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SINGULAR COMPACTIFICATIONS OF PRODUCT SPACES

By

Kazuo TOMOYASU

Abstract. Assume that both $X$ and $Y$ are non-compact locally
compact spaces. Let $\delta(X\times Y)$ be a compactification of $X\times Y$ such
that $\delta(X\times Y)\geq\omega X\times\omega Y$ , where $\omega X$ and $\omega Y$ are the one-point
compactifications of $X$ and $Y$, respectively. Then J. L. Blasco [2]
proved the theorem that $\delta(X\times Y)$ is not a weakly singular com-
pactification of $X\times Y$ if $X$ is pseudcompact. In this paper we give an
altemative, simpler proof for the above theorem. Furthermore, in the
case $X$ is either a non-separable metrizable space or a separable
metrizable space with a non-compact quasi-component space $Q(X)$

and $d(Y)\leq d(X)$ , where $d(X)$ is the density of $X$, for any compact
space $S$ we establish a theorem that $X\times Y$ has a singular com-
pactification with $S$ as a remainder if and only if $X$ has a singular
compactification with $S$ as a remainder.

1. Introduction

In this paper all topological spaces are locally compact and Hausdorff and all
compactifications are Hausdorff. For compactifications $\alpha X$ and $\gamma X$ of $X$ we will
write $\alpha X\geq\gamma X$ if there exists a continuous map $f$ : $\alpha X\rightarrow\gamma X$ such that $fr_{x}$ is an
identity on $X$. If such an $f$ exists which is a homeomorphism we will write
$\alpha X\approx\gamma X$ and two compactifications $\alpha X$ and $\gamma X$ are called equivalent or $\alpha X$ is
equivalent to $\gamma X$ . In this paper we will investigate the singular compactifications
of product spaces. The concept of singular set of a map was introduced by G. T.
Whybum [23] and [24]. Later it was investigated by G. L. Cain, Jr. [3], [4] and
R. F. Dickman, Jr. [13]. Furthermore, [6], [8] and [11] treated singular com-
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pactifications in detail. A compactification $\alpha X$ of $X$ is singular (resp. weakly
singular) if and only if the remainder $\alpha X-X$ is a retract (resp. neighborhood
retract) of $\alpha X[17]$ . Note that every singular compactification is weakly singular
and not every weakly singular compactification is singular.

The techmique of singular compactifications is very important to the theory of
Wallman-type compactifications. For example, proving A. K. Steiner and E. F.
Steiner’s Theorem which is known as a reduction theorem (cf. [22], theorem), we
need to constmct a singular compactification of a discrete space in order to get a
geometrical proof (cf. [7], example 2). Then singular compactifications are
interesting ones in their own right.

In 1965, W. W. Comfort [12] asked the question of whether there are two
non-empty retractive spaces whose product is also retractive, where a non-
compact space $X$ is retractive provided that $\beta X-X$ is a retract of the Stone-\v{C}ech
compactificaiton $\beta X$ . It is well-known that every retractive space must be locally
compact and pseudocompact (cf. [15], theorem 0.1).

Subsequently, W. W. Comfort’s question was solved by J. L. Blasco [1]. Let
$X$ and $Y$ be non-compact spaces. J. L. Blasco proved that $X\times Y$ is not retractive
and then $\beta(X\times Y)$ is not a singular compactification of $X\times Y$ (cf. [1], theorem 1).

Recently, J. L. Blasco extends the above theorem in the following: Let
$\delta(X\times Y)$ be a compactification of $X\times Y$ such that $\delta(X\times Y)\geq\omega X\times\omega Y$,
where $\omega X$ and $\omega Y$ are the one-point compactifications of $X$ and $Y$, respectively.
If $X$ is pseudocompact, then $\delta(X\times Y)$ is not a weakly singular compactification
of $X\times Y$ (cf. [2], corollary $2.4(b)$ ). He uses a certain functional analysis technique
to prove this theorem. In section 2, we will give an altemative, simpler proof for
the above theorem.

In 1985, T. Kimura [20] gave the necessary and sufficient condition is that a
product space $X\times Y$ has an $\aleph_{0}$-point compactification. Recently, T. Kimura [21]

gave the necessary and sufficient conditions on metric spaces $X$ and $Y$ which
characterize the product space $X\times Y$ having the set of all compact metric spaces
as remainders. This is a partial answer for the problem posed by J. Hatzenbuhler
and D. A. Mattson [18]. Here we are interested in the class of singular com-
pactifications. Then considering these aspects, we may ask the following question:
Fix a compact space $K$. Give necessary and sufficient conditions on non-compact
spaces $X$ and $Y$ which characterize the product space $X\times Y$ having a singular
compactification with $K$ as a remainder. In section 3, in the case $X$ is either a
non-separable metrizable space or a separable metrizable space with a non-
compact quasi-component space $Q(X)$ and $d(Y)\leq d(X)$ , where $d(X)$ is the
density of $X$, for any compact space $S$ we establish a theorem that $X\times Y$ has a
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singular compactification with $S$ as a remainder if and only if $X$ has a singular
compactification with $S$ as a remainder.

For undefined notation and terminology, see [9] or [16].

2. A remark on Blasco’s Theorem

In this section we will give an altemative, simpler proof for J. L. Blasco’s
Theorem [2]. $\omega X$ denotes the one-point compactification of a non-compact space
$X$ throughout this paper. Let $X$ be a set and $\kappa$ a cardinal. We will write $[X]^{\kappa}$ for
$\{A\subset X:|A|=\kappa\}$ . Recall that a space is pseudocompact if and only if every
sequence of infinitely many non-empty open sets has a cluster point.

At first, we will begin with the following lemma which was proved by G. D.
Faulkner [17].

LEMMA 2.1. Let $\alpha X$ be a compactification of a non-compact space $X$ and $\gamma X$

a compactification of $X$ such that $\gamma X\leq\alpha X$ . If $\alpha X$ is singular (resp. weakly
singular), then $\gamma X$ is singular (resp. weakly singular).

In this paper we will write $\omega_{0}$ for $\{0,1, \ldots\}$ . Now, we will give an altemative,
simpler proof for J. L. Blasco’s Theorem [2].

THEOREM 2.1. Let $X$ be a non-compact space, $Y$ a non-compact space and
$\delta(X\times Y)$ a compactification of $X\times Y$ with $\delta(X\times Y)\geq\omega X\times\omega Y$ . If $X$ is
pseudocompact, then $\delta(X\times Y)$ is not a weakly singular compactification of $X\times Y$ .

PROOF. From Lemma 2.1 it is sufficient to show that $\omega X\times\omega Y$ is not
a weakly singular compactification of $X\times Y$ . We set $Z=X\times Y$ and $\delta Z=$

$\omega X\times\omega Y$ . $\omega X$ and $\omega Y$ denote $X\cup\{p_{\omega}\}$ and $Y\cup\{q_{\omega}\}$ respectively, where
$p_{\omega}\not\in X$ and $q_{\omega}\not\in Y$ . Assume that $\delta Z$ is a weakly singular compactification of Z.
Then there exists a compact subset $F$ in $Z$ and a retraction $r:\delta Z-F\rightarrow\delta Z-Z$ .
Without loss of generality, we can assume that $F=F_{X}\times F_{Y}$ , where $F_{X}$ and $F_{Y}$

are compact subsets of $X$ and $Y$, respectively. Since $Z$ is locally compact, $\delta Z-Z$

is closed in $\delta Z$ . Let $K_{X}$ and $K_{Y}$ be relatively compact open subsets of $X$ and $Y$

respectively such that $K_{X}\supset F_{X}$ and $K_{Y}\supset F_{Y}$ . Take a point $x_{0}\in X-c1_{X}K_{X}$ . Let
$U_{0}^{\prime}$ be a compact neighborhood of $x_{0}$ such that $ U_{0}^{\prime}\cap c1_{X}K_{X}=\emptyset$ . Since $r$ is
continuous, $r^{-1}(U_{0}^{\prime}\times\{q_{\omega}\})$ is neighborhood of $(x_{0}, q_{\omega})$ . Then there exist compact
neighborhoods $U_{0}$ of $x_{0}$ and $B_{0}$ of $q_{\omega}$ respectively such that $ r(U_{0}\times B_{0})\subset$

$U_{0}^{\prime}\times\{q_{\omega}\}$ and $ B_{0}\cap c1_{Y}K_{Y}=\emptyset$ . Since $(Y\cap int_{\omega Y}B_{0})-c1_{Y}K_{Y}\neq\emptyset$, we take a
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point $y0\in(Y\cap int_{\omega Y}B_{0})-c1_{Y}K_{Y}$ such that $r((x_{0},yo))\in U_{0}\times\{q_{\omega}\}$ . Let $V_{0}^{\prime}$ be a
compact neighborhood of $y0$ such that $ V_{0}^{\prime}\cap c1_{Y}K_{Y}=\emptyset$ . Since $r$ is continuous,
$r^{-1}(\{p_{\omega}\}\times V_{0}^{\prime})$ is a neighborhood of $(p_{\omega},y0)$ . Then there exist compact
neighborhoods $A_{0}$ of $p_{\omega}$ and $V_{0}$ of $y0$ respectively such that $A_{0}\cap(U_{0}^{\prime}\cup c1_{X}K_{X})=$

$\emptyset,$ $V_{0}\subset V_{0}^{\prime}$ and $r(A_{0}\times V_{0})\subset\{p_{\omega}\}\times V_{0}^{\prime}$ . We will define inductively the sequences
$\{x_{n}\}_{n<\omega_{0}},$ $\{y_{n}\}_{n<\infty},$ $\{A_{n}\}_{n<\omega_{0}},$ $\{B_{n}\}_{n<\omega_{0}},$ $\{U_{n}\}_{n<OJ_{0}}\{V_{n}\}_{n<\omega_{0}},$ $\{U_{n}^{\prime}\}_{n<\iota r}$ and $\{V_{n}^{\prime}\}_{n<r}$

with the following properties for all $n<\omega_{0}$ :
(1) $U_{n}$ and $U_{n}^{\prime}$ (resp. $V_{n}$ and $V_{n}^{\prime}$ ) are compact neighborhoods of $x_{n}$ (resp. $y_{n}$ )

such that $U_{n}\subset U_{n}^{\prime}\subset X-c1_{X}K_{X}$ (resp. $V_{n}\subset V_{n}^{\prime}\subset Y-c1_{Y}K_{Y}$ ),
(2) $A_{n}$ (resp. $B_{n}$ ) is a compact neighborhood of $p_{\omega}$ (resp. $q_{\omega}$ ) such that

$A_{n+1}\subset\Lambda_{n}$ (resp. $B_{n+1}\subset B_{n}$ ),
(3) $ A_{n}\cap(U_{n}^{\prime}\cup c1_{X}K_{X})=\emptyset$ and $U_{n+1}^{\prime}\subset A_{n}$ ,
(4) $ B_{n+1}\cap(V_{n}^{\prime}Uc1_{Y}K_{Y})=\emptyset$ and $V_{n}^{\prime}\subset B_{n}$ ,
(5) $r(A_{n}\times V_{n})\subset\{p_{\omega}\}\times V_{n}^{\prime}$ and $r(U_{n}\times B_{n})\subset U_{n}^{\prime}\times\{q_{\omega}\}$ ,
(6) $r((x_{n+1},y_{n}))\in\{p_{\omega}\}\times V_{n}$ and $r((x_{n},y_{n}))\in U_{n}\times\{q_{\omega}\}$ .
Assume that the constmction is made for any $k<n+1$ . Then $ r(A_{n}\times V_{n})\subset$

$\{p_{\omega}\}\times V_{n}^{\prime}$ by (5). Take a point $x_{n+1}\in X\cap int_{\omega X}A_{n}$ such that $ r((x_{n+1},y_{n}))\in$

$\{p_{\omega}\}\times V_{n}$ . Let $U_{n+1}^{\prime}$ be a compact neighborhood of $x_{n+1}$ with $U_{n+1}^{\prime}\subset A_{n}\cap X$ . As
above, there exist compact neighborhoods $B_{n+1}$ and $U_{n+1}$ of $q_{\omega}$ and $x_{n+1}$ respec-
tively such that $U_{n+1}\subset U_{n+1}^{\prime},$ $B_{n+1}\subset B_{n},$ $ B_{n+1}\cap V_{n}^{\prime}=\emptyset$ and $ r(U_{n+1}\times B_{n+1})\subset$

$U_{n+1}^{\prime}\times\{q_{\omega}\}$ . Take a point $y_{n+1}\in Y\cap int_{\omega Y}B_{n+1}$ such that $ r((x_{n+1},y_{n+1}))\in U_{n+1}\times$

$\{q_{\omega}\}$ . Let $V_{n+1}^{\prime}$ be a compact neighborhood of $y_{n+1}$ with $V_{n+1}^{\prime}\subset Y\cap B_{n+1}$ . Then
there exist compact neighborhoods $A_{n+1}$ and $V_{n+1}$ of $p_{\omega}$ and $y_{n+1}$ respectively
such that $V_{n+1}\subset V_{n+1}^{\prime},$ $A_{n+1}\subset A_{n},$ $ A_{n+1}\cap U_{n+1}^{\prime}=\emptyset$ and $ r(A_{n+1}\times V_{n+1})\subset\{p_{\omega}\}\times$

$V_{n+1}^{\prime}$ . Now the inductive process is complete.

CLAIM (1). If $(u, v)$ is a cluster point of the sequence $\{(x_{n+1},y_{n})\}_{n<\mathfrak{c}r}$ , then
$r((u, v))=(p_{\omega}, q_{\omega})$ .

CLAIM (2). Put $S=\{(u_{\dot{j}}, v_{j})\}_{j<\omega_{0}}$ , where $u_{j}\in U_{n_{j}},$ $v_{j}\in V_{m_{j}}$ and $n_{j}\leq m_{j}<n_{j+1}$

for any $j<\omega_{0}$ . If $(u, v)$ is a cluster point of the sequence $S$, then $r((u, v))=$

$(p_{\omega}, q_{\omega})$ .
We will prove the Claim (1). From (6) it follows that the sequence

$\{r((x_{n+1},y_{n}))\}_{\hslash<r}\subset\{p_{\omega}\}\times(Y-K_{Y})$ . Therefore $r((u, v))\in c1_{\delta Z}(\{p_{\omega}\}\times(Y-K_{Y}))$ .
Note that $(u, v)\in c1_{\delta Z}\{(x_{j},yk):k\geq j\geq 0\}$ . From (2), (4) and (5), { $r((x_{j},yk))$ :
$k\geq j\geq 0\}\subset(X-K_{X})\times\{q_{\omega}\}$ , therefore $r((u, v))\in c1_{\delta Z}((X-K_{X})\times\{q_{\omega}\})$ . Since
$c1_{\delta Z}((X-K_{X})\times\{q_{\omega}\})\cap c1_{\delta Z}(\{p_{\omega}\}\times(Y-K_{Y}))=\{(p_{\omega},q_{\omega})\}$ , we have proved
that $r((u, v))=(p_{\omega}, q_{\omega})$ .
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Claim (2) can be proved with a similar argument sinoe $ r((u_{j}, v_{j}))\in$

$(X-K_{X})\times\{q_{\omega}\}$ for every $j<\omega_{0}$ and $r((u_{k}, v_{j}))\in\{p_{\omega}\}\times(Y-K_{Y})$ for every
$k\geq j\geq 0$ . Claims are proved.

Since $X$ is pseudocompact, $\{int_{X}U_{n} : n<\omega_{0}\}$ is not locally finite. Since $X$ is
locally compact, there exist a compact subset $K$ in $X$ and $A\in[\omega_{0}]^{\omega_{0}}$ such that
$ P_{n}=int_{X}(K\cap U_{n})\neq\emptyset$ for every $n\in A$ . On the other hand, we note that
$\{(x_{n+1},y_{n})\}_{n<\omega_{0}}$ has a cluster point in $\delta Z$ . If $(u, v)$ is a cluster point of
$\{(x_{n+1},y_{n})\}_{n<\omega_{0}}$ , then from Claim (1) $r((u, v))=(p_{\omega}, q_{\omega})$ . Then $(p_{\omega}, q_{\omega})\in$

$c1_{\delta Z}\{r((x_{n+1},y_{n}))\}_{n<\omega_{0}}$ . From (6) and this fact it follows that each neighbor-
hood $V$ of $q_{\omega}$ in $\omega Y$ there exists a $B(V)\in[\omega_{0}]^{\omega_{0}}$ such that $ V\cap V_{n}\neq\emptyset$ for
every $n\in B(V)$ . Let $n_{0}=\min A$ . Since $ P_{n_{0}}\neq\emptyset$, we take a point $t_{0}\in P_{n_{0}}$ . Then
there exists a compact neighborhood $Q_{0}$ of $q_{\omega}$ in $\omega Y$ such that $ r(\{t_{0}\}\times Q_{0})\subset$

$P_{n_{0}}\times\{q_{\omega}\}$ . Since $Q_{0}$ is a compact neighborhood of $q_{\omega}$ , we take a number
$m_{0}\in B(Q_{0})$ such that $m_{0}\geq n_{0}$ . We can take a point $z_{0}\in V_{m_{0}}\cap Q_{0}$ since
$m_{0}\in B(Q_{0})$ . Continuing by induction, we obtain the sequences $\{r_{j}\}_{j<\omega_{0}},$ $\{z_{j}\}_{j<\omega_{0}}$ ,
$\{P_{n_{j}}\}_{j<\omega_{0}},$ $\{Q_{j}\}_{j<\omega_{0}}$ and $\{B(Q_{j})\}_{j<\omega_{0}}$ with the following properties for every $j<\omega_{0}$ :

(1) $t_{j}\in P_{n_{j}}$ and $r(\{t_{j}\}\times Q_{j})\subset P_{n_{j}}\times\{q_{\omega}\}\subset K\times\{q_{\omega}\}$ ,
(2) $z_{j}\in V_{m_{j}}\cap Q_{j}$ ,
(3) $n_{j}\leq m_{j}<n_{j+1}$ where $m_{j}\in B(Q_{j})$ and $n_{j},$ $n_{j+1}\in A$ .

If $(u, v)$ is a cluster point of the sequence $\{(t_{j},z_{j})\}_{j<\omega_{0}}$ , from Claim (2) it fol-
lows that $r((u, v))=(p_{\omega}, q_{\omega})$ . However, this is impossible since the sequence
$\{r((t_{j},z_{j}))\}_{j<\omega_{0}}\subset K\times\{q_{\omega}\}$ . Thus there exists no retractions $r:\delta Z-F\rightarrow\delta Z-Z$ .
Therefore $\delta Z$ can not be a weakly singular compactification of Z. Then the proof
is complete. $\square $

Let $\alpha X$ be a compactification of $X$. For an open set $U$ of $X$, we set
$ext_{\alpha X}U=\alpha X-c1_{\alpha X}(X-U)$ .

LEMMA 2.2. Let $X$ be a non-compact space and $Y$ a non-compact space. If $\alpha X$

and $\delta Y$ are compactifications of $X$ and $Y$ respectively, then $\omega X\times\omega Y\leq\alpha X\times\delta Y$ .

PROOF. Put $\omega X=X\cup\{p_{\omega}\}$ and $\omega Y=Y\cup\{q_{\omega}\}$ , where we assume that
$p_{\omega}\not\in X$ and $q_{\omega}\not\in Y$ . We will define a map $\pi:\alpha X\times\delta Y\rightarrow\omega X\times\omega Y$ as follows:

$\pi(z)=\left\{\begin{array}{l}Z, ifz\in X\times Y\\(p_{\omega},y), ifz=(x,y)\in(\alpha X-X)\times\{y\}forsomey\in Y\\(x,q_{\omega}), ifz=(x,y)\in\{x\}\times(\delta Y-Y)forsomex\in X\\(p_{\omega},q_{\omega}), ifz\in(\alpha X-X)\times(\delta Y-Y)\end{array}\right.$
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It is sufficient to show that $\pi$ is continuous and then the only thing in need of
proof is that we have to show the following three cases.

CASE 1. Let $U$ be an open neighborhood of $p_{\omega}$ in $\omega X$ and $V$ an open set
of $Y$ such that cl $YV$ is compact. Then we will verify that $\pi^{-1}(U\times V)=$

$ext_{\alpha X}(U\cap X)\times V$ . In fact, since $X-(U\cap X)$ is compact in $X,$ $ext_{\alpha X}(U\cap X)=$

$(U\cap X)\cup(\alpha X-X)$ . Then $\pi^{-1}(U\times V)=((U\cap X)\times V)\cup\bigcup_{y\in V}(\alpha X-X)\times\{y\}$

$=ext_{\alpha X}(U\cap X)\times V$ .

CASE 2. Let $U$ be an open set of $X$ such that $c1_{X}U$ is compact and $V$ an
open neighborhood of $q_{\omega}$ in $\omega Y$ . Then mimicking the similar argument of Case
1, we can verify that $\pi^{-1}(U\times V)=U\times ext_{\delta Y}(V\cap Y)$ .

CASE 3. Let $U$ and $V$ be open neighborhoods of $p_{\omega}$ and $q_{\omega}$ in $\omega X$ and $\omega Y$

respectively. Then we will verify that $\pi^{-1}(U\times V)=ext_{\alpha X}(U\cap X)\times ext_{\delta Y}(V\cap Y)$ .
Note that $\pi^{-1}(U\times V)=(U\cap X)\times(V\cap Y)\cup(\alpha X-X)\times(\delta Y-Y)\cup(U\cap X)\times$

$(\delta Y-Y)\cup(\alpha X-X)\times(V\cap Y)$ . Since $ext_{\alpha X}(U\cap X)=(U\cap X)\cup(\alpha X-X)$ and
ext $\delta Y(V\cap Y)=(V\cap Y)\cup(\delta Y-Y),$ $\pi^{-1}(U\times V)=ext_{\alpha X}(U\cap X)\times ext_{\delta Y}(V\cap Y)$ .

Cases 1, 2 and 3 imply that $\pi$ is continuous. Hence $\omega X\times\omega Y\leq\alpha X\times\delta Y$ .
$\square $

From Lemma 2.2 we can get the following corollary:

COROLLARY 2.1. Let $X$ be a non-compact space and $Y$ a non-compact space.
If $X$ is pseudocompact, $\alpha X\times\gamma Y$ is not a weakly singular compactification of
$X\times Y$ for any compactifications $\alpha X$ and $\gamma Y$ of $X$ and $Y$ respectively.

The following example shows that the pseudocompactness in Corollary 2.1
can not be dropped.

EXAMPLE 2.1. Let $X$ be the half open interval $[0,1$ ) with a usual topology.
0bviously, we note that $\omega X\times\omega X$ is a singular compactification of $X\times X$ .

In Corollary 2.1 we note that if $X$ is pseudocompact, $\alpha X\times\gamma Y$ is not a
singular compactification of $X\times Y$ for any compactifications $\alpha X$ and $\gamma Y$ of $X$

and $Y$, respectively. Here, the condition of pseudocompactness is not a necessary
condition, i.e., there exists a non-pseudocompact space $X$ such that $\alpha X\times\gamma X$ is
not a singular compactification of $X\times X$ for any compactifications $\alpha X$ and $\gamma X$

of $X$.
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EXAMPLE 2.2. Let $R$ be the real line with a usual topology. However,
$\omega R\times\omega R$ is not a singular compactification of $R\times R$ . In fact, it is well-known
the fact that there exists no retractions $r:\omega R\times\omega R\rightarrow\omega R\times\omega R-R\times R$ . From
Lemma 2.1 and Lemma 2.2 $\alpha R\times\delta R$ is not a singular compactification of $R\times R$

for any compactifications $\alpha R$ and $\delta R$ of $R$ .

The following remark was pointed out by Professor K. Kawamura.

REMARK 2.1. If $\alpha X$ is a compactification of $X$ with closed unit interval $I$ as
a remainder, then $\alpha X$ is singular since $I$ is an AR. On the other hand, the
converse J. L. Blasco’s Theorem cannot hold. In fact, let $X$ be denoted by the
half open interval $[0,1$ ) with a usual topology and let $P$ be a pseudo-arc (cf. [19]).
Recall that pseudo-arc is a hereditarily indecomposable continuum and every
continuous image of $I$ into a pseudo-arc is a one point. Fix a point $p\in P$ and put
$Y=P-\{p\}$ . We can easily verify to see that $\omega X\times\omega Y$ is not a weakly singular
compactification of $X\times Y$ and both $X$ and $Y$ is not pseudocompact.

3. Characterization of singular compactiflcations of product spaces

lf one factor is compact, the following proposition holds.

PROPOSITION 3.1. Let $X$ be a non-compact space and $K$ a compact space.
Then $\alpha X$ is a singular compactification of $X$ if and only if $\alpha X\times K$ is a singular
compactification of $X\times K$ .

PROOF. Necessity. Since $\alpha X$ is a singular compactification of $X$, there exists
a retraction $r:\alpha X\rightarrow\alpha X-X$ . Then a map $s:\alpha X\times K\rightarrow(\alpha X-X)\times K$ is
defined by $s((x,k))=(r(x),k)$ for $(x, k)\in\alpha X\times K$ . Clearly, we note that $s$ is a
retraction from $\alpha X\times K$ onto $(\alpha X-X)\times K$ . Thus $\alpha X\times K$ is a singular com-
pactification of $X\times K$ .

Sufficiency. Since $\alpha X\times K$ is a singular compactification of $X\times K$, there
exists a retraction $r:\alpha X\times K\rightarrow(\alpha X-X)\times K$ . Take a point $k\in K$ . Then a map
$s:(\alpha X-X)\times K\rightarrow(\alpha X-X)\times\{k\}$ is defined by $s((x,y))=(x, k)$ for $(x,y)\in$

$(\alpha X-X)\times K$ . $\varphi$ denotes $(sor)\square _{\alpha X\times\{k\}}$ . Then we note that $\varphi$ : $\alpha X\times\{k\}\rightarrow$

$(\alpha X-X)\times\{k\}$ is a retraction. Thus $\alpha X$ is a singular compactification of $X$.
$\square $

Let $X$ be a non-compact space, $Y$ a compact space and $f$ : $X\rightarrow Y$ a
continuous map. Then the singular set $S(f)$ of $f$ is the set {$y\in Y$ : for every open
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set $U$ of $Y$ containing $y,$ $c1_{X}f^{-1}(U)$ is not compact} [5]. We say that $f$ is singular
if $S(f)=Y[17]$ . If $f$ is singular, then we can construct a singular compacti-

fication of $X$ as follows: On the set $X\cup Y$ , basic neighborhoods of points in
$X$ remain the same as in $X$. Points in $Y$ have neighborhoods of the form
$U\cup(f^{-1}(U)-F)$ , where $U$ is open in $Y$ and $F$ is compact in $X$. Then $X\cup Y$

with this topology is a compactification of $X$, and is denoted by $X\bigcup_{f}S(f)$ . A
compactification $\alpha X$ of $X$ is said to be singular if $\alpha X\approx X\cup fS(f)$ for some
singular map $f$ (cf. [11] and [17]); the fundamental idea of this compactification is
originated from [10].

A compact space $S$ is called a singular set of $X$ if there exists a continuous
map $f$ : $X\rightarrow S$ such that $S=S(f)$ .

PROPOSITION 3.2. Let $X$ be a non-compact space and $S$ a compact space.
Then $X$ has a singular compactification with $S$ as a remainder $lf$ and only if $S$ is a
singular set of $X$.

PROOF. Necessity. Suppose that $\alpha X$ is a singular compactification of $X$ with
$S$ as a remainder. Note that there exists a retraction $r:\alpha X\rightarrow\alpha X-X(=S)$ . Put
$f=rr_{X}$ Then we will verify that $S=S(f)$ . In fact, take a point $x\in S$ and let $U$

be a neighborhood of $x$ in $S$. We will show that $c1_{X}f^{-1}(U)$ is not compact. Take
a net $\{x_{v}\}_{v\in N}(\subset X)$ converging to $x$ in $\alpha X$ , where $N$ is a suitable directed set
with some order $\leq$ . Then we note that there exists a $v_{0}\in N$ such that $v\geq v_{0}$ then
$x_{v}\in r^{-1}(U)$ . Note that $r(x_{v})=f(x_{v})\in U$ for all $v\geq v_{0}$ . Then $x_{v}\in f^{-1}(U)$ for all
$v\geq v_{0}$ . If $c1_{X}f^{-1}(U)$ is compact, then $x\in c1_{X}f^{-1}(U)$ . This is a contradiction.

Sufficiency. This follows from the definition of singular compactifications.
$\square $

From the above proposition we realize that every singular compactification
depends on a singular map. The following example shows that there exists
singular compactifications $\alpha X$ and $\gamma X$ of $X$ such that $\alpha X$ is not equivalent to $\gamma X$ ,

even if $\alpha X-X$ is homeomorphic to $\gamma X-X$ .

EXAMPLE 3.1. Let $X_{0}=X_{1}=[0,1$ ) with a usual topology and $X_{2}=\omega_{0}$ with
a discrete topology. Then we put $X=\oplus_{i<3}X_{i}$ . Put $\alpha_{2}X=\omega(X_{0}\oplus X_{1})\oplus\omega X_{2}$

and $\gamma_{2}X=\omega X_{0}\oplus\omega(X_{1}\oplus X_{2})$ . Then $\alpha_{2}X$ is not equivalent to $\gamma_{2}X$ , even if
$\alpha_{2}X-X$ is homeomorphic to $\gamma_{2}X-X$ . In fact, denote $\omega(X_{0}\oplus X_{1})-X_{0}\oplus X_{1}=$

$\{po\},$ $\omega X_{2}-X_{2}=\{p\iota\},$ $\omega X_{0}-X_{0}=\{qo\}$ and $\omega(X_{1}\oplus X_{2})-X_{1}\oplus X_{2}=\{q1\}$ .
Clearly, $\alpha_{2}X-X$ is homeomorphic to $\gamma_{2}X-X$ . Suppose that $\alpha_{2}X\approx\gamma_{2}X$ and
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then $\alpha_{2}X\geq\gamma_{2}X$ . Then there exists a continuous map $f:\alpha_{2}X\rightarrow\gamma_{2}X$ such that
$fr_{x}$ is an identity on $X$. Then we note that either $f(po)=q0$ or $f(po)=q1$

holds. Since neither $\omega X_{0}$ nor $\omega(X_{1}\oplus X_{2})$ contains $f(\omega(X_{0}\oplus X_{1})-K)$ for any
compact subset $K$ of $X_{0}\oplus X_{1}$ , we can get a contradiction. This implies that
$\alpha_{2}X\approx\gamma_{2}X$ .

Let $d(X)$ be the density of a space $X$. The rest of this section $D_{\kappa}$ is a discrete
space with cardinality $\kappa$ . Proving our main theorem, we will begin with the
following lemmas:

LEMMA 3.1. Let $S$ be a compact space and $Y$ a non-compact space which is a
continuous image of a non-compact space X. If $Y$ has a singular compactification
with $S$ as a remainder, then $X$ has a singular compactification with $S$ as a remainder.

PROOF. From Proposition 3.2 $S$ is a singular set of $Y$. Then there exists
a singular map $f:Y\rightarrow S$ such that $S=S(f)$ . Assume that $g:X\rightarrow Y$ is a
continuous onto map. Then we will show that $S=S(fog)$ . In fact, take a point
$x\in S$ and let $U$ be an open neighborhood of $x$ in $S$. Assume the contrary
$c1_{X}g^{-1}(f^{-1}(U))$ is compact. Sinoe $g(c1_{X}g^{-1}(f^{-1}(U)))\supset f^{-1}(U)$ , we note that
$c1_{Y}f^{-1}(U)$ is compact. This is a contradiction. This implies that $x\in S(f\circ g)$ and
then we have shown that $S=S(fog)$ . Again from the Proposition 3.2 $X$ has a
singular compactification with $S$ as a remainder. $\square $

LEMMA 3.2. Let $X$ be a non-compact space, $Y$ a space and $S$ a compact
space. If $X$ has a singular compactification with $S$ as a remainder, then $X\times Y$ has
a singular compactification with $S$ as a remainder.

PROOF. Assume that $X$ has a singular compactification with $S$ as a
remainder. Since $X$ is a continuous image of $X\times Y$, from Lemma 3.1 $X\times Y$

has a singular compactification with $S$ as a remainder. $\square $

From Lemmas 3.1 and 3.2 we will prove the main lemma:

LEMMA 3.3. Let $\kappa$ be an infinite cardinal and $X=\oplus_{\alpha<\kappa}X_{\alpha}$ with $ X_{\alpha}\neq\emptyset$ and
$ d(X_{\alpha})\leq\kappa$ for any $\alpha<\kappa$ and $Y$ a space with $d(Y)\leq d(X)$ . Then for any compact
space $S$ the following conditions are equivalent:

(1) $X\times Y$ has a singular compactification with $S$ as a remainder,
(2) $X$ has a singular compactification with $S$ as a remainder.
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PROOF. (1) $\Rightarrow(2)$ . Assume that $X\times Y$ has a singular compactification with
$S$ as a remainder. Since $ d(X)=\kappa$, we note that $ d(S)\leq\kappa$ . Let $D$ be a dense
subset of $S$ . Enumerate $D$ as $\{x_{\alpha} : \alpha<d(S)\}$ . Note that $D_{\kappa}$ can be represented as
the infinite disjoint topological sum $\oplus_{\alpha<d(S)}D_{\alpha}$ such that $|D_{\alpha}|=\kappa$ for every
$\alpha<d(S)$ . A map $\varphi:D_{\kappa}\rightarrow D$ defined by $\varphi(d)=x_{\alpha}$ for every $d\in D_{\alpha}$ . Note that
$\varphi$ is continuous and $S(\varphi)=S$ . From Proposition 3.2 $D_{\kappa}$ has a singular com-
pactification with $S$ as a remainder. From Lemma 3.1 there exists a singular
compactification of $X$ with $S$ as a remainder, because $D_{\kappa}$ is a continuous image
of $X$.

(2) $\Rightarrow(1)$ . This part of the proof follows from Lemma 3.2. We have thus
proved the lemma. $\square $

It is well-known the fact that every non-separable metrizable space can be
represented as the infinite disjoint topological sum. We will prove the main
theorem in the case $X$ is a non-separable metrizable space:

THEOREM 3.1. Let $X$ be a non-separable metrizable space and $Y$ a space with
$d(Y)\leq d(X)$ . Then for any compact space $S$ the following conditions are
equivalent:

(1) $X\times Y$ has a singular compactification with $S$ as a remainder,
(2) $X$ has a singular compactification with $S$ as a remainder,
(3) $d(S)\leq d(X)$ holds.

PROOF. Since $X$ is a non-separable metrizable space, $X$ can be represented as
$\oplus_{\alpha<\kappa}X_{\alpha}$ , where $X_{\alpha}$ is $\sigma$-compact for every $\alpha<\kappa$ and $\kappa\geq\omega_{1}$ . Without loss of
generality, we can assume that $ X_{\alpha}\neq\emptyset$ for any $\alpha<\kappa$ . Then from Lemma 3.3 we
note that (1) is equivalent to (2). Finally, we will show that (2) is equivalent to
(3). Clearly, we note that (2) implies (3). It is sufficient to show that (3) implies
(2). Let $D$ be a dense subset of $S$. Enumerate $D$ as $\{x_{\alpha} : \alpha<d(S)\}$ . Note that $D_{\kappa}$

can be represented as the infinite disjoint topological sum $\oplus_{\alpha<d(S)}D_{\alpha}$ such that
$|D_{\alpha}|=\kappa$ for every $\alpha<d(S)$ . Define a map $\varphi:D_{\kappa}\rightarrow D$ as follows: $\varphi(d)=x_{\alpha}$ for
every $d\in D_{\alpha}$ . Note that $S=S(\varphi)$ . From Proposition 3.2 $D_{\kappa}$ has a singular
compactification with $S$ as a remainder and then from Lemma 3.1 $X$ has a
singular compactification with $S$ as a remainder, because $X$ can be represented as
$\oplus_{\alpha<\kappa}X_{\alpha}$ , where $X_{\alpha}$ is a non-empty $\sigma$-compact space for any $\alpha<\kappa$ . We have thus
proved the theorem. $\square $

Mimicking the proof of Theorem 3.1 we can get the following corollary:
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COROLLARY 3.1. Let $X$ and $Y$ be non-separable metrizable spaces. Then for
any compact space $S$ the following conditions are equivalent:

(1) $X\times Y$ has a singular compactification with $S$ as a remainder,
(2) either $X$ or $Y$ has a singular compactification with $S$ as a remainder,
(3) either $d(S)\leq d(X)$ or $d(S)\leq d(Y)$ holds.

Let $Q(X)$ be the set of all quasi-components of a space $X$ and $p$ : $X\rightarrow Q(X)$

the natural projection from $X$ onto $Q(X)$ . We given $Q(X)$ the topology generated
by { $\mathscr{C}:\mathscr{C}\subset Q(X)$ and $p^{-1}(\mathscr{C})$ is clopen in $X$} as a base for open sets. We call
the space $Q(X)$ with this topology the quasi-component space of $X[14]$ .

T. Kimura [21] proved the following lemma:

LEMMA 3.4 ([21], T. Kimura). Let $X$ be a separable metrizable space. If the
quasi-component space $Q(X)$ is not compact, then $X$ can be represented as the
infinite disjoint topological sum.

From Lemmas 3.3 and 3.4 we can get the main theorem in the case $X$ is
a separable metrizable space with a non-compact quasi-component space $Q(X)$ :

THEOREM 3.2. Let $X$ be a separable metrizable space with a non-compact
quasi-component space $Q(X)$ and $Y$ a space with $d(Y)\leq d(X)$ . Then for any
compact space $S$ the following conditions are equivalent:

(1) $X\times Y$ has a singular compactification with $S$ as a remainder,
(2) $X$ has a singular compactification with $S$ as a remainder.

From Theorem 3.2 and the similar argument above we can get the following
corollary:

COROLLARY 3.2. Let $X$ and $Y$ be separable metrizable spaces and either a
quasi-component space $Q(X)$ or a quasi-component space $Q(Y)$ is not compact.
Then for any compact space $S$ the following conditions are equivalent:

(1) $X\times Y$ has a singular $compact_{l}fication$ with $S$ as a remainder,
(2) either $X$ or $Y$ has a singular compactification with $S$ as a remainder.

In Theorem 3.2 the condition that $X$ has a non-compact quasi-component
space $Q(X)$ can not be dropped.

EXAMPLE 3.2. Put $X=[0,1$ ) with a usual topology and $Y=[0,1]\oplus[0,1$ ),
where $[0,1]$ with a usual topology. We note that $X\times Y$ has a singular com-
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pactification with $D_{2}$ as a remainder. However, $X$ can not have a singular
compactification with $D_{2}$ as a remainder.
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