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RADIAL FUNCTIONS AND MAXIMAL ESTIMATES FOR
RADIAL SOLUTIONS TO THE SCHRODINGER EQUATION

By

Seiji FuxkumMa

1. Preliminaries and result

Let f belong to the Schwartz space &(R") and set
Sif(x) = u(x,t) = (27::)_"J Xl f(£)dE, xeR", teR,
R
where a > 1. Here f denotes the Fourier transform of f, defined by

f= J e %% f (x) dx.
R"

In the particular case a =2, it is well known that u is the solution of the
Schrédinger equation with initial data f, idu/dt = Au and lim,_,g u(x,¢) = f in the
L? sense. We also introduce Sobolev spaces H; by setting

Hi={fe¥% :|fllg <o}, seR,

where

X 1/2
171, = ([ a+iepriferd) .

We shall here consider the maximal functions

§°f(¢) = sup |S:f(x)], xeR.
O<it<1

In [3], L. Carleson proposed the question under what condition does u(x,?) — f

as t — 0 pointwise a.e? To answer the question it is sufficient to get an a-priori

estimate of the S*f.
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Local estimate for S*f

1/q
(1) j S FFdx | < Callflla,
B(0;R)

where B(0; R) = {x € R"; |x| < R}, have been studied in several papers. (see e.g.
J. Bourgain [I], L. Carleson [3], B. E. Dahlberg and C. E. Kenig [5], C. E. Kenig
and A. Ruiz [8], E. Prestini [10], P. Sjolin [12, 13], L. Vega [17], C. E. Kenig,
G. Ponce and L. Vega [6]).

For g =2, in the case n = 1, the inequalities (1) holds with s =1/4 and the
result is sharp, and for n = 2, (1) holds with s = 1/2, for n > 3, holds for s > 1/2.
(see [12).

For radial function, g =1 and »n > 2, Prestini has proved (1) with
s> 1/4 and his result is sharp, and Sjo6lin has established (1) with s =1/4
and ¢ =4n/(2n—1) and, (1) does not hold for ¢ > 4n/(2n —1).

For global estimate of the type | S*f||, < C||F||,, where the left hand side
is the norm in L?(R"), there are also the several papers (see A. Carbery [2]
and M. Cowling [4] and C. E. Kenig, G. Ponce and L. Vega [6] and P. Sj6lin
[14]).

Sjolin has proved that if a > 1 then s > an/4 is a sufficient condition for
all n and if n =1 then s > a/4 is a necessary condition.

The purpose of this paper is the following global estimate

THEOREM 1. If g =4n/(2n — 1), then for f radial,
l/q
@) ([ 1570 ax)” < iy,
Theorem 1 is a direct consequence of the following

THEOREM 2. Assume 2<q<8/3. If a=q(2n—1)/4—n and f is radial,
then

(Ln |S*f<x)|q|x|“dx)l/q < Cllf U,

We shall need the following lemma and we choose a real valued function
p(¢) in CP such that p(¢) =1, |¢| <1 and p(&) =0, ¢ = 2.
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LemMmAa 1 [12, pp. 709-712]. Let N > 1 be a natural number and a > 1,
then

“ U (€)1l | < Clxl ™,
R
Jor 0 <y <1, xeR, where py(&) = p(&/N).
LEMMA 2 [9, pp. 38]. Let 1<p<qg<o, 1/p+1/p'=1(1/0 =1/—00 =0)

and let K (x,y) be a measurable function on R™. Assume that a measurable
Sunction K; >0, Ky > 0 such that

|K(x,y)| < Ki(x,y)K2(x,y),

ess.ysup 1K1 (%, )| Lo(rry < C1 < 00,
essfuP ”KZ(x’y)“LP’(R;) <G < oo,
then
TY0) = [ K )f () d
is a bounded operator from LP(RY) to Li(RY).

2. Proof of the theorem 2

We assume 2<¢g<8/3 and 1/p+1/9=1. Let #(x) denote a measurable
function, 0 < #(x) < 1. Then it is sufficient to prove the theorem with S$* replaced
by Six). Let s=|x| and r = |£|. We linearize the operator S;), we obtain

Sf(s) = cnsl—n/z J;) J,,/z_l(rs)ei’(s)'“j'(r)rn/z dr,

where Ji(x) denote Bessel function. (see [16, pp. 155]).
Now we set g(r) =f(r)(1 +r2)/8#-1/2 and

1 ~1)/4—
. Pyg(s) =;—Sf(s)s(2” 1)/4-1/q
n
o0
— s(2n-—l)/4~—1/q+l—n/2 jo Jn/Z—l(rs)eit(s)r“f(r)rn/Z dr

{o o]
= SV [y (1) (1) (1 -+ 72
0
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Hence we have to prove that

([ |Pg(s)|qu)l/q <c([ |g(r>|2dr)l/2-

We can set the adjoint of P
o o]
Prg(r) = (1 +r?)71/8,172 Jo Tnj2-1(rs)e™ " 34~ g(s) ds.

It is sufficient to prove that

(J:O |P*g(r)|2 dr)l/z < C(J“’ lg(s)|pds)l/p, g e L?(0,0).

0

Now, it follows from the estimate
Ji(r) = \/2/mrcos(r — nim/2 — n/4) + O(r~3/?) asr— o
(see [16, pp. 158]) that
|82 021 (F) — (Br€" + boe™)| < C/t, > 1,
and
20,0 1 (1) — (1" +bre™)| < C, 0<t<1.

By using above inequalities, we can write that

Q0
Pg(r) = b (1 + rz)_l/sj ei’se“i’(s)’as_yg(s) ds
0

00
+ by(1 + rz)_l/8 J e e sV g(s) ds + Q(r)
0

= b1A(r) + b2 B(r) + Q(r),

where y=1/g—1/4 and
oo}
lo(n| < c1 +r2)_1/sj min(1,1/rs)s™"|g(s)| ds.
0
We extend 4 to R by setting

AG) =1 +&H)78 Jo &N srg(s) ds, —oc0 <& <O.
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Then B(&) = A(—£), 0 < & < o0, and to estimate 4 and B we have only to prove
on A,

®) ([ 1nerde)” < cia,

where

ot = ([, lg(sws)l/p.

Then set
14 [© a
AN(f) =PN(5)|§|_ / L PCSOlH] )s_yg(s) ds.
We shall prove that

(], |AN<¢>|2dc)m < Clgll,

with C independent of N, and (3) follow from this inequality.
We have

j AN (&) de
R
- ”R An (&) An(D) d&

_ [ pu(@2ie ( r’ SO 57 g () ds) . (Jw R G R Y o ds’) de
JR 0 0

rFOO OO

~Jo J 0 (J R eIt py (&)1 dé) s77g(s)s"7g(s") dsds’.

Applying to the inner integral, we therefore obtain
o0 pCO
@ nl < € [ | ks =510l g deds

We set
K(s,s") =|s— | 25757,

then (4) follows that
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42 < c”j K(s,5)lg(s)|1g(s")| ds d’

< c[ e [ sanas | as

< Cligli, 1Al

where
hs) = Hy(©) = [ K(s,5)la(s)] &'

We shall prove that H is a bounded operator from LY(R) to L?(R). Here we set

Hy(s) = j: K(s,s)lg(s)| s

_ { j"’ g j +j2“'+ [ }K(s,s’)lg(s’)ld-f’

0 s'/2 s 2s’
= H) + H, + H3 + Hy.

Because of the symmetry in K, it is sufficient to prove the estimate of H; and H,.
To study H; and H,, we shall use [Lemma 2. First we shall consider H;. For
0<s<s/2, we have |s/ —s|=5"—s=>5 —s'/2=5/2 and

K(s,s") < V257157712,
If we choose

K = s—ls/}.—l/q, K = s).—ysl—l—y+l/q—1/2,

where A =1/g — 1/8, then we have

s’ /2 s’ /2
J Ki(s,s") ds = s~ J s~ ds
0 0

— Cs'M-1-1g+1

=C,

Jw Kj(s,s')ds' = s Joo §'—Ma-ra+l-a/2 gl
2s 2s

= Cs™M—79-24-rg+1-q/2+1

=C.
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Next we shall consider H,. For s//2 <s<s', we set
Ki=l|s—s| V4, Ky=|s—s|s.

Then, we obtain

/ !

A S
j Kf(s,s’)ds:s”'qj Is — s'|9* ds
s'/2 s'/2

s’ /2
=5 J s~9/4 ds
0

— Csl—yq——-q/4+1

=C.

Similarly, [** K{(s,s’) ds = 1. Hence ll4ll, < Cligll,, and therefore || 4nll, < Cligl|,-
Finally, we estimate Q(r). To do so we have to prove that the integral
operator with kernel

K(r,s) = (1 + )78 min(1,1/rs)s™

is bounded from L?(R) to L?(R). This can be done by decomposing K(r,s)
as

K(r,s) < Ki(r,5)Ka(r, s)

with
oo}
(5 supj K?ds < o0
r Jo
and
Q0
(6) supj Kjdr < o.
s Jo
Here we choose Kj, K, as follows:
(s~1/471/4 if s<1/r, 0<r<l,
X s~1p1/2 if s>1/r, 0<r<l,
1 —_—
s~ 1p1/8 ifs<l/r, 1<r<oo,
[ 577 1/2p—1/4 ifs>1/r, 1<r<oo,
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and
(s\/A=1/4 ifs<1fr, O<r<l,
X sr1/2 ifs>1/r, 0<r<l,
2 =
sr=1/8 ifs<1l/r, 1<r<oo,
( s71/2p1 ifs>1/r, 1<r<oo.

In the proof of (5) we first consider the case 0 <r <1,

00 o1/r 0
J K2(r,s)ds = Klzds+J K2ds
0 Jo 1/r
rl/r 00
= s"l/zrl/zds-l-J s72r lds
Jo 1/r
=2+1<o0.
For the case 1 <r < o0,
00 cl/r ]
J Ki(r,s)ds = des+J K} ds
0 Jo l/r
o1/r 0
= s=2m1/4 ds+J s2=1m112 g
Jo 1/r

= Cr¥=5/* 4 cr?-112 < 2C,

since y=1/4—-1/q, q > 2.
Similarly, in the proof of (6) we first consider the case 0 <s <1,

00 rl 1/s 00
J Kj(r,s)dr = Kgdr+J Kgdr+J K] dr
0 Jo 1 1/s

el l/s 00
= | s1/4Nap=ald gr 4 J s dr + J s~ r~9dr
J0 1 1/s

= Cs?*! 4 (278! — 59) + Cs7/*! < 3C.

For the case 1 < s < o0,
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el 1/s 1 00
J Kgdr:J K§dr+J Kgdr+J K] dr
0 0 1/s 1
1/s 1 00
— J s/4-na=a/4 g 4 J sy 92 gr 4 J 5929 dr
0 1/s 1
Cs*/4-2 4 Clogs/+/s + Cs™9/2, for g =2,
Cs34/4-2 4 C(s9/41 — 5%9/4-2) 4+ Cs79/2, for2 < q <8/3,
is bounded.

Arguing as above, the integral operator with kernel K(r,s)=
(1 +r2)~8 min(1, 1/rs)s™ is bounded operator from L?(R) to L*(R) by Lemmal
2 and thus estimate for Q(r) is established. Therefore, the proof of is
complete.
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