ON THE GAUSS MAP OF NULL SCROLLS

By

Soon Meen Choi, U-Hang Ki and Young Jin Suh

Abstract. The purpose of this paper is to characterize a class of non-degenerate ruled surfaces in \mathbb{R}^3_1 , which are said to be null scrolls, satisfying the condition $\Delta \xi = A \xi$, where ξ denote their Gauss maps and $A \in gl(3, \mathbb{R})$.

1. Introduction

Let $H^2(-1)$ (resp. $S_1^2(1)$) be the 2-dimensional hyperbolic space of constant curvature -1 (resp. the 2-dimensional de Sitter space of constant curvature 1) in the 3-dimensional Minkowski space R_1^3 . Let M be a space-like surface (resp. time-like surface) in R_1^3 and ξ a unit vector field normal to M. Then, for any point z in M, we regard $\xi(z)$ as a point in $H^2(-1)$ (resp. $S_1^2(1)$) by the parallel translation to the origin in the ambient space R_1^3 . The map ξ of M into $H^2(-1)$ (resp. $S_1^2(1)$) is called the Gauss map of M. In this paper, we give a geometric characterization for a class of non-degenerate ruled surfaces in R_1^3 satisfying $\Delta \xi = A \xi (A \in gl(3, R))$.

Let \mathbb{R}^n denote the *n*-dimensional Euclidean space and $S_0^{n-1}(1/r^2)$ the hypersphere of \mathbb{R}^n centered at the origin with radius r. In the theory of minimal submanifolds in \mathbb{R}^n , Takahashi's theorem [11] is one of interesting results. The theorem gives an important relationship between the theory of minimal submanifolds in $S_0^{n-1}(1/r^2)$ ($\subset \mathbb{R}^n$) and that of eigenvalues of the Laplacian. From the viewpoint of this result, Chen [3], [4] generalized the notion of minimal submanifolds in $S_0^{n-1}(1/r^2)$ to that of submanifolds of finite type in \mathbb{R}^n , and developed the theory of them greatly. Let M be an m-dimensional Riemannian manifold, x an isometric immersion of M into \mathbb{R}^{m+1} and Δ the Laplacian of M. Generalizing the notion of minimal submanifolds in $S_0^{n-1}(1/r^2)$ another way,

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

Key Words: framed null curve, null scroll, third curvature, Gauss map, Cartan framed curve.

This paper was supported by the grants from BSRI-97-1404 and TGRC-KOSEF.

Received November 22, 1996.

Revised February 10, 1997.

Garay [8] also studied hypersurfaces in \mathbb{R}^n satisfying the condition $\Delta x = Ax$, where A denotes a constant diagonal $(m+1) \times (m+1)$ matrix.

On the other hand, Chen and Piccinni [2] characterized *n*-dimensional submanifolds M in \mathbb{R}^m satisfying $\Delta G = \lambda G$ ($\lambda \in \mathbb{R}$), where $G: M \to G(n,m) \subset \mathbb{R}^N$ ($N = {}_m C_n$) denote the generalized Gauss maps of M. Baikoussis and Blair [1] also characterized surfaces in \mathbb{R}^3 satisfying $\Delta \xi = A \xi (A \in gl(3, \mathbb{R}))$, where ξ denote their Gauss maps.

As a Lorentzian version to [1], in [5] and [6], the first author has considered the Gauss maps ξ of space-likes or time-like surfaces in \mathbb{R}^3_1 satisfying the following equation

$$\Delta \xi = A \xi, \quad A \in gl(3, \mathbf{R}),$$

where $gl(3, \mathbf{R})$ denotes the set of all real 3×3 -matrices. The first author has proved rigidity theorems only for surfaces of revolution and ruled surfaces along any non-null curve in \mathbf{R}_1^3 .

In this paper let us consider a null curve α with null frame $F = \{X, Y, Z\}$. Then (α, F) is called a *framed null curve with frame F*. A non-degenerate ruled surface M in \mathbb{R}^3_1 along α parametrized by

$$x(s,t) = \alpha(s) + tY(s)$$

is called a *null scroll*. It is a time-like surface. The purpose of this paper is to give a geometric characterization for null scrolls satisfying $\Delta \xi = A \xi$ in terms of the function k_0 and the third curvature k_3 (See §2).

THEOREM. Let M be a null scroll along the framed null curve with proper frame field. Then the Gauss map ξ of M satisfies

$$\Delta \xi = A \xi, \quad A \in gl(3, \mathbf{R})$$

if and only if the mean curvature $H = (k_3/k_0)$ is constant. In this case, A is always equal to a scalar matrix.

A framed null curve (α, F) with the function $k_0 = 1$ and the first curvature $k_1 = 0$ is said to be a *Cartan framed null curve*. Moreover, for a Cartan framed null curve α with Cartan frame $F = \{X, Y, Z\}$ this kind of ruled surface is said to be a *B-scroll* (See Graves [9]).

COROLLARY. Let M be a B-scroll along the framed null curve (α, F) . Then the Gauss map ξ of M satisfies the condition

$$\Delta \xi = A \xi, \quad A \in gl(3, \mathbf{R})$$

if and only if the third curvature k_3 is constant.

2. Null scrolls in the Minkowski 3-space

Let us review the terminology and fundamental properties for a null scroll M in \mathbb{R}^3 . Here we refer to [7] and [9]. The purpose of this section is to represent the Laplacian Δ on M explicitly in terms of curvatures of the framed null curve, and to calculate the Gaussian curvature K and the mean curvature H of this null scroll.

 R_1^3 is by definition the 3-dimensional vector space R^3 with the inner product of signature (1,2) given by

$$\langle x, y \rangle = -x_1y_1 + x_2y_2 + x_3y_3$$

for any column vectors $x = {}^{t}(x_1, x_2, x_3), y = {}^{t}(y_1, y_2, y_3) \in \mathbb{R}^3$. Let $\{e_1, e_2, e_3\}$ be the standard orthonormal basis of \mathbb{R}^3 given by

$$e_1 = {}^{t}(1,0,0), \quad e_2 = {}^{t}(0,1,0), \quad e_3 = {}^{t}(0,0,1).$$

A basis $F = \{X, Y, Z\}$ of \mathbb{R}^3_1 is called a (proper) null frame if it satisfies the following conditions:

$$\langle X, X \rangle = \langle Y, Y \rangle = 0, \quad \langle X, Y \rangle = -1,$$

$$Z = X \times Y = \sum_{i=1}^{3} \varepsilon_i \det[X, Y, e_i]e_i,$$

where $\varepsilon_1 = -1$, $\varepsilon_2 = \varepsilon_3 = 1$. Hence we obtain that

$$\langle X, Z \rangle = \langle Y, Z \rangle = 0, \quad \langle Z, Z \rangle = 1.$$

A vector V in \mathbb{R}^3_1 is said to be *null* if $\langle V, V \rangle = 0$.

Let $\alpha = \alpha(s)$ be a null curve in R_1^3 , namely, a smooth curve whose tangent vectors $\alpha'(s)$ are null. For a given smooth positive function $k_0 = k_0(s)$ let us put $X = X(s) = k_0^{-1}\alpha'$. Then X is a null vector field along α . Moreover, there exists a null vector field Y = Y(s) along α satisfying $\langle X, Y \rangle = -1$. Here if we put $Z = X \times Y$, then we can obtain a (proper) null frame field $F = \{X, Y, Z\}$ along α . In this case the pair (α, F) is said to be a (proper) framed null curve. A framed null curve (α, F) satisfies the following, so called the Frenet equation:

(2.1)
$$\begin{cases} X'(s) = k_1(s)X(s) + k_2(s)Z(s), \\ Y'(s) = -k_1(s)Y(s) + k_3(s)Z(s), \\ Z'(s) = k_3(s)X(s) + k_2(s)Y(s), \end{cases}$$

where $k_i = k_i(s)$, i = 1, 2, 3 are smooth functions defined by

$$k_1 = -\langle X', Y \rangle, \quad k_2 = \langle X', Z \rangle, \quad k_3 = \langle Y', Z \rangle.$$

The function k_i is called an *i-th curvature* of the framed curve. It follows from the fundamental theorem of ordinary differential equations that a framed null curve $(\alpha, F) = (\alpha(s), F(s))$ is uniquely determined by the functions k_0 (>0), k_1 , k_2 , k_3 and the initial condition.

A framed null curve (α, F) with $k_0 = 1$ and $k_1 = 0$ is called a *Cartan framed null curve* and the frame field F is called a *Cartan frame*.

Let $(\alpha, F) = (\alpha(s), F(s))$ be a null curve with frame $F = \{X, Y, Z\}$. A ruled surface M along α parametrized by

$$x(s,t) = \alpha(s) + tY(s), \qquad s \in I, t \in J$$

is called a *null scroll*. It is a time-like surface. Furthermore, for a Cartan framed null curve α with Cartan frame $F = \{X, Y, Z\}$ the ruled surfaces is called a *B-scroll*.

From the Frenet equation (2.1), the natural frame $\{x_s, x_t\}$ on the null scroll M is obtained by

$$x_s = k_0 X - k_1 t Y + k_3 t Z$$
, $x_t = Y$,

and the first fundamental form g on M is given by

$$g = g_{11}(ds)^2 + 2g_{12} ds \cdot dt + g_{22}(dt)^2,$$

$$g_{11} = 2k_0k_1t + k_2^2t^2, \quad g_{12} = -k_0, \quad g_{22} = 0.$$

Hence the null scroll M is a time like surface, namely, $\det g < 0$ everywhere on M. Let g^{ij} (i, j = 1, 2) denote the components of the inverse matrix g^{-1} :

(2.2)
$$g^{-1} = -\frac{1}{k_0^2} \begin{pmatrix} 0 & k_0 \\ k_0 & (k_3 t)^2 + 2k_0 k_1 t \end{pmatrix}.$$

One can show that the Laplacian Δ of M is expressed as

(2.3)
$$\Delta = -\frac{1}{\sqrt{|\mathfrak{G}|}} \sum_{i,j} \frac{\partial}{\partial x_i} \left(\sqrt{|\mathfrak{G}|} g^{ij} \frac{\partial}{\partial x_j} \right)$$

$$= -\frac{1}{k_0} \left[\frac{\partial}{\partial s} \left(-\frac{\partial}{\partial t} \right) + \frac{\partial}{\partial t} \left\{ \left(-\frac{\partial}{\partial s} \right) - \left(\frac{k_3^2 t^2 + 2k_0 k_1 t}{k_0} \right) \frac{\partial}{\partial t} \right\} \right]$$

$$= \frac{2}{k_0} \frac{\partial^2}{\partial s \partial t} + \frac{2}{k_0^2} (k_3^2 t + k_0 k_1) \frac{\partial}{\partial t} + \frac{1}{k_0^2} (k_3^2 t^2 + 2k_0 k_1 t) \frac{\partial^2}{\partial t^2},$$

where \mathfrak{G} denotes the determinant of (g_{ij}) .

Let ξ be the unit normal vector field on the null scroll M in \mathbb{R}^3_1 defined by

$$\xi = -\frac{k_3}{k_0} tY - Z.$$

Then, it is a space-like normal vector field to M. Thus, for any point x in M, we can regard $\xi(s)$ as a point in $S_1^2(1)$ by the parallel translation to the origin in the ambient space R_1^3 . The map ξ of M into $S_1^2(1)$ is called the *Gauss map* of M in R_1^3 . So, the components h_{ij} , i, j = 1, 2, of the second fundamental form of M in R_1^3 are given by

$$h_{12} = g(x_{st}, \xi) = -k_3, \quad h_{22} = g(x_{tt}, \xi) = 0$$

since $x_{st} = x_{ts} = Y' = -k_1 Y + k_3 Z$, $x_{tt} = 0$. Accordingly, the Gaussian curvature K and the mean curvature H of the null scroll M is given by respectively

$$H = \frac{1}{2} \Sigma_{ij} g^{ij} h_{ij} = g^{12} h_{12} = \frac{k_3}{k_0},$$

and

$$K = \frac{-h_{11}h_{22} + h_{12}^2}{g_{11}g_{22} - g_{12}^2} = -\left(\frac{k_3}{k_0}\right)^2.$$

From the last formula we can assert

PROPOSITION. A null scroll M along the framed null curve α in \mathbb{R}^3_1 is flat if and only if the third curvature k_3 of α vanishes identically.

3. Proof of Theorem

In this section, let us prove the Theorem in the introduction.

Since $\xi = -(k_3/k_0)tY - Z$, by applying the Frenet equation (2.1), the Laplacian of ξ is calculated as follows:

$$(3.1) \Delta \xi = \frac{2}{k_0} \frac{\partial^2 \xi}{\partial s \partial t} + \frac{2}{k_0^2} (k_3^2 t + k_0 k_1) \frac{\partial \xi}{\partial t} + \frac{1}{k_0^2} (k_3^2 t^2 + 2k_0 k_1 t) \frac{\partial^2 \xi}{\partial t^2}$$

$$= \frac{2}{k_0} \left\{ \frac{1}{k_0^2} (k_0' k_3 - k_0 k_3' + k_0 k_1 k_3) Y - \frac{k_3^2}{k_0} Z \right\} + \frac{2}{k_0^2} (k_3^2 t + k_0 k_1) \left(-\frac{k_3}{k_0} Y \right)$$

$$= -\frac{2}{k_0} \left(\frac{k_3}{k_0} \right)' Y + 2 \left(\frac{k_3}{k_0} \right)^2 \xi.$$

This implies that if the mean curvature $H = (k_3/k_0)$ is constant, then the Gauss map ξ of M is of 1-type:

$$\Delta \xi = 2H^2 \xi,$$

namely, the Gauss map $\xi: M \to S_1^2(1)$ is harmonic (cf. [10]). Thus the Gauss map satisfied the following formula in Theorem

$$(3.2) \Delta \xi = A \xi, \quad A \in gl(3, \mathbf{R}).$$

Now let us consider the converse. Assume that the Gauss map ξ of the null scroll M satisfies (3.2). Then, for the matrix A we have by (2.4), (3.1) and (3.2)

$$\frac{k_3}{k_0} tAY + AZ = 2\left\{\frac{1}{k_0} \left(\frac{k_3}{k_0}\right)' + \left(\frac{k_3}{k_0}\right)^3 t\right\} Y + 2\left(\frac{k_3}{k_0}\right)^2 Z$$

for the parameter t. Then we have

(3.3)
$$\frac{k_3}{k_0} A Y = 2 \left(\frac{k_3}{k_0}\right)^3 Y,$$

(3.4)
$$AZ = \frac{2}{k_0} \left(\frac{k_3}{k_0}\right)' Y + 2 \left(\frac{k_3}{k_0}\right)^2 Z.$$

We put $k = (k_3/k_0)$. Differentiating (3.3) with respect to the parameter s, we get

(3.5)
$$k'AY + k(AY)' = 2(3k^2k'Y + k^3Y').$$

On the other hand, the Frenet equation (2.1) gives

$$(AY)' = AY' = -k_1AY + k_3AZ.$$

From this together with (3.3), (3.4) and (3.5) we have kk'Y = 0, which implies that k^2 is constant. It completes the proof of Theorem.

References

- [1] C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow. Math. J. 34 16 (1992), 355-359.
- [2] B. Y. Chen and Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 11 (1987), 161-186.
- [3] B. Y. Chen, Submanifolds of finite type and applications, Proc. of TGRC. 3 (1993), 1-48.
- [4] —, Total curvature and submanifolds of finite type, World Sciences, Singapore, 1984.
- [5] S. M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 285-304.

- [6] S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351-367.
- [7] M. Dajczer and K. Nomizu, On flat surfaces in S_1^3 and H_1^3 , Manifolds and Lie Groups, Univ. Notre Dame, Birkhäuser, 1981, pp. 71–108.
- [8] O. J. Garay, An extension of Takahashi's Theorem, Geometriae Dedicata 34 (1990), 105-112.
- [9] L. K. Graves, Codimension one isometric immersions between Lorentz space, Trans. Amer. Math. Soc. 252 (1979), 367-392.
- [10] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
- [11] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Topology and Geometry Research Center, Kyungpook National University, 702-701, KOREA

Department of Mathematics, Kyungpook National University, 702-701, KOREA

Department of Mathematics, Kyungpook National University, 702-701, KOREA