INTRINSIC AND EXTRINSIC STRUCTURES OF LAGRANGIAN SURFACES IN COMPLEX SPACE FORMS

By

Bang-Yen CHEN

Abstract. Lagrangian H-umbilical submanifolds introduced in [1, 2] can be regarded as the simplest Lagrangian submanifolds in Kaehler manifolds next to totally geodesic ones. It was proved in [1] that Lagrangian H-umbilical submanifolds of dimension ≥ 3 in complex Euclidean spaces are complex extensors, Lagrangian pseudo-spheres, and flat Lagrangian H-umbilical submanifolds. Lagrangian Humbilical submanifolds of dimension ≥ 3 in non-flat complex space forms are classified in [2]. In this paper we deal with the remaining case; namely, non-totally geodesic Lagrangian H-umbilical surfaces in complex space forms. Such Lagrangian surfaces are characterized by a very simple property; namely, JH is an eigenvector of the shape operator A_H , where H is the mean curvature vector field. The main purpose of this paper is to determine both the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces.

1. Introduction

Let $f: M \to \tilde{M}^m$ be an isometric immersion of a Riemannian *n*-manifold M into a Kaehler manifold \tilde{M}^m of complex dimension m. The submanifold M is called *totally real* (or *isotropic* in symplectic geometry) if the almost complex structure J of \tilde{M}^m carries each tangent space of M into its corresponding normal space [5]. A totally real submanifold M of \tilde{M}^m is called *Lagrangian* if n = m. From the symplectic point of view, a local classification of Lagrangian submanifolds is trivial, using local Darboux coordinates [9]. However, from the Riemannian point of view, Lagrangian submanifolds are far from trivial. In this

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 53B25. Received August 28, 1997.

respect, there exist a number of very interesting results, both local and global (cf. [8]). For instance it was proved in [5, 7] that a minimal Lagrangian submanifold with constant sectional curvature in a complex space form has to be totally geodesic or flat.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds next to totally geodesic submanifolds in a Riemannian manifold. However, it was proved in [6] that a complex space form of complex dimension ≥ 2 admits no totally umbilical Lagrangian submanifolds except the totally geodesic ones. In views of above facts the author introduced in [1, 2] the notion of Lagrangian *H*-umbilical submanifolds.

According to [1, 2] a Lagrangian *H*-umbilical submanifold of Kaehler manifold \tilde{M}^n is a non-totally geodesic Lagrangian submanifold whose second fundamental form takes the simple form:

(1.1)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_2, e_2) = \dots = h(e_n, e_n) = \mu J e_1,$$
$$h(e_1, e_j) = \mu J e_j, \quad h(e_j, e_k) = 0, \quad j \neq k, \quad j, k = 2, \dots, n$$

for some suitable functions λ and μ with respect to some suitable orthonormal local frame field e_1, \ldots, e_n .

A Lagrangian submanifold with nonzero mean curvature vector H is Lagrangian *H*-umbilical if and only if (a) JH is an eigenvector of the shape operator A_H and (b) the restriction of A_H to $(JH)^{\perp}$ is proportional to the identity map.

It is important to point out that condition (b) follows from condition (a) automatically for Lagrangian surfaces (cf. Lemma 3.1).

Lagrangian H-umbilical submanifolds M of dimension ≥ 3 in a complex space form of constant holomorphic sectional curvature 4c have an important property; namely, the integral curves of JH are geodesics of M whenever $H \neq 0$, unless M is a real space form of constant sectional curvature c. This important property does not hold for 2-dimensional Lagrangian H-umbilical submanifolds in general. Using this important property the author was able to classify in [1, 2] Lagrangian H-umbilical submanifolds of dimension ≥ 3 in complex space forms. In particular, he proved that, except the flat ones, Lagrangian H-umbilical submanifolds in C^n with $n \geq 3$ are either Lagrangian pseudo-spheres or complex extensors. Lagrangian H-umbilical submanifolds of dimension ≥ 3 in non-flat complex space forms were determined in [2] via Legendre curves and Hopf's fibration (see [4] for Lagrangian H-umbilical submanifolds of constant curvature c). The explicit description of flat Lagrangian H-umbilical submanifolds in C^n with $n \geq 2$ were established in [3]. In this paper we deal with the remaining case; namely, Lagrangian Humbilical surfaces in complex space forms. Because the integral curves of JH are not longer geodesics in general, the method utilized in [1, 2] does not apply to this case.

We point out in section 3 that, except totally geodesic ones, minimal Lagrangian surfaces in any Kaehler surface are Lagrangian H-umbilical automatically. The main purpose of section 3 is to establish a general existence and uniqueness theorem for Lagrangian H-umbilical surfaces in complex space forms. As a by-product, we are able to determine the intrinsic and the extrinsic structures of minimal Lagrangian surfaces in complex space forms. The intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces with constant Gauss curvature or with constant mean curvature are established in sections 4 and 5, respectively. In section 6 we determine Lagrangian H-umbilical surfaces such that the functions λ and μ given in (1.1) are linearly dependent. The Lagrangian surfaces investigated in sections 4, 5 and 6 share the property that $e_2\mu = 0$. The last section determines completely the intrinsic and the extrinsic structures of Lagrangian H-umbilical surfaces are established in sections that the functions μ given in (1.1) are linearly dependent.

2. Preliminaries

Let $\tilde{M}^n(4c)$ denote a complete simply-connected Kaehler *n*-manifold with constant holomorphic sectional curvature 4c. Let M be a Lagrangian submanifold in $\tilde{M}^n(4c)$. We denote the Levi-Civita connections of M and $\tilde{M}^n(4c)$ by ∇ and $\tilde{\nabla}$, respectively. The formulas of Gauss and Weingarten are given respectively by

(2.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

(2.2)
$$\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi,$$

for tangent vector fields X and Y and normal vector field ξ , where D is the connection on the normal bundle. The second fundamental form h is related to the shape operator A_{ξ} by $\langle h(X, Y), \xi \rangle = \langle A_{\xi}X, Y \rangle$. The mean curvature vector H of M in $\tilde{M}^2(4c)$ is defined by H = 1/n trace h, where $n = \dim M$. We put $H^2 = \langle H, H \rangle$ which is called the squared mean curvature.

For Lagrangian submanifolds we have [5]

$$(2.3) D_X J Y = J \nabla_X Y,$$

(2.4)
$$\langle h(X,Y),JZ\rangle = \langle h(Y,Z),JX\rangle = \langle h(Z,X),JY\rangle.$$

If we denote the curvature tensor of ∇ by R, then the equations of Gauss, Codazzi and Ricci are given respectively by

(2.5)
$$\langle R(X, Y)Z, W \rangle = \langle A_{h(Y,Z)}X, W \rangle - \langle A_{h(X,Z)}Y, W \rangle + c(\langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle),$$

(2.6)
$$(\nabla h)(X, Y, Z) = (\nabla h)(Y, X, Z),$$

(2.7)
$$\langle R^D(X, Y)JZ, JW \rangle = \langle [A_{JZ}, A_{JW}]X, Y \rangle$$

+ $c(\langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle),$

where X, Y, Z, W are vector fields tangent to M and ∇h is defined by

(2.8)
$$(\nabla h)(X, Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).$$

We need the following existence and uniqueness theorems for Lagrangian immersions (cf. [1, 4]).

THEOREM 2.1. Let (M^n, g) be a simply-connected Riemannian n-manifold. If σ is a symmetric bilinear vector-valued form on M satisfying

- (1) $g(\sigma(X, Y), Z)$ is totally symmetric,
- (2) $(\nabla \sigma)(X, Y, Z) = \nabla_X \sigma(Y, Z) \sigma(\nabla_X Y, Z) \sigma(Y, \nabla_X Z)$ is totally symmetric,
- (3) $R(X, Y)Z = c(g(Y, Z)X g(X, Z)Y) + \sigma(\sigma(Y, Z), X) \sigma(\sigma(X, Z), Y),$

then there exists a Lagrangian isometric immersion $L: (M,g) \to \tilde{M}^n(4c)$ whose second fundamental form h is given by $h(X, Y) = J\sigma(X, Y)$.

THEOREM 2.2. Let $L_1, L_2 : M \to \tilde{M}^n(4c)$ be two Lagrangian isometric immersions of a Riemannian n-manifold M with second fundamental forms h^1 and h^2 , respectively. If

$$\langle h^1(X, Y), JL_{1*}Z \rangle = \langle h^2(X, Y), JL_{2*}Z \rangle,$$

for all vector fields X Y, Z tangent to M, then there exists an isometry ϕ of $\tilde{M}^n(4c)$ such that $L_1 = L_2 \circ \phi$.

3. Lagrangian H-umbilical surfaces in complex space forms

We provide some lemmas for later use.

LEMMA 3.1. Let $L: M \to \tilde{M}^2$ be a Lagrangian surface in a Kaehler surface without totally geodesic points. We have

(1) L is Lagrangian H-umbilical if and only if JH is an eigenvector of the shape operator A_H .

(2) If L is minimal, then L is a Lagrangian H-umbilical surface satisfying (1.1) with $\lambda = -\mu$.

PROOF. (1) follows from (2) and the definition of Lagrangian *H*-umbilical surfaces (cf. section 1).

(2) Let *M* be a minimal Lagrangian surface without totally geodesic points in a Kaehler surface. We define a function γ_p by

(3.1)
$$\gamma_p: UM_p \to \mathbf{R}: v \mapsto \gamma_p(v) = \langle h(v, v), Jv \rangle,$$

where $UM_p = \{v \in T_pM : \langle v, v \rangle = 1\}$. Since UM_p is a compact set, there exists a vector v in UM_p such that γ_p attains an absolute minimum at v. Since p is not totally geodesic, it follows from (2.4) that $\gamma_p \neq 0$. By linearity, we have $\gamma_p(v) < 0$. Because γ_p attains an absolute minimum at v, it follows from (2.4) that $\langle h(v,v), Jw \rangle = 0$ for all w orthogonal to v. So, using (2.4), v is an eigenvector of the symmetric operator A_{Jv} . By choosing an orthonormal basis $\{e_1, e_2\}$ of T_pM with $e_1 = v$, we obtain

$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = -\lambda J e_2, \quad h(e_2, e_2) = -\lambda J e_1$$

for some λ . Thus M is a Lagrangian H-umbilical surface with $\mu = -\lambda$.

LEMMA 3.2. Except totally geodesic ones, a Lagrangian H-umbilical surface of constant Gauss curvature c in a complex space form $\tilde{M}^2(4c)$ is a Lagrangian Humbilical surface satisfying (1.1) with $\mu = 0$ or with $\lambda = \mu$.

Conversely, every Lagrangian H-umbilical surface in $\tilde{M}^2(4c)$ satisfying (1.1) with $\mu = 0$ or with $\lambda = \mu$ has constant Gauss curvature c.

PROOF. Let M be a Lagrangian H-umbilical surface in $\tilde{M}^2(4c)$. Then by (2.3) and (2.7) we have

 $\langle R(X, Y)Z, W \rangle = \langle [A_{JZ}, A_{JW}]X, Y \rangle + c(\langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle),$

for X, Y, Z, W tangent to M. If M has constant Gauss curvature c, (3.2) implies that the shape operators of M commute. Thus, at each point $p \in M$ there exists an orthonormal basis e_1 , e_2 such that A_{Je_1} , A_{Je_2} are simultaneously diagonalizable. Hence, by (2.4) we obtain

$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = h(e_2, e_2) = 0$$

for some λ with respect to some suitable orthonormal frame field e_1 , e_2 unless $\lambda = \mu$.

The converse follows immediately from the equation of Gauss.

Lagrangian H-umbilical isometric immersions of a real space form $M^{n}(c)$ of

constant sectional curvature c into a complex space form $\tilde{M}^n(4c)$ of constant holomorphic sectional curvature 4c were classified in [1] and [2] for c = 0 and $c \neq 0$, respectively. The explicit description of such Lagrangian immersions was established in [3] for c = 0.

Given a real number b > 0, let $F : \mathbf{R} \to \mathbf{C}$ be the unit speed curve defined by

(3.3)
$$F(s) = \frac{e^{2bsi} + 1}{2bi}.$$

With respect to the induced metric the complex extensor $\phi = F \otimes \iota$ of the unit hypersphere of E^n via F is a Lagrangian isometric immersion of an open portion of an *n*-sphere $S^n(b^2)$ of sectional curvature b^2 into C^n which is called a *Lagrangian pseudo-sphere* (see [1] for details).

Lagrangian *H*-umbilical submanifolds in complex Euclidean spaces satisfying (1.1) with $\lambda = 2\mu$ were determined in [1] as follows.

THEOREM 3.3. Up to rigid motions of \mathbb{C}^n , a Lagrangian isometric immersion $L: M \to \mathbb{C}^n$ is a Lagrangian pseudo-sphere if and only if it is a Lagrangian H-umbilical immersion satisfying (1.1) with $\lambda = 2\mu$.

Lagrangian pseudo-spheres have both constant mean curvature and constant Gauss curvature.

REMARK 3.1. Lagrangian *H*-umbilical submanifolds satisfying (1.1) with $\lambda = 2\mu$ in nonflat complex space forms also have constant mean curvature and constant Gauss curvature [2]. Such Lagrangian *H*-umbilical submanifolds have been completely classified in [2] (see Theorems 5.1 and 6.1 of [2]).

The following lemma is easy to verify.

LEMMA 3.4. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian H-umbilical surface. Then the squared mean curvature and the Gauss curvature of M satisfy $4H^2 = 9(K - c)$ if and only if the second fundamental form of L takes the form:

$$h(e_1, e_1) = 2\mu J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1$$

for some function $\mu \neq 0$, with respect to some orthonormal frame field e_1 , e_2 .

In views of Lemma 3.2, Theorem 3.3, Lemma 3.4 and Remark 3.1, we only need to consider Lagrangian *H*-umbilical surfaces in a complex space form $\tilde{M}^2(4c)$ such that $K \neq c$, $c + (4/9)H^2$.

Now, assume that M is a Lagrangian H-umbilical surface in $\tilde{M}^2(4c)$ satisfying the condition $K \neq c$, $c + (4/9)H^2$. Then the second fundamental form of M takes the form:

(3.4)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1$$

for some functions λ , μ with $\mu \neq 0$, $\lambda/2$, with respect to some orthonormal frame field e_1 , e_2 .

Let ω^1 , ω^2 denote the dual 1-forms of e_1 , e_2 and let (ω_B^A) be the connection forms on M defined by

(3.5)
$$\tilde{\nabla} e_i = \sum_{j=1}^2 \omega_i^j e_j + \sum_{j=1}^2 \omega_i^{j^*} e_{j^*}, \quad \tilde{\nabla} e_{i^*} = \sum_{j=1}^2 \omega_{i^*}^j e_j + \sum_{j=1}^2 \omega_{i^*}^{j^*} e_{j^*},$$

where $e_{i^*} = Je_i$, $\omega_i^j = -\omega_j^i$, $\omega_{i^*}^{j^*} = -\omega_{j^*}^{i^*}$, i = 1, 2. For a Lagrangian surface M in $\tilde{M}^2(A_i)$ we be

For a Lagrangian surface M in $\tilde{M}^2(4c)$, we have [5]

(3.6)
$$\omega_j^{i^*} = \omega_i^{j^*}, \quad \omega_i^j = \omega_{i^*}^{j^*}, \quad \omega_j^{i^*} = \sum_{k=1}^n h_{jk}^i \omega^k.$$

From (3.4) and (3.6) we find

(3.7)
$$\omega_1^{1^*} = \lambda \omega^1, \quad \omega_2^{1^*} = \mu \omega^2, \quad \omega_2^{2^*} = \mu \omega^1.$$

By (3.4), (3.7) and the equation of Codazzi we obtain

(3.8)
$$e_1\mu = (\lambda - 2\mu)\omega_1^2(e_2),$$

(3.9)
$$e_2\lambda = (2\mu - \lambda)\omega_2^1(e_1),$$

(3.10)
$$e_2\mu = 3\mu\omega_1^2(e_1),$$

Since Span $\{e_1\}$ and Span $\{e_2\}$ are one-dimensional distributions, there exists a local coordinate system $\{x, y\}$ on M such that $\partial/\partial x$ and $\partial/\partial y$ are parallel to e_1 , e_2 , respectively. Thus, the metric tensor g on M takes the form:

(3.11)
$$g = E^2 dx^2 + G^2 dy^2$$

for some nonzero functions E and G. Without loss of generality we may assume

(3.12)
$$e_1 = \frac{1}{E} \frac{\partial}{\partial x}, \quad e_2 = \frac{1}{G} \frac{\partial}{\partial y}.$$

From (3.11) we find

(3.13)
$$\omega_2^1(e_1) = \frac{E_y}{EG}, \quad \omega_1^2(e_2) = \frac{G_x}{EG}, \quad E_y = \frac{\partial E}{\partial y}, \quad G_x = \frac{\partial G}{\partial x}.$$

By (3.10), (3.12) and (3.13) we have

(3.14)
$$(\ln \mu)_{\nu} = -3(\ln E)_{\nu}.$$

Solving (3.14) yields

(3.15)
$$E = \frac{m(x)}{\mu^{1/3}}, \quad \mu = \frac{m^3(x)}{E^3}$$

for some function $m(x) \neq 0$.

By applying (3.9), (3.12), (3.13) and (3.15) we find

(3.16)
$$E\lambda_y = \frac{2}{E^3}m^3(x)E_y - \lambda E_y.$$

Solving (3.16) yields

(3.17)
$$\lambda = -\mu + \frac{f(x)}{E},$$

for some function f(x). From (3.15), (3.17) and the assumption $2\mu \neq \lambda$, we obtain $f(x) \neq 3m(x)\mu^{2/3}$.

Using (3.8), (3.12), (3.13), (3.15) and (3.17), we find

(3.18)
$$\mu_x = \left(\frac{f(x)}{m(x)}\mu^{1/3} - 3\mu\right)(\ln G)_x.$$

Solving (3.18) yields

(3.19)
$$G = q(y) \exp\left(\int^x k(x, y) \, dx\right), \quad k(x, y) = \frac{m(x)\mu_x}{f(x)\mu^{1/3} - 3m(x)\mu}$$

for some function $q(y) \neq 0$. Consequently, the metric tensor of M takes the following form:

(3.20)
$$g = E^2 dx^2 + G^2 dy^2, \quad E = \frac{m(x)}{\mu^{1/3}}, \quad G = q(y) \exp\left(\int^x k \, dx\right).$$

From (3.11) it follows that the Gauss curvature K of M is given by

(3.21)
$$K = -\frac{1}{EG} \left\{ \frac{\partial}{\partial y} \left(\frac{E_y}{G} \right) + \frac{\partial}{\partial x} \left(\frac{G_x}{E} \right) \right\}.$$

By (3.15), (3.17), (3.19) and (3.21), we conclude that the functions f(x), m(x), q(y) and $\mu(x, y)$ satisfy the following second order differential equation:

(3.22)
$$\left(\frac{f(x)}{m(x)}\mu - 2\mu^{5/3} + c\mu^{-1/3}\right)m(x)q(y)\exp\left(\int^x k\,dx\right)$$
$$= \frac{m(x)}{3}\left(\frac{\mu_y\exp(-\int^x k\,dx)}{\mu^{4/3}q(y)}\right)_y - q(y)\left(\frac{\mu^{1/3}k\exp(\int^x k\,dx)}{m(x)}\right)_x.$$

Conversely, suppose that f(x), m(x), q(y) and $\mu(x, y)$ are functions defined on a simply-connected domain U of \mathbb{R}^2 such that m(x), q(y) and $\mu(x, y)$ and nowhere zero, $f(x) \neq 3m(x)\mu^{2/3}$, and they satisfy (3.22). We define a metric tensor g on U by

(3.23)
$$g = E^2 dx^2 + G^2 dy^2, \quad E = \frac{m(x)}{\mu^{1/3}}, \quad G = q(y) \exp\left(\int^x k dx\right),$$

where k = k(x, y) is defined by (3.19).

We define a symmetric bilinear form σ on (U,g) by

(3.24)
$$\sigma(e_1, e_1) = \left(\frac{f(x)\mu^{1/3}}{m(x)} - \mu\right)e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1.$$

By applying (3.22)-(3.24) and a straight-forward computation, we know that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

From the conditions $f(x) \neq 3m(x)\mu^{2/3}$ and $\mu \neq 0$, it follows that $K \neq c$, $c + (4/9)H^2$.

Consequently, by Theorem 2.1 and Theorem 2.2, we obtain the following.

THEOREM 3.5. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian H-umbilical surface such that $K \neq c$, $c + (4/9)H^2$. Then

(1) there exist functions f(x), m(x), q(y) and $\mu(x, y)$ such that m(x), q(y) and $\mu(x, y)$ are nowhere zero, $f(x) \neq 3m(x)\mu^{2/3}$, and they satisfy (3.22),

(2) with respect to some coordinate system $\{x, y\}$ on M, the metric tensor of M is given by

(3.25)
$$g = E^2 dx^2 + G^2 dy^2, \quad E = m(x)\mu^{-1/3}, \quad G = q(y)\exp\left(\int^x k dx\right),$$

where

(3.26)
$$k = \frac{m(x)\mu_x}{f(x)\mu^{1/3} - 3m(x)\mu},$$

(3) the second fundamental form of L is given by

Bang-Yen CHEN

(3.27)
$$h(e_1, e_1) = \left(\frac{f(x)}{m(x)}\mu^{1/3} - \mu\right)Je_1, \quad h(e_1, e_2) = \mu Je_2, \quad h(e_2, e_2) = \mu Je_1,$$

where $e_1 = E^{-1}\partial/\partial x$ and $e_2 = G^{-1}\partial/\partial y$.

Conversely, suppose that f(x), m(x), q(y) and $\mu(x, y)$ are functions defined on a simply-connected domain U of \mathbb{R}^2 such that m(x), q(y) and $\mu(x, y)$ are nowhere zero, $f(x) \neq 3m(x)\mu^{2/3}$, and they satisfy (3.22). Let g be the metric tensor on U defined by (3.25). Then, up to rigid motions of $\tilde{M}^2(4c)$, there exists a unique Lagrangian H-umbilical isometric immersion of (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (3.27). The Gauss curvature K and the squared mean curvature H^2 of such a Lagrangian surface satisfy the condition $K \neq c$, $c + 4/9H^2$.

Now, suppose that $L: M \to \tilde{M}^2(4c)$ is a minimal Lagrangian surface without totally geodesic points. Then, according to Lemma 3.1, the second fundamental form of L satisfies

(3.28)
$$h(e_1, e_1) = -\hat{\mu}Je_1, \quad h(e_1, e_2) = \hat{\mu}Je_2, \quad h(e_2, e_2) = \hat{\mu}Je_1.$$

for some nonzero function $\hat{\mu}$ with respect to some orthonormal frame field e_1 , e_2 . Thus, by (3.15), (3.17), (3.18) and (3.19), we obtain

(3.29)
$$g = \hat{\mu}^{-2/3} \{ m^2(\bar{x}) \, d\bar{x}^2 + q^2(\bar{y}) \, d\bar{y}^2 \}$$

for some coordinate system $\{\bar{x}, \bar{y}\}$ with $e_1 = \bar{\mu}^{1/3} m(\bar{x})^{-1} \partial/\partial \bar{x}$, $e_2 = \bar{\mu}^{1/3} q(\bar{y})^{-1} \partial/\partial \bar{y}$.

After applying the coordinate transformation:

(3.30)
$$x = \int^{x} m(\bar{x}) d\bar{x} \text{ and } y = \int^{y} q(\bar{y}) d\bar{y},$$

the metric tensor of M takes the simple form:

(3.31)
$$g = \mu^{-2/3} (dx^2 + dy^2)$$

where $\mu(x, y) = \hat{\mu}(\bar{x}(x), \bar{y}(y))$. With respect the coordinate system $\{x, y\}$, equation (3.22) becomes

(3.32)
$$\Delta(\ln \mu) = 3(c - 2\mu^2)\mu^{-2/3},$$

where $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2$. With respect to x and y, (3.28) becomes

(3.33)
$$h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) = -\mu^{2/3} J\left(\frac{\partial}{\partial x}\right), \quad h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) = \mu^{2/3} J\left(\frac{\partial}{\partial y}\right),$$
$$h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) = \mu^{2/3} J\left(\frac{\partial}{\partial x}\right).$$

Conversely, if μ is a nowhere zero function defined on a simply-connected domain U of \mathbb{R}^2 which satisfies (3.23). We define a metric tensor on U by

$$g = \mu^{-2/3} (dx^2 + dy^2)$$

and define a symmetric bilinear form σ on (U,g) by

$$\sigma\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) = -\mu^{2/3}\frac{\partial}{\partial x}, \quad \sigma\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y}\right) = \mu^{2/3}\frac{\partial}{\partial y}, \quad \sigma\left(\frac{\partial}{\partial y},\frac{\partial}{\partial y}\right) = \mu^{2/3}\frac{\partial}{\partial x}$$

Then, by a straight-forward computation, we know that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Thus, by Lemma 3.1, Theorem 2.1 and 2.2, we obtain the following.

COROLLARY 3.6. Let $L: M \to \tilde{M}^2(4c)$ be a minimal Lagrangian surface without totally geodesic points. Then, with respect to a suitable coordinate system $\{x, y\}$, we have

(1) the metric tensor of M takes the form of (3.31) for some nowhere zero function μ satisfying (3.32) and

(2) the second fundamental form of L is given by (3.33).

Conversely, if μ is a nowhere zero function defined on a simply-connected domain U of \mathbb{R}^2 satisfying (3.32) and $g = \mu^{-2/3}(dx^2 + dy^2)$ is the metric tensor on U, then, up to rigid motions of $\tilde{M}^2(4c)$, there is a unique minimal (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (3.33).

4. Lagrangian H-umbilical surfaces with constant Gauss curvature

The following result determines the intrinsic and the extrinsic structures of Lagrangian *H*-umbilical surfaces with constant Gauss curvature in complex space forms.

THEOREM 4.1. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian H-umbilical surface. If M has constant Gauss curvature K such that $K \neq c$, $c + (4/9)H^2$, then

(1) with respect to some coordinate system $\{x, y\}$ on M, the metric tensor of M is given by

(4.1)
$$g = dx^2 + G^2 dy^2,$$

where

(4.2)
$$G = \begin{cases} \frac{1}{\sqrt{K}} \cos(\sqrt{K}x), & \text{if } K > 0; \\ x, & \text{if } K = 0; \\ \frac{1}{\sqrt{-K}} \cosh(\sqrt{-K}x), & \text{if } K < 0, \end{cases}$$

(2) the second fundamental form of L is given by

(4.3)
$$h(e_1, e_1) = \left(\frac{K - c + \mu^2}{\mu}\right) Je_1, \quad h(e_1, e_2) = \mu Je_2, \quad h(e_2, e_2) = \mu Je_1,$$

where $e_1 = \partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$ and μ is a nonzero function satisfying

(4.4)
$$|K - c - \mu^2| = \begin{cases} K \sec^2(\sqrt{K}x), & \text{if } K > 0; \\ x^{-2}, & \text{if } K = 0; \\ -K \operatorname{sech}^2(\sqrt{-K}x), & \text{if } K < 0. \end{cases}$$

Conversely, suppose that c, K are two unequal constants, U a simply-connected domain of \mathbb{R}^2 such that (4.1) is a well-defined positive-definite metric on U and μ is a function satisfying (4.4). Then

(3) (U,g) has constant Gauss curvature K and

(4) up to rigid motions of $\tilde{M}^2(4c)$, there exists a unique Lagrangian Humbilical isometric immersion of (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (4.3).

PROOF. Assume that $L: M \to \tilde{M}^2(4c)$ is a Lagrangian *H*-umbilical surface such that $K \neq c$, $c + (4/9)H^2$. Then the second fundamental form of *L* takes the form:

(4.5)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1,$$

for some functions λ , μ with $\mu \neq 0$, $\lambda/2$, with respect to an orthonormal frame field e_1 , e_2 .

From the assumption $K \neq c + (4/9)H^2$, we obtain $\mu^2 \neq K - c$. If the Gauss curvature K of M is constant, then

(4.6)
$$\lambda \mu - \mu^2 + c = K = constant$$

By applying (3.9), (3.10) and (4.5), we get $\omega_1^2(e_1) = 0$ and $e_2\lambda = e_2\mu = 0$.

From $\omega_1^2(e_1) = 0$, it follows that the integral curves of e_1 are geodesics in M. Thus, there exists a local coordinate system $\{x, y\}$ on M such that the metric tensor of M takes the form:

$$(4.7) g = dx^2 + G^2 dy^2$$

and $e_1 = \partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$. From $e_2\lambda = e_2\mu = 0$, we obtain $\lambda = \lambda(x)$ and $\mu = \mu(x)$.

From (3.15), (3.17), (3.19) and (4.7), we get

(4.8)
$$m(x) = \mu^{1/3}, \quad f(x) = \lambda(x) + \mu(x), \quad G = q(y) \exp\left(\int^x k \, dx\right),$$

where k is defined by (3.19). Equations (3.19), (4.6) and (4.8) imply

(4.9)
$$k = \frac{\mu \mu'}{K - c - \mu^2}, \quad \mu' = \mu'(x).$$

Solving (4.9) yields

(4.10)
$$k(x) = -\frac{1}{2}(\ln|K - c - \mu^2|)'(x).$$

Thus, the metric tensor of M takes the form:

(4.11)
$$g = dx^{2} + \frac{q^{2}(y)}{|K - c - \mu^{2}|} dy^{2}.$$

After applying a suitable change of variable in y if necessary, we get

(4.12)
$$g = dx^2 + \frac{1}{|K - c - \mu^2|} dy^2.$$

From $\mu_y = 0$, (4.6), (4.7), (4.9) and equation (3.21) of Gauss, we obtain

(4.12)
$$k'(x) + k^2(x) = -K.$$

Solving (4.12) and using (4.9), we get

(4.13)
$$|K - c - \mu^2| = \begin{cases} \frac{a}{\cos^2(\sqrt{K}(b - x))}, & \text{if } K > 0; \\ \frac{a}{(x - b)^2}, & \text{if } K = 0; \\ \frac{a}{\cosh^2(\sqrt{-K}(x - b))}, & \text{if } K < 0, \end{cases}$$

where a, b are integration constants.

Therefore, by applying a translation in x and dilation in y if necessary, we obtain (4.4) and statement (1). (4.3) now follows from (4.5) and (4.6).

Conversely, assume that K, c are unequal constants, U is a simply-connected domain of \mathbb{R}^2 such that (4.1) is a well-defined positive-definite metric on U and μ is a function which satisfies (4.4). Then, by a direct computation, we obtain statement (3).

If we define a symmetric bilinear form σ on (U,g) by

(4.14)
$$\sigma(e_1, e_1) = \left(\frac{K - c + \mu^2}{\mu}\right)e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1,$$

where $e_1 = \partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$, then, by a straight-forward long computation, we conclude that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Hence, according to Theorem 2.1, there is a Lagrangian isometric immersion of (U,g) into $\tilde{M}^2(4c)$ with second fundamental form given by $h = J\sigma$. Moreover, by (4.14), we obtain statement (5).

The uniqueness of the Lagrangian immersion now follows from Theorem 2.2.

REMARK 4.1. Theorem 4.1 of [1] states that Lagrangian *H*-umbilical submanifolds of dimension ≥ 3 with constant sectional curvature in complex Euclidean spaces are either flat or open portions of Lagrangian pseudo-spheres. In contrast, Theorem 4.1 shows that there exist many Lagrangian *H*-umbilical surfaces with constant Gauss curvature in the complex Euclidean plane which are neither flat nor open portions of Lagrangian pseudo-spheres.

REMARK 4.2. The intrinsic and the extrinsic structures of Lagrangian *H*umbilical surfaces in $\tilde{M}^2(4c)$ with constant Gauss curvature $K = c + (4/9)H^2$ have been completely determined in [1] and [2] for c = 0 and $c \neq 0$, respectively.

It is obvious that a Lagrangian *H*-umbilical surface in a complex space form has constant mean curvature and constant Gauss curvature if and only if both λ and μ are constant. However, Theorem 3.5 yields the following.

PROPOSITION 4.2. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian isometric immersion whose second fundamental form satisfies

(4.15) $h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1.$

with respect to an orthonormal frame field e_1, e_2 . If μ is constant, then M has constant Gauss curvature. Moreover, M is flat unless $\mu = 0$ or $\mu = \lambda/2$.

PROOF. Let M be a Lagrangian surface in $\tilde{M}^2(4c)$ satisfies (4.15). If $\mu = 0$, then M has constant Gauss curvature c. If $\mu = \lambda/2$, then M also has constant Gauss curvature according to Theorem 3.1 of [1] and Theorems 5.1 and 6.1 of [2] for c = 0 and $c \neq 0$, respectively. Finally, if $\mu \neq 0$, $\lambda/2$, (3.23) implies that E and G are functions of x and y, respectively. In this case M is flat according to (3.21).

REMARK 4.3. The converse of Corollary 3.6 is false. In fact, there exist

Lagrangian *H*-umbilical surfaces with constant Gauss curvature in a complex space form such that the function μ of (4.15) is non-constant.

The following result shows in particular that Lagrangian *H*-umbilical surfaces with λ being constant do not have Gauss curvature in general.

PROPOSITION 4.3. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian isometric immersion whose second fundamental form satisfies (4.15) for $\mu \neq 0$, $\lambda/2$, with respect to an orthonormal frame field e_1 , e_2 . If λ is constant, then

(1) there is a coordinate system $\{x, y\}$ on M such that the metric tensor of M is given by

(4.16)
$$g = dx^2 + \frac{dy^2}{|\lambda - 2\mu|},$$

and

(2) μ is a function of x satisfying

(4.17)
$$\mu'^{2} = (\lambda - 2\mu)^{3} \left\{ b + \frac{\mu}{2} - \frac{\lambda^{2} + 4c}{4(\lambda - 2\mu)} \right\},$$

for some constant b.

Conversely, suppose that b, c, λ are constants and $\mu(x)$ is a non-constant function satisfying (4.17) on some open interval I. Let g be the metric tensor on $U = I \times \mathbf{R}$ defined by (4.16). Then, up to rigid motions of $\tilde{M}^2(4c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (4.15).

PROOF. Assume that M is a Lagrangian surface in $\tilde{M}^2(4c)$ satisfying (4.15) with $\mu \neq 0$, $\lambda/2$ for some constant λ . Then (3.9) and (3.10) yield $\nabla_{e_1}e_1 = 0$ and $e_1\mu = 0$. Thus, it follows as before that the metric tensor of M takes the form:

(4.18)
$$g = dx^2 + G^2 \, dy^2$$

with respect to some coordinate system $\{x, y\}$ with $e_1 = \partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$.

From $e_2\mu = 0$, we obtain $\mu = \mu(x)$. Moreover, from (3.17), (3.19), (3.20) and (4.18) we have

(4.19)
$$k = \frac{\mu'(x)}{\lambda - 2\mu} = -\frac{1}{2} (\ln|\lambda - 2\mu|)', \quad G = \frac{q(y)}{|\lambda - 2\mu|^{1/2}}.$$

Thus,

(4.20)
$$g = dx^2 + \frac{q^2(y)}{|\lambda - 2\mu|} dy^2.$$

After applying a suitable change of variable in y if necessary, we have

(4.21)
$$g = dx^2 + \frac{dy^2}{|\lambda - 2\mu|}.$$

From (4.15), (4.21), and the equation of Gauss we know that the function $\mu = \mu(x)$ satisfies the following differential equation:

(4.22)
$$k'(x) + k^{2}(x) = \mu^{2} - \lambda \mu - c, \quad k(x) = \frac{\mu'(x)}{\lambda - 2\mu}.$$

Solving (4.22) for μ' yields equation (4.17) for some constant *a*.

Conversely, suppose that b, c, λ are constants and $\mu(x)$ is a non-constant function satisfying (4.17) on some open interval *I*. We define a metric tensor *g* on $U = I \times \mathbf{R}$ by (4.16) and define a symmetric bilinear map σ on (U,g) by

(4.23)
$$\sigma(e_1, e_1) = \lambda e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1,$$

where $e_1 = \partial/\partial x$ and $e_2 = |\lambda - 2\mu|^{1/2} \partial/\partial y$. Then by a straight-forward computation we conclude that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by Theorems 2.1 and 2.2 we conclude that, up to rigid motions of $\tilde{M}^2(4c)$, there is a unique Lagrangian isometric immersion of (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (4.15) with constant λ .

Proposition 4.3 implies that Lagrangian *H*-umbilical surfaces with constant λ in a complex space form do not have constant Gauss curvature in general.

5. Lagrangian H-umbilical surfaces with constant mean curvature

Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian *H*-umbilical surface with $K \neq c$, $c + (4/9)H^2$. If *M* has constant mean curvature $\beta \neq 0$, then the second fundamental form of *L* takes the form:

(5.1)
$$h(e_1, e_1) = (2\beta - \mu)Je_1, \quad h(e_1, e_2) = \mu Je_2, \quad h(e_2, e_2) = \mu Je_1,$$

for $\mu \neq 0$, $2\beta/3$ with respect to some suitable orthonormal frame field e_1 , e_2 .

From (3.9) and (3.10) we get $0 = e_2(\beta) = \beta \omega_2^1(e_1)$ which yields $\nabla_{e_1} e_1 = 0$. Hence, by (3.9) and (3.10), we also have $e_2 \lambda = e_2 \mu = 0$.

From $\omega_1^2(e_1) = 0$, it follows as before that the metric tensor of M takes the form:

$$(5.2) g = dx^2 + G^2 dy^2$$

with respect to some local coordinate system $\{x, y\}$ with $e_1 = \partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$.

From $e_2\lambda = e_2\mu = 0$, we obtain $\lambda = \lambda(x)$ and $\mu = \mu(x)$. Thus, (3.17), (3.19), and (5.1) imply $k(x) = \mu'/(2\beta - 3\mu)$. Hence, after applying a suitable change of variable in y if necessary, the metric tensor of M takes the form:

(5.3)
$$g = dx^2 + \frac{dy^2}{(2\beta - 3\mu)^{2/3}}.$$

From (5.1), (5.3), and the equation of Gauss we know that the function $\mu = \mu(x)$ satisfies the following differential equation:

(5.4)
$$\mu''(x) + \frac{4\mu'^2}{2\beta - 3\mu} = (2\beta - 3\mu)(2\mu^2 - 2\beta\mu - c).$$

Solving (5.4) for μ' yields

(5.5)
$$\mu'^{2} = (3\mu - 2\beta)^{2} \{ b(2\beta - 3\mu)^{2/3} - c - \mu^{2} \},$$

where b is an integration constant satisfying $b(2\beta - 3\mu)^{2/3} > c + \mu^2$. Such constant exists at least locally, since $(2\beta - 3\mu)^2 = (\lambda - 2\mu)^2 > 0$.

Conversely, suppose that b, c and $\beta \neq 0$ are constants and $\mu(x)$ is a function with $\mu \neq 0$, $2\beta/3$ which satisfy (5.5) on some open interval I. We define a metric tensor g on $U = I \times \mathbf{R}$ by (5.3) and define a symmetric bilinear map σ on (U,g)by

(5.6)
$$\sigma(e_1, e_1) = (2\beta - \mu)e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1,$$

where $e_1 = \partial/\partial x$ and $e_2 = (2\beta - 3\mu)^{1/3} \partial/\partial y$. Then by a straight-forward computation we conclude that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2 we obtain the following.

THEOREM 5.1. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian H-umbilical surface with $K \neq c$, $c + (4/9)H^2$. If M has constant mean curvature $\beta \neq 0$, then (1) there exist a constant b and a nonzero function $\mu(x) \neq 2\beta/3$ satisfying (5.5),

(2) there exists a coordinate system $\{x, y\}$ on M such that the metric tensor of M is given by (5.3), and

(3) the second fundamental form of L is given by

(5.7)
$$h(e_1, e_1) = (2\beta - \mu)Je_1, \quad h(e_1, e_2) = \mu Je_2, \quad h(e_2, e_2) = \mu Je_1,$$

where $e_1 = \partial/\partial x$, $e_2 = (2\beta - 3\mu)^{1/3} \partial/\partial y$.

Conversely, suppose that b, c and $\beta \neq 0$ are constants and $\mu(x)$ is a function satisfying (5.5) and $\mu(x) \neq 0$, $2\beta/3$ on some open interval I. Let g be the metric tensor on $U = I \times \mathbf{R}$ defined by (5.3). Then, up to rigid motions of $\tilde{M}^2(4c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U,g) into $\tilde{M}^2(4c)$ whose second fundamental form is given by (5.7). Such a Lagrangian H-umbilical surface has prescribed constant mean curvature $\beta \neq 0$.

REMARK 5.1. If we put

(5.8)
$$\phi_b(\mu) = \int^{\mu} \frac{d\mu}{(3\mu - 2\beta)\sqrt{b(2\beta - 3\mu)^{2/3} - c - \mu^2}},$$

then $\phi_b(\mu)$ is a monotonic function, since $3\mu - 2\beta = 2\mu - \lambda$ is assumed to be nowhere zero. Hence, ϕ_b has an inverse function which is denoted by ϕ_b^{-1} . In terms of ϕ_b^{-1} , the solutions of (5.5) is given either by $\mu(x) = \phi_b^{-1}(x+a)$ or by $\mu(x) = \phi_b^{-1}(-(x+a))$, where *a* is a constant.

Theorem 5.1 yields the following.

COROLLARY 5.2. If M is a Lagrangian H-umbilical surface in C^2 with constant mean curvature, then M is one of the following Lagrangian H-umbilical surfaces:

(1) a minimal Lagrangian surface,

(2) an open portion of Lagrangian circular cylinder: $S^1(r) \times \mathbf{R} \subset \mathbf{C}^1 \times \mathbf{C}^1 = \mathbf{C}^2$, on a Lagrangian Clifford torus: $S^1(r) \times S^1(r) \subset \mathbf{C}^2$,

(3) an open portion of a Lagrangian pseudo-sphere, or

(4) a complex extensor which is not an open portion of a Lagrangian pseudo-sphere.

PROOF. Let M be a Lagrangian H-umbilical surface in C^2 with constant mean curvature. If M is flat, then the second fundamental form of M takes the

form:

(5.9)
$$h(e_1, e_1) = \beta J e_1, \quad h(e_1, e_2) = h(e_2, e_2) = 0,$$

for some constant $\beta \neq 0$, according to Lemma 3.2 unless $\lambda = \mu$. Thus, (3.8) and (3.9) imply $\omega_1^2 = 0$. Hence, by (2.3) we obtain DH = 0. These imply that M is a flat surface with parallel mean curvature vector. Hence, using (5.9), we may conclude that M is an open portion of a Lagrangian circular cylinder or a Lagrangian Clifford torus.

If M is a nonflat Lagrangian H-umbilical surface with nonzero constant mean curvature, then from the discussion given at the beginning of this section, we know that the integral curves of e_1 are geodesics in M. Therefore, by applying Theorem 4.3 of [1], M is either an open portion of a Lagrangian pseudo-sphere or a complex extensor.

REMARK 5.2. If a Lagrangian *H*-umbilical surface *M* with constant mean curvature β is a complex extensor, then, up to rigid motions of C^2 , it is given by the tensor product $F \otimes G$, where G is the unit circle in E^2 centered at the origin and F is the unit speed curve in the complex plane C defined by

(5.10)
$$F(s) = \gamma + \int^{s} \left(\exp\left(i \int^{t} (2\beta - \mu(x)) \, dx \right) \, dt \right),$$

where γ is a complex number and $\mu(x)$ is given either by $\mu(x) = \phi_b^{-1}(x+a)$ or by $\mu(x) = \phi_b^{-1}(-(x+a))$, where ϕ^{-1} is defined in Remark 5.1.

6. Lagrangian *H*-umbilical surfaces with $\lambda = \alpha \mu$

First we give the following existence theorem.

THEOREM 6.1. For any given constants c and α , there exists a Lagrangian Humbilical surface in $\tilde{M}^2(4c)$ whose second fundamental form satisfies

(6.1)
$$h(e_1, e_1) = \alpha \mu J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1,$$

for some nonzero function μ with respect to some orthonormal frame field e_1 , e_2 .

PROOF. When $\alpha = -1$, this follows from Corollary 3.6. When $\alpha = 2$, this follows from Theorems 5.1 and 6.1 of [2] and Theorem 3.1 of [1].

Now, suppose $\alpha \neq -1, 2$. If we choose a sufficiently large positive number b such that $b > (\alpha - 2)^2 (c + \mu^2) \mu^{2/(\alpha - 2)}$ on some open interval $\hat{I} \subset (0, \infty)$, then

Bang-Yen CHEN

(6.2)
$$\psi_b(\mu) = \int^{\mu} \frac{d\mu}{\mu^{(\alpha-3)/(\alpha-2)}\sqrt{b - (\alpha-2)^2(c+\mu^2)\mu^{2/(\alpha-2)}}}$$

is an increasing function on \hat{I} . Let $\mu(x) = \psi_b^{-1}(x)$ denote the inverse function of ψ_b defined on the corresponding open interval, say I.

We define a metric tensor g on $U = I \times R$ by

(6.3)
$$g = dx^2 + \mu^{2/(\alpha-2)} dy^2$$

and define a symmetric bilinear map σ on (U,g) by

(6.4)
$$\sigma(e_1, e_1) = \alpha \mu e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1,$$

where $e_1 = \partial/\partial x$, $e_2 = \mu^{-1/(\alpha-2)}\partial/\partial y$. Then, by a straight-forward computation we conclude that $((U,g),\sigma)$ satisfies conditions (1), (2) and (3) of Theorem 2.1. Thus, by Theorem 2.1, there exists a Lagrangian isometric immersion from (U,g)into $\tilde{M}^2(4c)$ whose second fundamental form is given by (6.1).

THEOREM 6.2. Let M be a nonflat Lagrangian H-umbilical surface in C^2 whose Gauss curvature K and squared mean curvature H^2 are proportional. Then M is one of the following Lagrangian surfaces:

(1) a minimal Lagrangian surface,

(2) an open portion of a Lagrangian pseudo-sphere, or

(3) a complex extensor which is not an open portion of a Lagrangian pseudo-sphere.

PROOF. Assume that M is a non-minimal Lagrangian H-umbilical surface in C^2 whose Gauss curvature K and squared mean curvature H^2 are proportional, that is, $K = aH^2$ for some real number a. Since M is Lagrangian H-umbilical, the second fundamental form of M in C^2 satisfies

(6.5)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1,$$

for some function λ , $\mu \neq 0$ with respect to some orthonormal frame field e_1 , e_2 .

From (6.5), the equation of Gauss and the definition of the squared mean curvature, we obtain

(6.6)
$$a\lambda^2 + 2(a-2)\mu\lambda + (a+4)\mu^2 = 0.$$

Solving (6.6) yields

(6.7)
$$\lambda = \frac{1}{a}((2-a)\mu \pm 2\sqrt{(1-2a)\mu^2}).$$

Since λ is real, (6.7) yields $a \le 1/2$. Thus, there is real number α such that $a = 4(\alpha - 1)/(\alpha^2 + 1)^2$. Thus, we get

(6.8)
$$(\alpha + 1)^2 K = 4(\alpha - 1)H^2.$$

From (6.5) and (6.8), we know that the second fundamental form of M in C^2 satisfies (6.1) for some nonzero function μ . Hence, by applying (3.9) and (3.10), we get $(1 + \alpha)e_2\mu = 0$ which implies that either M is minimal or $e_2\mu = 0$. If $e_2\mu = 0$, (3.9) yields $(2 - \alpha)\mu\omega_2^1(e_1) = 0$. Thus, we have either $\alpha = 2$ or $\nabla_{e_1}e_1 = 0$.

If $\alpha = 2$, M is an open portion of a Lagrangian pseudo-sphere according to Theorem 3.1 of [1].

If $\nabla_{e_1}e_1 = 0$, then, according to Theorem 4.3 of [1], M is either a flat surface or a complex extensor. However, the flat case cannot occurs.

REMARK 6.1. We are able to determine the intrinsic and the extrinsic structures of a Lagrangian surface in a complex space form $\tilde{M}^2(4c)$ which satisfies (6.1) for $\alpha \neq -1, 2$, too. In fact, by applying the same method utilized in section 5, we may prove that the function μ of such a Lagrangian surface is a function of x which is a solution of

(6.9)
$$u'(x)^2 = \mu^{2(\alpha-3)/(\alpha-2)} \{ b - (\alpha-2)^2 (c+\mu^2) \mu^{2/(\alpha-2)} \}$$

for some constant b and, moreover, the metric tensor of such a Lagrangian surface is given by

(6.10)
$$g = dx^2 + \mu^{2/(\alpha-2)} dy^2$$

with respect to a coordinate system $\{x, y\}$ satisfying $e_1 = \partial/\partial x$, $e_2 = \mu^{1/(2-\alpha)} \partial/\partial y$.

REMARK 6.2. If the Lagrangian *H*-umbilical surface *M* mentioned in Theorem 6.2 is a complex extensor, then, up to rigid motions of C^2 , it is given by the tensor product $F \otimes G$, where G is the unit circle in E^2 centered at the origin and F is the unit speed curve in the complex plane C defined by

(6.11)
$$F(s) = \gamma + \int^{s} \left(\exp\left(i \int^{t} \alpha \mu(x) \, dx \right) \, dt \right),$$

where γ is a complex number, α a real number and $\mu(x)$ a solution of (6.9).

7. Lagrangian *H*-umbilical surfaces with $\mu = \mu(y)$

All of the Lagrangian *H*-umbilical surfaces studied in sections 4, 5 and 6 satisfy the condition $e_2\mu = 0$.

In this section we determine the intrinsic and the extrinsic structures of Lagrangian *H*-umbilical surfaces in $\tilde{M}^2(4c)$ whose second fundamental form satisfies

(7.1)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1, \quad e_1 \mu = 0$$

for $\mu \neq 0$, $\lambda/2$ with respect to some suitable orthonormal frame field e_1 , e_2 .

From section 3 we know that, with respect to some coordinate system $\{x, y\}$, the metric tensor of such a Lagrangian *H*-umbilical surface *M* takes the form:

(7.2)
$$g = E^2 dx^2 + G^2 dy^2, \quad E = \frac{m(x)}{\mu^{1/3}}, \quad G = q(y) \exp\left(\int^x k \, dx\right),$$

where $e_1 = E^{-1}\partial/\partial x$, $e_2 = G^{-1}\partial/\partial y$ and k is defined by

(7.3)
$$k(x, y) = \frac{m(x)\mu_x}{f(x)\mu^{1/3} - 3m(x)\mu}$$

for some function f(x) and nonzero functions m(x), q(y). Moreover, from section 3 we also have

(7.4)
$$\lambda = -\mu + \frac{f(x)}{E}.$$

The assumption $e_1\mu = 0$ is equivalent to $\mu_x = 0$, that is, $\mu = \mu(y)$. Thus (7.3) yields k = 0. Hence, equation (3.22) reduces to

(7.5)
$$3\left(\frac{f(x)}{m(x)}\mu - 2\mu^{5/3} + c\mu^{-1/3}\right)q(y) = \left(\frac{\mu'(y)}{\mu^{4/3}q(y)}\right)'$$

which implies in particular that f(x)/m(x) is a constant, which is denoted by b. Therefore, (7.5) can be rewritten as

(7.6)
$$\left(\frac{\mu'}{\mu^{4/3}}\right)q'(y) - \left(\frac{\mu'}{\mu^{4/3}}\right)'q(y) = -3(b\mu - 2\mu^{5/3} + c\mu^{-1/3})q^3(y).$$

Solving (7.6) yields

(7.7)
$$q(y)^{2} = \mu'^{2} \{9(a + b\mu^{2/3} - \mu^{4/3} + c\mu^{-2/3})\}^{-1},$$

where a is an integration constant.

Consequently, the metric tensor of M takes the form:

(7.8)
$$g = \frac{m^2(x)}{\mu^{2/3}} dx^2 + \frac{{\mu'}^2}{9(a+b\mu^{2/3}-\mu^{4/3}+c\mu^{-2/3})} dy^2.$$

Thus, by applying a suitable change of variable in x if necessary, we obtain

(7.9)
$$g = \mu^{-2/3} dx^2 + G^2 dy^2, \quad G = \frac{\mu'}{3} (a + b\mu^{2/3} - \mu^{4/3} + c\mu^{-2/3})^{-1/2}.$$

Using (7.1), (7.4) and (7.9) we conclude that the second fundamental satisfies

(7.10)
$$h(e_1, e_1) = (b\mu^{1/3} - \mu)Je_1, \quad h(e_1, e_2) = \mu Je_2, \quad h(e_2, e_2) = \mu Je_1.$$

Conversely, suppose that a, b are constants and $\mu = \mu(y)$ a nowhere zero function which satisfy $a > \mu^{-2/3}(\mu^2 - c - b\mu^{4/3})$ on some open interval *I*. We define a metric tensor g on $U = \mathbf{R} \times I$ by (7.9) and define a symmetric bilinear map σ on (U,g) by

(7.11)
$$\sigma(e_1, e_1) = (b\mu^{1/3} - \mu)e_1, \quad \sigma(e_1, e_2) = \mu e_2, \quad \sigma(e_2, e_2) = \mu e_1,$$

where $e_1 = \mu^{1/3} \partial/\partial x$, $e_2 = G^{-1} \partial/\partial x$. Then we can verify by a straight-forward computation that $\{(U,g),\sigma\}$ satisfies conditions (1), (2) and (3) of Theorem 2.1.

Consequently, by applying Theorems 2.1 and 2.2, we obtain the following.

THEOREM 7.1. Let $L: M \to \tilde{M}^2(4c)$ be a Lagrangian H-umbilical surface whose second fundamental form satisfies

(7.12)
$$h(e_1, e_1) = \lambda J e_1, \quad h(e_1, e_2) = \mu J e_2, \quad h(e_2, e_2) = \mu J e_1$$

for $\mu \neq 0$, $\lambda/2$ with respect to an orthonormal frame field e_1 , e_2 . If $e_1\mu = 0$, then there exist constants a and b such that

(1) $\lambda = b\mu^{1/3} - \mu$ and

(2) the metric tensor of M is given by (7.9) with respect to a coordinate system $\{x, y\}$ such that $e_1 = \mu^{1/3} \partial/\partial x$, $e_2 = G^{-1} \partial/\partial y$.

Conversely, if $\mu = \mu(y)$ is a nowhere zero function and a, b are constants which satisfy $a > \mu^{-2/3}(\mu^2 - c - b\mu^{4/3})$ on some open interval I, then, up to rigid motions of $\tilde{M}^2(4c)$, there is a unique Lagrangian H-umbilical isometric immersion of (U,g)into $\tilde{M}^2(4c)$ whose second fundamental form is given by (7.10), where $U = \mathbf{R} \times \mathbf{I}$ and g is the metric on U defined by (7.9).

Finally, we remark that, unless the function μ is constant, the integral curves of JH are not necessary geodesics for the Lagrangian H-umbilical surfaces given

in Theorem 7.1. Consequently, these Lagrangian surfaces cannot be complex extensors in the complex Euclidean plane when c = 0.

References

- B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tôhoku Math. J. 49 (1997), 277-297.
- [2] B. Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69-108.
- [3] B. Y. Chen, Representation of flat Lagrangian *H*-umbilical submanifolds in complex Euclidean spaces, Tôhoku Math. J. (to appear).
- [4] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Lagrangian isometric immersions of a real-space-form $M^n(c)$ into a complex-space-form $\tilde{M}^n(4c)$, Math, Proc. Cambridge Math. Soc. 124 (1998), 107-125.
- [5] B.-Y. Chen and K. Oguie, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- [6] B.-Y. Chen and K. Oguie, Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225-229.
- [7] N. Ejiri, Totally real minimal immersions of *n*-dimensional real space forms into *n*-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982), 243-246.
- [8] K. Oguie, Some recent topics in the theory of submanifolds, Sugaku Expositions 4 (1991), 21-41.
- [9] A. Weinstein, Lectures on Symplectic Manifolds, Regional Conf. Ser. Math. No. 29 (Amer. Math. Soc., Providence, RI 1977).

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027, USA *E-mail address*: bychen@math.msu.edu