of constant sectional curvature c. This important property does not hold for 2-dimensional Lagrangian H-umbilical submanifolds in general. Using this important property the author was able to classify in [1, 2] Lagrangian H-umbilical submanifolds of dimension ≥ 3 in complex space forms. In particular, he proved that, except the flat ones, Lagrangian H-umbilical submanifolds in C^{n} with $n \geq 3$ are either Lagrangian pseudo-spheres or complex extensors. Lagrangian H-umbilical submanifolds of dimension ≥ 3 in non-flat complex space forms were determined in [2] via Legendre curves and Hopf's fibration (see [4] for Lagrangian submanifolds of constant curvature c). The explicit description of flat Lagrangian H-umbilical submanifolds in C^{n} with $n \geq 2$ were established in [3].

In this paper we deal with the remaining case; namely, Lagrangian H umbilical surfaces in complex space forms. Because the integral curves of $J H$ are not longer geodesics in general, the method utilized in [1, 2] does not apply to this case.

We point out in section 3 that, except totally geodesic ones, minimal Lagrangian surfaces in any Kaehler surface are Lagrangian H-umbilical automatically. The main purpose of section 3 is to establish a general existence and uniqueness theorem for Lagrangian H-umbilical surfaces in complex space forms. As a by-product, we are able to determine the intrinsic and the extrinsic structures of minimal Lagrangian surfaces in complex space forms. The intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces with constant Gauss curvature or with constant mean curvature are established in sections 4 and 5, respectively. In section 6 we determine Lagrangian H-umbilical surfaces such that the functions λ and μ given in (1.1) are linearly dependent. The Lagrangian surfaces investigated in sections 4,5 and 6 share the property that $e_{2} \mu=0$. The last section determines completely the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces satisfying $e_{1} \mu=0$.

2. Preliminaries

Let $\tilde{M}^{n}(4 c)$ denote a complete simply-connected Kaehler n-manifold with constant holomorphic sectional curvature $4 c$. Let M be a Lagrangian submanifold in $\tilde{M}^{n}(4 c)$. We denote the Levi-Civita connections of M and $\tilde{M}^{n}(4 c)$ by ∇ and $\tilde{\nabla}$, respectively. The formulas of Gauss and Weingarten are given respectively by

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}\\
\tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{gather*}
$$

for tangent vector fields X and Y and normal vector field ξ, where D is the connection on the normal bundle. The second fundamental form h is related to the shape operator A_{ξ} by $\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle$. The mean curvature vector H of M in $\tilde{M}^{2}(4 c)$ is defined by $H=1 / n$ trace h, where $n=\operatorname{dim} M$. We put $H^{2}=\langle H, H\rangle$ which is called the squared mean curvature.

For Lagrangian submanifolds we have [5]

$$
\begin{gather*}
D_{X} J Y=J \nabla_{X} Y \tag{2.3}\\
\langle h(X, Y), J Z\rangle=\langle h(Y, Z), J X\rangle=\langle h(Z, X), J Y\rangle . \tag{2.4}
\end{gather*}
$$

If we denote the curvature tensor of ∇ by R, then the equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
& \langle R(X, Y) Z, W\rangle= \tag{2.5}\\
& \quad\left\langle A_{h(Y, Z)} X, W\right\rangle-\left\langle A_{h(X, Z)} Y, W\right\rangle \\
& +c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) \tag{2.6}\\
& (\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z), \tag{2.7}\\
& \left\langle R^{D}(X, Y) J Z, J W\right\rangle=
\end{align*}
$$

where X, Y, Z, W are vector fields tangent to M and ∇h is defined by

$$
\begin{equation*}
(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.8}
\end{equation*}
$$

We need the following existence and uniqueness theorems for Lagrangian immersions (cf. [1, 4]).

Theorem 2.1. Let $\left(M^{n}, g\right)$ be a simply-connected Riemannian n-manifold. If σ is a symmetric bilinear vector-valued form on M satisfying
(1) $g(\sigma(X, Y), Z)$ is totally symmetric,
(2) $(\nabla \sigma)(X, Y, Z)=\nabla_{X} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)$ is totally symmetric,
(3) $R(X, Y) Z=c(g(Y, Z) X-g(X, Z) Y)+\sigma(\sigma(Y, Z), X)-\sigma(\sigma(X, Z), Y)$, then there exists a Lagrangian isometric immersion $L:(M, g) \rightarrow \tilde{M}^{n}(4 c)$ whose second fundamental form h is given by $h(X, Y)=J \sigma(X, Y)$.

Theorem 2.2. Let $L_{1}, L_{2}: M \rightarrow \tilde{M}^{n}(4 c)$ be two Lagrangian isometric immersions of a Riemannian n-manifold M with second fundamental forms h^{1} and h^{2}, respectively. If

$$
\left\langle h^{1}(X, Y), J L_{1 *} Z\right\rangle=\left\langle h^{2}(X, Y), J L_{2 *} Z\right\rangle
$$

for all vector fields $X Y, Z$ tangent to M, then there exists an isometry ϕ of $\tilde{M}^{n}(4 c)$ such that $L_{1}=L_{2} \circ \phi$.

3. Lagrangian H-umbilical surfaces in complex space forms

We provide some lemmas for later use.
Lemma 3.1. Let $L: M \rightarrow \tilde{M}^{2}$ be a Lagrangian surface in a Kaehler surface without totally geodesic points. We have
(1) L is Lagrangian H-umbilical if and only if $J H$ is an eigenvector of the shape operator A_{H}.
(2) If L is minimal, then L is a Lagrangian H-umbilical surface satisfying (1.1) with $\lambda=-\mu$.

Proof. (1) follows from (2) and the definition of Lagrangian H-umbilical surfaces (cf. section 1).
(2) Let M be a minimal Lagrangian surface without totally geodesic points in a Kaehler surface. We define a function γ_{p} by

$$
\begin{equation*}
\gamma_{p}: U M_{p} \rightarrow \boldsymbol{R}: v \mapsto \gamma_{p}(v)=\langle h(v, v), J v\rangle, \tag{3.1}
\end{equation*}
$$

where $U M_{p}=\left\{v \in T_{p} M:\langle v, v\rangle=1\right\}$. Since $U M_{p}$ is a compact set, there exists a vector v in $U M_{p}$ such that γ_{p} attains an absolute minimum at v. Since p is not totally geodesic, it follows from (2.4) that $\gamma_{p} \neq 0$. By linearity, we have $\gamma_{p}(v)<0$. Because γ_{p} attains an absolute minimum at v, it follows from (2.4) that $\langle h(v, v), J w\rangle=0$ for all w orthogonal to v. So, using (2.4), v is an eigenvector of the symmetric operator $A_{J_{v}}$. By choosing an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M$ with $e_{1}=v$, we obtain

$$
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=-\lambda J e_{2}, \quad h\left(e_{2}, e_{2}\right)=-\lambda J e_{1}
$$

for some λ. Thus M is a Lagrangian H-umbilical surface with $\mu=-\lambda$.

Lemma 3.2. Except totally geodesic ones, a Lagrangian H-umbilical surface of constant Gauss curvature c in a complex space form $\tilde{M}^{2}(4 c)$ is a Lagrangian H umbilical surface satisfying (1.1) with $\mu=0$ or with $\lambda=\mu$.

Conversely, every Lagrangian H-umbilical surface in $\tilde{M}^{2}(4 c)$ satisfying (1.1) with $\mu=0$ or with $\lambda=\mu$ has constant Gauss curvature c.

Proof. Let M be a Lagrangian H-umbilical surface in $\tilde{M}^{2}(4 c)$. Then by (2.3) and (2.7) we have

$$
\begin{equation*}
\langle R(X, Y) Z, W\rangle=\left\langle\left[A_{J Z}, A_{J W}\right] X, Y\right\rangle+c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) \tag{3.2}
\end{equation*}
$$

for X, Y, Z, W tangent to M. If M has constant Gauss curvature c, (3.2) implies that the shape operators of M commute. Thus, at each point $p \in M$ there exists an orthonormal basis e_{1}, e_{2} such that $A_{J_{1}}, A_{J_{e_{2}}}$ are simultaneously diagonalizable. Hence, by (2.4) we obtain

$$
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=h\left(e_{2}, e_{2}\right)=0
$$

for some λ with respect to some suitable orthonormal frame field e_{1}, e_{2} unless $\lambda=\mu$.

The converse follows immediately from the equation of Gauss.
Lagrangian H-umbilical isometric immersions of a real space form $M^{n}(c)$ of
constant sectional curvature c into a complex space form $\tilde{M}^{n}(4 c)$ of constant holomorphic sectional curvature $4 c$ were classified in [1] and [2] for $c=0$ and $c \neq 0$, respectively. The explicit description of such Lagrangian immersions was established in [3] for $c=0$.

Given a real number $b>0$, let $F: \boldsymbol{R} \rightarrow \boldsymbol{C}$ be the unit speed curve defined by

$$
\begin{equation*}
F(s)=\frac{e^{2 b s i}+1}{2 b i} \tag{3.3}
\end{equation*}
$$

With respect to the induced metric the complex extensor $\phi=F \otimes \iota$ of the unit hypersphere of E^{n} via F is a Lagrangian isometric immersion of an open portion of an n-sphere $S^{n}\left(b^{2}\right)$ of sectional curvature b^{2} into C^{n} which is called a Lagrangian pseudo-sphere (see [1] for details).

Lagrangian H-umbilical submanifolds in complex Euclidean spaces satisfying (1.1) with $\lambda=2 \mu$ were determined in [1] as follows.

Theorem 3.3. Up to rigid motions of C^{n}, a Lagrangian isometric immersion $L: M \rightarrow C^{n}$ is a Lagrangian pseudo-sphere if and only if it is a Lagrangian H umbilical immersion satisfying (1.1) with $\lambda=2 \mu$.

Lagrangian pseudo-spheres have both constant mean curvature and constant Gauss curvature.

Remark 3.1. Lagrangian H-umbilical submanifolds satisfying (1.1) with $\lambda=$ 2μ in nonflat complex space forms also have constant mean curvature and constant Gauss curvature [2]. Such Lagrangian H-umbilical submanifolds have been completely classified in [2] (see Theorems 5.1 and 6.1 of [2]).

The following lemma is easy to verify.
Lemma 3.4. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface. Then the squared mean curvature and the Gauss curvature of M satisfy $4 H^{2}=9(K-c)$ if and only if the second fundamental form of L takes the form:

$$
h\left(e_{1}, e_{1}\right)=2 \mu J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1}
$$

for some function $\mu \neq 0$, with respect to some orthonormal frame field e_{1}, e_{2}.

In views of Lemma 3.2, Theorem 3.3, Lemma 3.4 and Remark 3.1, we only need to consider Lagrangian H-umbilical surfaces in a complex space form $\tilde{M}^{2}(4 c)$ such that $K \neq c, c+(4 / 9) H^{2}$.

Now, assume that M is a Lagrangian H-umbilical surface in $\tilde{M}^{2}(4 c)$ satisfying the condition $K \neq c, c+(4 / 9) H^{2}$. Then the second fundamental form of M takes the form:

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{3.4}
\end{equation*}
$$

for some functions λ, μ with $\mu \neq 0, \lambda / 2$, with respect to some orthonormal frame field e_{1}, e_{2}.

Let ω^{1}, ω^{2} denote the dual 1-forms of e_{1}, e_{2} and let $\left(\omega_{B}^{A}\right)$ be the connection forms on M defined by

$$
\begin{equation*}
\tilde{\nabla} e_{i}=\sum_{j=1}^{2} \omega_{i}^{j} e_{j}+\sum_{j=1}^{2} \omega_{i}^{j^{*}} e_{j^{*}}, \quad \tilde{\nabla} e_{i^{*}}=\sum_{j=1}^{2} \omega_{i^{*}}^{j} e_{j}+\sum_{j=1}^{2} \omega_{i^{*}}^{j^{*}} e_{j^{*}}, \tag{3.5}
\end{equation*}
$$

where $e_{i^{*}}=J e_{i}, \omega_{i}^{j}=-\omega_{j}^{i}, \omega_{i^{*}}^{j^{*}}=-\omega_{j^{*}}^{i^{*}}, i=1,2$.
For a Lagrangian surface M in $\tilde{M}^{2}(4 c)$, we have [5]

$$
\begin{equation*}
\omega_{j}^{i^{*}}=\omega_{i}^{j^{*}}, \quad \omega_{i}^{j}=\omega_{i^{*}}^{j^{*}}, \quad \omega_{j}^{i^{*}}=\sum_{k=1}^{n} h_{j k}^{i} \omega^{k} \tag{3.6}
\end{equation*}
$$

From (3.4) and (3.6) we find

$$
\begin{equation*}
\omega_{1}^{1^{*}}=\lambda \omega^{1}, \quad \omega_{2}^{1^{*}}=\mu \omega^{2}, \quad \omega_{2}^{2^{*}}=\mu \omega^{1} \tag{3.7}
\end{equation*}
$$

By (3.4), (3.7) and the equation of Codazzi we obtain

$$
\begin{gather*}
e_{1} \mu=(\lambda-2 \mu) \omega_{1}^{2}\left(e_{2}\right), \tag{3.8}\\
e_{2} \lambda=(2 \mu-\lambda) \omega_{2}^{1}\left(e_{1}\right), \tag{3.9}\\
e_{2} \mu=3 \mu \omega_{1}^{2}\left(e_{1}\right), \tag{3.10}
\end{gather*}
$$

Since $\operatorname{Span}\left\{e_{1}\right\}$ and Span $\left\{e_{2}\right\}$ are one-dimensional distributions, there exists a local coordinate system $\{x, y\}$ on M such that $\partial / \partial x$ and $\partial / \partial y$ are parallel to e_{1}, e_{2}, respectively. Thus, the metric tensor g on M takes the form:

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2} \tag{3.11}
\end{equation*}
$$

for some nonzero functions E and G. Without loss of generality we may assume

$$
\begin{equation*}
e_{1}=\frac{1}{E} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{G} \frac{\partial}{\partial y} . \tag{3.12}
\end{equation*}
$$

From (3.11) we find

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{1}\right)=\frac{E_{y}}{E G}, \quad \omega_{1}^{2}\left(e_{2}\right)=\frac{G_{x}}{E G}, \quad E_{y}=\frac{\partial E}{\partial y}, \quad G_{x}=\frac{\partial G}{\partial x} . \tag{3.13}
\end{equation*}
$$

By (3.10), (3.12) and (3.13) we have

$$
\begin{equation*}
(\ln \mu)_{y}=-3(\ln E)_{y} \tag{3.14}
\end{equation*}
$$

Solving (3.14) yields

$$
\begin{equation*}
E=\frac{m(x)}{\mu^{1 / 3}}, \quad \mu=\frac{m^{3}(x)}{E^{3}} \tag{3.15}
\end{equation*}
$$

for some function $m(x) \neq 0$.
By applying (3.9), (3.12), (3.13) and (3.15) we find

$$
\begin{equation*}
E \lambda_{y}=\frac{2}{E^{3}} m^{3}(x) E_{y}-\lambda E_{y} . \tag{3.16}
\end{equation*}
$$

Solving (3.16) yields

$$
\begin{equation*}
\lambda=-\mu+\frac{f(x)}{E} \tag{3.17}
\end{equation*}
$$

for some function $f(x)$. From (3.15), (3.17) and the assumption $2 \mu \neq \lambda$, we obtain $f(x) \neq 3 m(x) \mu^{2 / 3}$.

Using (3.8), (3.12), (3.13), (3.15) and (3.17), we find

$$
\begin{equation*}
\mu_{x}=\left(\frac{f(x)}{m(x)} \mu^{1 / 3}-3 \mu\right)(\ln G)_{x} \tag{3.18}
\end{equation*}
$$

Solving (3.18) yields

$$
\begin{equation*}
G=q(y) \exp \left(\int^{x} k(x, y) d x\right), \quad k(x, y)=\frac{m(x) \mu_{x}}{f(x) \mu^{1 / 3}-3 m(x) \mu} \tag{3.19}
\end{equation*}
$$

for some function $q(y) \neq 0$. Consequently, the metric tensor of M takes the following form:

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2}, \quad E=\frac{m(x)}{\mu^{1 / 3}}, \quad G=q(y) \exp \left(\int^{x} k d x\right) \tag{3.20}
\end{equation*}
$$

From (3.11) it follows that the Gauss curvature K of M is given by

$$
\begin{equation*}
K=-\frac{1}{E G}\left\{\frac{\partial}{\partial y}\left(\frac{E_{y}}{G}\right)+\frac{\partial}{\partial x}\left(\frac{G_{x}}{E}\right)\right\} . \tag{3.21}
\end{equation*}
$$

By (3.15), (3.17), (3.19) and (3.21), we conclude that the functions $f(x)$, $m(x), q(y)$ and $\mu(x, y)$ satisfy the following second order differential equation:

$$
\begin{align*}
& \left(\frac{f(x)}{m(x)} \mu-2 \mu^{5 / 3}+c \mu^{-1 / 3}\right) m(x) q(y) \exp \left(\int^{x} k d x\right) \tag{3.22}\\
& \quad=\frac{m(x)}{3}\left(\frac{\mu_{y} \exp \left(-\int^{x} k d x\right)}{\mu^{4 / 3} q(y)}\right)_{y}-q(y)\left(\frac{\mu^{1 / 3} k \exp \left(\int^{x} k d x\right)}{m(x)}\right)_{x}
\end{align*}
$$

Conversely, suppose that $f(x), m(x), q(y)$ and $\mu(x, y)$ are functions defined on a simply-connected domain U of \boldsymbol{R}^{2} such that $m(x), q(y)$ and $\mu(x, y)$ and nowhere zero, $f(x) \neq 3 m(x) \mu^{2 / 3}$, and they satisfy (3.22). We define a metric tensor g on U by

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2}, \quad E=\frac{m(x)}{\mu^{1 / 3}}, \quad G=q(y) \exp \left(\int^{x} k d x\right) \tag{3.23}
\end{equation*}
$$

where $k=k(x, y)$ is defined by (3.19).
We define a symmetric bilinear form σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=\left(\frac{f(x) \mu^{1 / 3}}{m(x)}-\mu\right) e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{3.24}
\end{equation*}
$$

By applying (3.22)-(3.24) and a straight-forward computation, we know that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

From the conditions $f(x) \neq 3 m(x) \mu^{2 / 3}$ and $\mu \neq 0$, it follows that $K \neq c$, $c+(4 / 9) H^{2}$.

Consequently, by Theorem 2.1 and Theorem 2.2, we obtain the following.
Theorem 3.5. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface such that $K \neq c, c+(4 / 9) H^{2}$. Then
(1) there exist functions $f(x), m(x), q(y)$ and $\mu(x, y)$ such that $m(x), q(y)$ and $\mu(x, y)$ are nowhere zero, $f(x) \neq 3 m(x) \mu^{2 / 3}$, and they satisfy (3.22),
(2) with respect to some coordinate system $\{x, y\}$ on M, the metric tensor of M is given by

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2}, \quad E=m(x) \mu^{-1 / 3}, \quad G=q(y) \exp \left(\int^{x} k d x\right) \tag{3.25}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{m(x) \mu_{x}}{f(x) \mu^{1 / 3}-3 m(x) \mu} \tag{3.26}
\end{equation*}
$$

(3) the second fundamental form of L is given by

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\left(\frac{f(x)}{m(x)} \mu^{1 / 3}-\mu\right) J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{3.27}
\end{equation*}
$$

where $e_{1}=E^{-1} \partial / \partial x$ and $e_{2}=G^{-1} \partial / \partial y$.
Conversely, suppose that $f(x), m(x), q(y)$ and $\mu(x, y)$ are functions defined on a simply-connected domain U of \boldsymbol{R}^{2} such that $m(x), q(y)$ and $\mu(x, y)$ are nowhere zero, $f(x) \neq 3 m(x) \mu^{2 / 3}$, and they satisfy (3.22). Let g be the metric tensor on U defined by (3.25). Then, up to rigid motions of $\tilde{M}^{2}(4 c)$, there exists a unique Lagrangian H-umbilical isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (3.27). The Gauss curvature K and the squared mean curvature H^{2} of such a Lagrangian surface satisfy the condition $K \neq c$, $c+4 / 9 H^{2}$.

Now, suppose that $L: M \rightarrow \tilde{M}^{2}(4 c)$ is a minimal Lagrangian surface without totally geodesic points. Then, according to Lemma 3.1, the second fundamental form of L satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=-\hat{\mu} J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\hat{\mu} J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\hat{\mu} J e_{1} . \tag{3.28}
\end{equation*}
$$

for some nonzero function $\hat{\mu}$ with respect to some orthonormal frame field e_{1}, e_{2}. Thus, by (3.15), (3.17), (3.18) and (3.19), we obtain

$$
\begin{equation*}
g=\hat{\mu}^{-2 / 3}\left\{m^{2}(\bar{x}) d \bar{x}^{2}+q^{2}(\bar{y}) d \bar{y}^{2}\right\} \tag{3.29}
\end{equation*}
$$

for some coordinate system $\{\bar{x}, \bar{y}\}$ with $e_{1}=\bar{\mu}^{1 / 3} m(\bar{x})^{-1} \partial / \partial \bar{x}, e_{2}=\bar{\mu}^{1 / 3} q(\bar{y})^{-1} \partial /$ $\partial \bar{y}$.

After applying the coordinate transformation:

$$
\begin{equation*}
x=\int^{x} m(\bar{x}) d \bar{x} \quad \text { and } \quad y=\int^{y} q(\bar{y}) d \bar{y} \tag{3.30}
\end{equation*}
$$

the metric tensor of M takes the simple form:

$$
\begin{equation*}
g=\mu^{-2 / 3}\left(d x^{2}+d y^{2}\right) \tag{3.31}
\end{equation*}
$$

where $\mu(x, y)=\hat{\mu}(\bar{x}(x), \bar{y}(y))$. With respect the coordinate system $\{x, y\}$, equation (3.22) becomes

$$
\begin{equation*}
\Delta(\ln \mu)=3\left(c-2 \mu^{2}\right) \mu^{-2 / 3} \tag{3.32}
\end{equation*}
$$

where $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$. With respect to x and y, (3.28) becomes

$$
\begin{gather*}
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right)=-\mu^{2 / 3} J\left(\frac{\partial}{\partial x}\right), \quad h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\mu^{2 / 3} J\left(\frac{\partial}{\partial y}\right), \tag{3.33}\\
h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=\mu^{2 / 3} J\left(\frac{\partial}{\partial x}\right) .
\end{gather*}
$$

Conversely, if μ is a nowhere zero function defined on a simply-connected domain U of \boldsymbol{R}^{2} which satisfies (3.23). We define a metric tensor on U by

$$
g=\mu^{-2 / 3}\left(d x^{2}+d y^{2}\right)
$$

and define a symmetric bilinear form σ on (U, g) by

$$
\sigma\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right)=-\mu^{2 / 3} \frac{\partial}{\partial x}, \quad \sigma\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\mu^{2 / 3} \frac{\partial}{\partial y}, \quad \sigma\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=\mu^{2 / 3} \frac{\partial}{\partial x} .
$$

Then, by a straight-forward computation, we know that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Thus, by Lemma 3.1, Theorem 2.1 and 2.2 , we obtain the following.

Corollary 3.6. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a minimal Lagrangian surface without totally geodesic points. Then, with respect to a suitable coordinate system $\{x, y\}$, we have
(1) the metric tensor of M takes the form of (3.31) for some nowhere zero function μ satisfying (3.32) and
(2) the second fundamental form of L is given by (3.33).

Conversely, if μ is a nowhere zero function defined on a simply-connected domain U of \boldsymbol{R}^{2} satisfying (3.32) and $g=\mu^{-2 / 3}\left(d x^{2}+d y^{2}\right)$ is the metric tensor on U, then, up to rigid motions of $\tilde{M}^{2}(4 c)$, there is a unique minimal (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (3.33).

4. Lagrangian H-umbilical surfaces with constant Gauss curvature

The following result determines the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces with constant Gauss curvature in complex space forms.

Theorem 4.1. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface. If M has constant Gauss curvature K such that $K \neq c, c+(4 / 9) H^{2}$, then
(1) with respect to some coordinate system $\{x, y\}$ on M, the metric tensor of M is given by

$$
\begin{equation*}
g=d x^{2}+G^{2} d y^{2} \tag{4.1}
\end{equation*}
$$

where

$$
G= \begin{cases}\frac{1}{\sqrt{K}} \cos (\sqrt{K} x), & \text { if } K>0 \tag{4.2}\\ x, & \text { if } K=0 \\ \frac{1}{\sqrt{-K}} \cosh (\sqrt{-K} x), & \text { if } K<0\end{cases}
$$

(2) the second fundamental form of L is given by

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\left(\frac{K-c+\mu^{2}}{\mu}\right) J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{4.3}
\end{equation*}
$$

where $e_{1}=\partial / \partial x, e_{2}=G^{-1} \partial / \partial y$ and μ is a nonzero function satisfying

$$
\left|K-c-\mu^{2}\right|= \begin{cases}K \sec ^{2}(\sqrt{K} x), & \text { if } K>0 \tag{4.4}\\ x^{-2}, & \text { if } K=0 \\ -K \operatorname{sech}^{2}(\sqrt{-K} x), & \text { if } K<0\end{cases}
$$

Conversely, suppose that c, K are two unequal constants, U a simply-connected domain of \boldsymbol{R}^{2} such that (4.1) is a well-defined positive-definite metric on U and μ is a function satisfying (4.4). Then
(3) (U, g) has constant Gauss curvature K and
(4) up to rigid motions of $\tilde{M}^{2}(4 c)$, there exists a unique Lagrangian H umbilical isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (4.3).

Proof. Assume that $L: M \rightarrow \tilde{M}^{2}(4 c)$ is a Lagrangian H-umbilical surface such that $K \neq c, c+(4 / 9) H^{2}$. Then the second fundamental form of L takes the form:

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} . \tag{4.5}
\end{equation*}
$$

for some functions λ, μ with $\mu \neq 0, \lambda / 2$, with respect to an orthonormal frame field e_{1}, e_{2}.

From the assumption $K \neq c+(4 / 9) H^{2}$, we obtain $\mu^{2} \neq K-c$. If the Gauss curvature K of M is constant, then

$$
\begin{equation*}
\lambda \mu-\mu^{2}+c=K=\text { constant } . \tag{4.6}
\end{equation*}
$$

By applying (3.9), (3.10) and (4.5), we get $\omega_{1}^{2}\left(e_{1}\right)=0$ and $e_{2} \lambda=e_{2} \mu=0$.
From $\omega_{1}^{2}\left(e_{1}\right)=0$, it follows that the integral curves of e_{1} are geodesics in M. Thus, there exists a local coordinate system $\{x, y\}$ on M such that the metric tensor of M takes the form:

$$
\begin{equation*}
g=d x^{2}+G^{2} d y^{2} \tag{4.7}
\end{equation*}
$$

and $e_{1}=\partial / \partial x, e_{2}=G^{-1} \partial / \partial y$. From $e_{2} \lambda=e_{2} \mu=0$, we obtain $\lambda=\lambda(x)$ and $\mu=$ $\mu(x)$.

From (3.15), (3.17), (3.19) and (4.7), we get

$$
\begin{equation*}
m(x)=\mu^{1 / 3}, \quad f(x)=\lambda(x)+\mu(x), \quad G=q(y) \exp \left(\int^{x} k d x\right) \tag{4.8}
\end{equation*}
$$

where k is defined by (3.19). Equations (3.19), (4.6) and (4.8) imply

$$
\begin{equation*}
k=\frac{\mu \mu^{\prime}}{K-c-\mu^{2}}, \quad \mu^{\prime}=\mu^{\prime}(x) \tag{4.9}
\end{equation*}
$$

Solving (4.9) yields

$$
\begin{equation*}
k(x)=-\frac{1}{2}\left(\ln \left|K-c-\mu^{2}\right|\right)^{\prime}(x) \tag{4.10}
\end{equation*}
$$

Thus, the metric tensor of M takes the form:

$$
\begin{equation*}
g=d x^{2}+\frac{q^{2}(y)}{\left|K-c-\mu^{2}\right|} d y^{2} \tag{4.11}
\end{equation*}
$$

After applying a suitable change of variable in y if necessary, we get

$$
\begin{equation*}
g=d x^{2}+\frac{1}{\left|K-c-\mu^{2}\right|} d y^{2} \tag{4.12}
\end{equation*}
$$

From $\mu_{y}=0$, (4.6), (4.7), (4.9) and equation (3.21) of Gauss, we obtain

$$
\begin{equation*}
k^{\prime}(x)+k^{2}(x)=-K \tag{4.12}
\end{equation*}
$$

Solving (4.12) and using (4.9), we get

$$
\left|K-c-\mu^{2}\right|= \begin{cases}\frac{a}{\cos ^{2}(\sqrt{K}(b-x))}, & \text { if } K>0 \tag{4.13}\\ \frac{a}{(x-b)^{2}}, & \text { if } K=0 \\ \frac{a}{\cosh ^{2}(\sqrt{-K}(x-b))}, & \text { if } K<0\end{cases}
$$

where a, b are integration constants.
Therefore, by applying a translation in x and dilation in y if necessary, we obtain (4.4) and statement (1). (4.3) now follows from (4.5) and (4.6).

Conversely, assume that K, c are unequal constants, U is a simply-connected domain of \boldsymbol{R}^{2} such that (4.1) is a well-defined positive-definite metric on U and μ is a function which satisfies (4.4). Then, by a direct computation, we obtain statement (3).

If we define a symmetric bilinear form σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=\left(\frac{K-c+\mu^{2}}{\mu}\right) e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{4.14}
\end{equation*}
$$

where $e_{1}=\partial / \partial x, e_{2}=G^{-1} \partial / \partial y$, then, by a straight-forward long computation, we conclude that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Hence, according to Theorem 2.1, there is a Lagrangian isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ with second fundamental form given by $h=J \sigma$. Moreover, by (4.14), we obtain statement (5).

The uniqueness of the Lagrangian immersion now follows from Theorem 2.2.

Remark 4.1. Theorem 4.1 of [1] states that Lagrangian H-umbilical submanifolds of dimension ≥ 3 with constant sectional curvature in complex Euclidean spaces are either flat or open portions of Lagrangian pseudo-spheres. In contrast, Theorem 4.1 shows that there exist many Lagrangian H-umbilical surfaces with constant Gauss curvature in the complex Euclidean plane which are neither flat nor open portions of Lagrangian pseudo-spheres.

Remark 4.2. The intrinsic and the extrinsic structures of Lagrangian H umbilical surfaces in $\tilde{M}^{2}(4 c)$ with constant Gauss curvature $K=c+(4 / 9) H^{2}$ have been completely determined in [1] and [2] for $c=0$ and $c \neq 0$, respectively.

It is obvious that a Lagrangian H-umbilical surface in a complex space form has constant mean curvature and constant Gauss curvature if and only if both λ and μ are constant. However, Theorem 3.5 yields the following.

Proposition 4.2. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian isometric immersion whose second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} . \tag{4.15}
\end{equation*}
$$

with respect to an orthonormal frame field e_{1}, e_{2}. If μ is constant, then M has constant Gauss curvature. Moreover, M is flat unless $\mu=0$ or $\mu=\lambda / 2$.

Proof. Let M be a Lagrangian surface in $\tilde{M}^{2}(4 c)$ satisfies (4.15). If $\mu=0$, then M has constant Gauss curvature c. If $\mu=\lambda / 2$, then M also has constant Gauss curvature according to Theorem 3.1 of [1] and Theorems 5.1 and 6.1 of [2] for $c=0$ and $c \neq 0$, respectively. Finally, if $\mu \neq 0, \lambda / 2$, (3.23) implies that E and G are functions of x and y, respectively. In this case M is flat according to (3.21).

Remark 4.3. The converse of Corollary 3.6 is false. In fact, there exist

Lagrangian H-umbilical surfaces with constant Gauss curvature in a complex space form such that the function μ of (4.15) is non-constant.

The following result shows in particular that Lagrangian H -umbilical surfaces with λ being constant do not have Gauss curvature in general.

Proposition 4.3. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian isometric immersion whose second fundamental form satisfies (4.15) for $\mu \neq 0, \lambda / 2$, with respect to an orthonormal frame field e_{1}, e_{2}. If λ is constant, then
(1) there is a coordinate system $\{x, y\}$ on M such that the metric tensor of M is given by

$$
\begin{equation*}
g=d x^{2}+\frac{d y^{2}}{|\lambda-2 \mu|} \tag{4.16}
\end{equation*}
$$

and
(2) μ is a function of x satisfying

$$
\begin{equation*}
\mu^{\prime 2}=(\lambda-2 \mu)^{3}\left\{b+\frac{\mu}{2}-\frac{\lambda^{2}+4 c}{4(\lambda-2 \mu)}\right\} \tag{4.17}
\end{equation*}
$$

for some constant b.
Conversely, suppose that b, c, λ are constants and $\mu(x)$ is a non-constant function satisfying (4.17) on some open interval I. Let g be the metric tensor on $U=I \times \boldsymbol{R}$ defined by (4.16). Then, up to rigid motions of $\tilde{M}^{2}(4 c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (4.15).

Proof. Assume that M is a Lagrangian surface in $\tilde{M}^{2}(4 c)$ satisfying (4.15) with $\mu \neq 0, \lambda / 2$ for some constant λ. Then (3.9) and (3.10) yield $\nabla_{e_{1}} e_{1}=0$ and $e_{1} \mu=0$. Thus, it follows as before that the metric tensor of M takes the form:

$$
\begin{equation*}
g=d x^{2}+G^{2} d y^{2} \tag{4.18}
\end{equation*}
$$

with respect to some coordinate system $\{x, y\}$ with $e_{1}=\partial / \partial x, e_{2}=G^{-1} \partial / \partial y$.
From $e_{2} \mu=0$, we obtain $\mu=\mu(x)$. Moreover, from (3.17), (3.19), (3.20) and (4.18) we have

$$
\begin{equation*}
k=\frac{\mu^{\prime}(x)}{\lambda-2 \mu}=-\frac{1}{2}(\ln |\lambda-2 \mu|)^{\prime}, \quad G=\frac{q(y)}{|\lambda-2 \mu|^{1 / 2}} . \tag{4.19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
g=d x^{2}+\frac{q^{2}(y)}{|\lambda-2 \mu|} d y^{2} \tag{4.20}
\end{equation*}
$$

After applying a suitable change of variable in y if necessary, we have

$$
\begin{equation*}
g=d x^{2}+\frac{d y^{2}}{|\lambda-2 \mu|} \tag{4.21}
\end{equation*}
$$

From (4.15), (4.21), and the equation of Gauss we know that the function $\mu=\mu(x)$ satisfies the following differential equation:

$$
\begin{equation*}
k^{\prime}(x)+k^{2}(x)=\mu^{2}-\lambda \mu-c, \quad k(x)=\frac{\mu^{\prime}(x)}{\lambda-2 \mu} . \tag{4.22}
\end{equation*}
$$

Solving (4.22) for μ^{\prime} yields equation (4.17) for some constant a.
Conversely, suppose that b, c, λ are constants and $\mu(x)$ is a non-constant function satisfying (4.17) on some open interval I. We define a metric tensor g on $U=I \times \boldsymbol{R}$ by (4.16) and define a symmetric bilinear map σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=\lambda e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{4.23}
\end{equation*}
$$

where $e_{1}=\partial / \partial x$ and $e_{2}=|\lambda-2 \mu|^{1 / 2} \partial / \partial y$. Then by a straight-forward computation we conclude that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by Theorems 2.1 and 2.2 we conclude that, up to rigid motions of $\tilde{M}^{2}(4 c)$, there is a unique Lagrangian isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (4.15) with constant λ.

Proposition 4.3 implies that Lagrangian H-umbilical surfaces with constant λ in a complex space form do not have constant Gauss curvature in general.

5. Lagrangian H-umbilical surfaces with constant mean curvature

Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface with $K \neq c, c+$ (4/9) H^{2}. If M has constant mean curvature $\beta \neq 0$, then the second fundamental form of L takes the form:

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=(2 \beta-\mu) J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{5.1}
\end{equation*}
$$

for $\mu \neq 0,2 \beta / 3$ with respect to some suitable orthonormal frame field e_{1}, e_{2}.

From (3.9) and (3.10) we get $0=e_{2}(\beta)=\beta \omega_{2}^{1}\left(e_{1}\right)$ which yields $\nabla_{e_{1}} e_{1}=0$. Hence, by (3.9) and (3.10), we also have $e_{2} \lambda=e_{2} \mu=0$.

From $\omega_{1}^{2}\left(e_{1}\right)=0$, it follows as before that the metric tensor of M takes the form:

$$
\begin{equation*}
g=d x^{2}+G^{2} d y^{2} \tag{5.2}
\end{equation*}
$$

with respect to some local coordinate system $\{x, y\}$ with $e_{1}=\partial / \partial x, e_{2}=G^{-1} \partial /$ ∂y.

From $e_{2} \lambda=e_{2} \mu=0$, we obtain $\lambda=\lambda(x)$ and $\mu=\mu(x)$. Thus, (3.17), (3.19), and (5.1) imply $k(x)=\mu^{\prime} /(2 \beta-3 \mu)$. Hence, after applying a suitable change of variable in y if necessary, the metric tensor of M takes the form:

$$
\begin{equation*}
g=d x^{2}+\frac{d y^{2}}{(2 \beta-3 \mu)^{2 / 3}} \tag{5.3}
\end{equation*}
$$

From (5.1), (5.3), and the equation of Gauss we know that the function $\mu=$ $\mu(x)$ satisfies the following differential equation:

$$
\begin{equation*}
\mu^{\prime \prime}(x)+\frac{4 \mu^{\prime 2}}{2 \beta-3 \mu}=(2 \beta-3 \mu)\left(2 \mu^{2}-2 \beta \mu-c\right) \tag{5.4}
\end{equation*}
$$

Solving (5.4) for μ^{\prime} yields

$$
\begin{equation*}
\mu^{\prime 2}=(3 \mu-2 \beta)^{2}\left\{b(2 \beta-3 \mu)^{2 / 3}-c-\mu^{2}\right\} \tag{5.5}
\end{equation*}
$$

where b is an integration constant satisfying $b(2 \beta-3 \mu)^{2 / 3}>c+\mu^{2}$. Such constant exists at least locally, since $(2 \beta-3 \mu)^{2}=(\lambda-2 \mu)^{2}>0$.

Conversely, suppose that b, c and $\beta \neq 0$ are constants and $\mu(x)$ is a function with $\mu \neq 0,2 \beta / 3$ which satisfy (5.5) on some open interval I. We define a metric tensor g on $U=I \times \boldsymbol{R}$ by (5.3) and define a symmetric bilinear map σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=(2 \beta-\mu) e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{5.6}
\end{equation*}
$$

where $e_{1}=\partial / \partial x$ and $e_{2}=(2 \beta-3 \mu)^{1 / 3} \partial / \partial y$. Then by a straight-forward computation we conclude that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2 we obtain the following.

Theorem 5.1. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface with $K \neq c, c+(4 / 9) H^{2}$. If M has constant mean curvature $\beta \neq 0$, then
(1) there exist a constant b and a nonzero function $\mu(x) \neq 2 \beta / 3$ satisfying (5.5),
(2) there exists a coordinate system $\{x, y\}$ on M such that the metric tensor of M is given by (5.3), and
(3) the second fundamental form of L is given by

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=(2 \beta-\mu) J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{5.7}
\end{equation*}
$$

where $e_{1}=\partial / \partial x, e_{2}=(2 \beta-3 \mu)^{1 / 3} \partial / \partial y$.
Conversely, suppose that b, c and $\beta \neq 0$ are constants and $\mu(x)$ is a function satisfying (5.5) and $\mu(x) \neq 0,2 \beta / 3$ on some open interval I. Let g be the metric tensor on $U=I \times \boldsymbol{R}$ defined by (5.3). Then, up to rigid motions of $\tilde{M}^{2}(4 c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (5.7). Such a Lagrangian H-umbilical surface has prescribed constant mean curvature $\beta \neq 0$.

Remark 5.1. If we put

$$
\begin{equation*}
\phi_{b}(\mu)=\int^{\mu} \frac{d \mu}{(3 \mu-2 \beta) \sqrt{b(2 \beta-3 \mu)^{2 / 3}-c-\mu^{2}}} \tag{5.8}
\end{equation*}
$$

then $\phi_{b}(\mu)$ is a monotonic function, since $3 \mu-2 \beta=2 \mu-\lambda$ is assumed to be nowhere zero. Hence, ϕ_{b} has an inverse function which is denoted by ϕ_{b}^{-1}. In terms of ϕ_{b}^{-1}, the solutions of (5.5) is given either by $\mu(x)=\phi_{b}^{-1}(x+a)$ or by $\mu(x)=\phi_{b}^{-1}(-(x+a))$, where a is a constant.

Theorem 5.1 yields the following.
Corollary 5.2. If M is a Lagrangian H-umbilical surface in C^{2} with constant mean curvature, then M is one of the following Lagrangian H-umbilical surfaces:
(1) a minimal Lagrangian surface,
(2) an open portion of Lagrangian circular cylinder: $S^{1}(r) \times \boldsymbol{R} \subset C^{1} \times C^{1}=$ C^{2}, on a Lagrangian Clifford torus: $S^{1}(r) \times S^{1}(r) \subset C^{2}$,
(3) an open portion of a Lagrangian pseudo-sphere, or
(4) a complex extensor which is not an open portion of a Lagrangian pseudo-sphere.

Proof. Let M be a Lagrangian H-umbilical surface in C^{2} with constant mean curvature. If M is flat, then the second fundamental form of M takes the
form:

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\beta J e_{1}, \quad h\left(e_{1}, e_{2}\right)=h\left(e_{2}, e_{2}\right)=0 \tag{5.9}
\end{equation*}
$$

for some constant $\beta \neq 0$, according to Lemma 3.2 unless $\lambda=\mu$. Thus, (3.8) and (3.9) imply $\omega_{1}^{2}=0$. Hence, by (2.3) we obtain $D H=0$. These imply that M is a flat surface with parallel mean curvature vector. Hence, using (5.9), we may conclude that M is an open portion of a Lagrangian circular cylinder or a Lagrangian Clifford torus.

If M is a nonflat Lagrangian H-umbilical surface with nonzero constant mean curvature, then from the discussion given at the beginning of this section, we know that the integral curves of e_{1} are geodesics in M. Therefore, by applying Theorem 4.3 of [1], M is either an open portion of a Lagrangian pseudo-sphere or a complex extensor.

Remark 5.2. If a Lagrangian H-umbilical surface M with constant mean curvature β is a complex extensor, then, up to rigid motions of \boldsymbol{C}^{2}, it is given by the tensor product $F \otimes G$, where G is the unit circle in \boldsymbol{E}^{2} centered at the origin and F is the unit speed curve in the complex plane C defined by

$$
\begin{equation*}
F(s)=\gamma+\int^{s}\left(\exp \left(i \int^{t}(2 \beta-\mu(x)) d x\right) d t\right) \tag{5.10}
\end{equation*}
$$

where γ is a complex number and $\mu(x)$ is given either by $\mu(x)=\phi_{b}^{-1}(x+a)$ or by $\mu(x)=\phi_{b}^{-1}(-(x+a))$, where ϕ^{-1} is defined in Remark 5.1.

6. Lagrangian H-umbilical surfaces with $\lambda=\alpha \mu$

First we give the following existence theorem.

Theorem 6.1. For any given constants c and α, there exists a Lagrangian H umbilical surface in $\tilde{M}^{2}(4 c)$ whose second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\alpha \mu J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1}, \tag{6.1}
\end{equation*}
$$

for some nonzero function μ with respect to some orthonormal frame field e_{1}, e_{2}.

Proof. When $\alpha=-1$, this follows from Corollary 3.6. When $\alpha=2$, this follows from Theorems 5.1 and 6.1 of [2] and Theorem 3.1 of [1].

Now, suppose $\alpha \neq-1,2$. If we choose a sufficiently large positive number b such that $b>(\alpha-2)^{2}\left(c+\mu^{2}\right) \mu^{2 /(\alpha-2)}$ on some open interval $\hat{I} \subset(0, \infty)$, then

$$
\begin{equation*}
\psi_{b}(\mu)=\int^{\mu} \frac{d \mu}{\mu^{(\alpha-3) /(\alpha-2)} \sqrt{b-(\alpha-2)^{2}\left(c+\mu^{2}\right) \mu^{2 /(\alpha-2)}}} \tag{6.2}
\end{equation*}
$$

is an increasing function on \hat{I}. Let $\mu(x)=\psi_{b}^{-1}(x)$ denote the inverse function of ψ_{b} defined on the corresponding open interval, say I.

We define a metric tensor g on $U=I \times \boldsymbol{R}$ by

$$
\begin{equation*}
g=d x^{2}+\mu^{2 /(\alpha-2)} d y^{2} \tag{6.3}
\end{equation*}
$$

and define a symmetric bilinear map σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=\alpha \mu e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{6.4}
\end{equation*}
$$

where $e_{1}=\partial / \partial x, e_{2}=\mu^{-1 /(\alpha-2)} \partial / \partial y$. Then, by a straight-forward computation we conclude that $((U, g), \sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Thus, by Theorem 2.1, there exists a Lagrangian isometric immersion from (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (6.1).

Theorem 6.2. Let M be a nonflat Lagrangian H-umbilical surface in C^{2} whose Gauss curvature K and squared mean curvature H^{2} are proportional. Then M is one of the following Lagrangian surfaces:
(1) a minimal Lagrangian surface,
(2) an open portion of a Lagrangian pseudo-sphere, or
(3) a complex extensor which is not an open portion of a Lagrangian pseudo-sphere.

Proof. Assume that M is a non-minimal Lagrangian H-umbilical surface in C^{2} whose Gauss curvature K and squared mean curvature H^{2} are proportional, that is, $K=a H^{2}$ for some real number a. Since M is Lagrangian H-umbilical, the second fundamental form of M in C^{2} satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1}, \tag{6.5}
\end{equation*}
$$

for some function $\lambda, \mu \neq 0$ with respect to some orthonormal frame field e_{1}, e_{2}.
From (6.5), the equation of Gauss and the definition of the squared mean curvature, we obtain

$$
\begin{equation*}
a \lambda^{2}+2(a-2) \mu \lambda+(a+4) \mu^{2}=0 \tag{6.6}
\end{equation*}
$$

Solving (6.6) yields

$$
\begin{equation*}
\lambda=\frac{1}{a}\left((2-a) \mu \pm 2 \sqrt{(1-2 a) \mu^{2}}\right) . \tag{6.7}
\end{equation*}
$$

Since λ is real, (6.7) yields $a \leq 1 / 2$. Thus, there is real number α such that $a=$ $4(\alpha-1) /\left(\alpha^{2}+1\right)^{2}$. Thus, we get

$$
\begin{equation*}
(\alpha+1)^{2} K=4(\alpha-1) H^{2} \tag{6.8}
\end{equation*}
$$

From (6.5) and (6.8), we know that the second fundamental form of M in C^{2} satisfies (6.1) for some nonzero function μ. Hence, by applying (3.9) and (3.10), we get $(1+\alpha) e_{2} \mu=0$ which implies that either M is minimal or $e_{2} \mu=0$. If $e_{2} \mu=$ 0 , (3.9) yields $(2-\alpha) \mu \omega_{2}^{1}\left(e_{1}\right)=0$. Thus, we have either $\alpha=2$ or $\nabla_{e_{1}} e_{1}=0$.

If $\alpha=2, M$ is an open portion of a Lagrangian pseudo-sphere according to Theorem 3.1 of [1].

If $\nabla_{e_{1}} e_{1}=0$, then, according to Theorem 4.3 of [1], M is either a flat surface or a complex extensor. However, the flat case cannot occurs.

Remark 6.1. We are able to determine the intrinsic and the extrinsic structures of a Lagrangian surface in a complex space form $\tilde{M}^{2}(4 c)$ which satisfies (6.1) for $\alpha \neq-1,2$, too. In fact, by applying the same method utilized in section 5, we may prove that the function μ of such a Lagrangian surface is a function of x which is a solution of

$$
\begin{equation*}
u^{\prime}(x)^{2}=\mu^{2(\alpha-3) /(\alpha-2)}\left\{b-(\alpha-2)^{2}\left(c+\mu^{2}\right) \mu^{2 /(\alpha-2)}\right\} \tag{6.9}
\end{equation*}
$$

for some constant b and, moreover, the metric tensor of such a Lagrangian surface is given by

$$
\begin{equation*}
g=d x^{2}+\mu^{2 /(\alpha-2)} d y^{2} \tag{6.10}
\end{equation*}
$$

with respect to a coordinate system $\{x, y\}$ satisfying $e_{1}=\partial / \partial x, e_{2}=\mu^{1 /(2-\alpha)} \partial / \partial y$.

Remark 6.2. If the Lagrangian H-umbilical surface M mentioned in Theorem 6.2 is a complex extensor, then, up to rigid motions of C^{2}, it is given by the tensor product $F \otimes G$, where G is the unit circle in \boldsymbol{E}^{2} centered at the origin and F is the unit speed curve in the complex plane C defined by

$$
\begin{equation*}
F(s)=\gamma+\int^{s}\left(\exp \left(i \int^{t} \alpha \mu(x) d x\right) d t\right) \tag{6.11}
\end{equation*}
$$

where γ is a complex number, α a real number and $\mu(x)$ a solution of 6.9).

7. Lagrangian H-umbilical surfaces with $\mu=\mu(y)$

All of the Lagrangian H-umbilical surfaces studied in sections 4, 5 and 6 satisfy the condition $e_{2} \mu=0$.

In this section we determine the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces in $\tilde{M}^{2}(4 c)$ whose second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1}, \quad e_{1} \mu=0 \tag{7.1}
\end{equation*}
$$

for $\mu \neq 0, \lambda / 2$ with respect to some suitable orthonormal frame field e_{1}, e_{2}.
From section 3 we know that, with respect to some coordinate system $\{x, y\}$, the metric tensor of such a Lagrangian H-umbilical surface M takes the form:

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2}, \quad E=\frac{m(x)}{\mu^{1 / 3}}, \quad G=q(y) \exp \left(\int^{x} k d x\right) \tag{7.2}
\end{equation*}
$$

where $e_{1}=E^{-1} \partial / \partial x, e_{2}=G^{-1} \partial / \partial y$ and k is defined by

$$
\begin{equation*}
k(x, y)=\frac{m(x) \mu_{x}}{f(x) \mu^{1 / 3}-3 m(x) \mu} \tag{7.3}
\end{equation*}
$$

for some function $f(x)$ and nonzero functions $m(x), q(y)$. Moreover, from section 3 we also have

$$
\begin{equation*}
\lambda=-\mu+\frac{f(x)}{E} \tag{7.4}
\end{equation*}
$$

The assumption $e_{1} \mu=0$ is equivalent to $\mu_{x}=0$, that is, $\mu=\mu(y)$. Thus (7.3) yields $k=0$. Hence, equation (3.22) reduces to

$$
\begin{equation*}
3\left(\frac{f(x)}{m(x)} \mu-2 \mu^{5 / 3}+c \mu^{-1 / 3}\right) q(y)=\left(\frac{\mu^{\prime}(y)}{\mu^{4 / 3} q(y)}\right)^{\prime} \tag{7.5}
\end{equation*}
$$

which implies in particular that $f(x) / m(x)$ is a constant, which is denoted by b. Therefore, (7.5) can be rewritten as

$$
\begin{equation*}
\left(\frac{\mu^{\prime}}{\mu^{4 / 3}}\right) q^{\prime}(y)-\left(\frac{\mu^{\prime}}{\mu^{4 / 3}}\right)^{\prime} q(y)=-3\left(b \mu-2 \mu^{5 / 3}+c \mu^{-1 / 3}\right) q^{3}(y) \tag{7.6}
\end{equation*}
$$

Solving (7.6) yields

$$
\begin{equation*}
q(y)^{2}=\mu^{2}\left\{9\left(a+b \mu^{2 / 3}-\mu^{4 / 3}+c \mu^{-2 / 3}\right)\right\}^{-1} \tag{7.7}
\end{equation*}
$$

where a is an integration constant.

Consequently, the metric tensor of M takes the form:

$$
\begin{equation*}
g=\frac{m^{2}(x)}{\mu^{2 / 3}} d x^{2}+\frac{\mu^{2}}{9\left(a+b \mu^{2 / 3}-\mu^{4 / 3}+c \mu^{-2 / 3}\right)} d y^{2} \tag{7.8}
\end{equation*}
$$

Thus, by applying a suitable change of variable in x if necessary, we obtain

$$
\begin{equation*}
g=\mu^{-2 / 3} d x^{2}+G^{2} d y^{2}, \quad G=\frac{\mu^{\prime}}{3}\left(a+b \mu^{2 / 3}-\mu^{4 / 3}+c \mu^{-2 / 3}\right)^{-1 / 2} \tag{7.9}
\end{equation*}
$$

Using (7.1), (7.4) and (7.9) we conclude that the second fundamental satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\left(b \mu^{1 / 3}-\mu\right) J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{7.10}
\end{equation*}
$$

Conversely, suppose that a, b are constants and $\mu=\mu(y)$ a nowhere zero function which satisfy $a>\mu^{-2 / 3}\left(\mu^{2}-c-b \mu^{4 / 3}\right)$ on some open interval I. We define a metric tensor g on $U=\boldsymbol{R} \times I$ by (7.9) and define a symmetric bilinear map σ on (U, g) by

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=\left(b \mu^{1 / 3}-\mu\right) e_{1}, \quad \sigma\left(e_{1}, e_{2}\right)=\mu e_{2}, \quad \sigma\left(e_{2}, e_{2}\right)=\mu e_{1} \tag{7.11}
\end{equation*}
$$

where $e_{1}=\mu^{1 / 3} \partial / \partial x, e_{2}=G^{-1} \partial / \partial x$. Then we can verify by a straight-forward computation that $\{(U, g), \sigma\}$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2, we obtain the following.
Theorem 7.1. Let $L: M \rightarrow \tilde{M}^{2}(4 c)$ be a Lagrangian H-umbilical surface whose second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=\mu J e_{1} \tag{7.12}
\end{equation*}
$$

for $\mu \neq 0, \lambda / 2$ with respect to an orthonormal frame field e_{1}, e_{2}. If $e_{1} \mu=0$, then there exist constants a and b such that
(1) $\lambda=b \mu^{1 / 3}-\mu$ and
(2) the metric tensor of M is given by (7.9) with respect to a coordinate system $\{x, y\}$ such that $e_{1}=\mu^{1 / 3} \partial / \partial x, e_{2}=G^{-1} \partial / \partial y$.

Conversely, if $\mu=\mu(y)$ is a nowhere zero function and a, b are constants which satisfy $a>\mu^{-2 / 3}\left(\mu^{2}-c-b \mu^{4 / 3}\right)$ on some open interval I, then, up to rigid motions of $\tilde{M}^{2}(4 c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U, g) into $\tilde{M}^{2}(4 c)$ whose second fundamental form is given by (7.10), where $U=\boldsymbol{R} \times I$ and g is the metric on U defined by (7.9).

Finally, we remark that, unless the function μ is constant, the integral curves of $J H$ are not necessary geodesics for the Lagrangian H-umbilical surfaces given
in Theorem 7.1. Consequently, these Lagrangian surfaces cannot be complex extensors in the complex Euclidean plane when $c=0$.

References

[1] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tôhoku Math. J. 49 (1997), 277-297.
[2] B. Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69-108.
[3] B. Y. Chen, Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tôhoku Math. J. (to appear).
[4] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Lagrangian isometric immersions of a real-space-form $M^{n}(c)$ into a complex-space-form $\tilde{M}^{n}(4 c)$, Math, Proc. Cambridge Math. Soc. 124 (1998), 107-125.
[5] B.-Y. Chen and K. Oguie, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
[6] B.-Y. Chen and K. Oguie, Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225-229.
[7] N. Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982), 243-246.
[8] K. Oguie, Some recent topics in the theory of submanifolds, Sugaku Expositions 4 (1991), 2141.
[9] A. Weinstein, Lectures on Symplectic Manifolds, Regional Conf. Ser. Math. No. 29 (Amer. Math. Soc., Providence, RI 1977).

> Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027, USA
> E-mail address: bychen@math.msu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 53B25.
 Received August 28, 1997.

