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ON THE WELLPOSEDNESS IN THE
ULTRADIFFERENTIABLE CLASSES OF THE CAUCHY
PROBLEM FOR A WEAKLY HYPERBOLIC EQUATION OF
SECOND ORDER

By

Tamotu KINOSHITA

§1. Introduction
We first consider the linear equation
atzu - Z axl(alh(t, x)am.u) + Z bl(ta x)axlu + C(I, x)u = g(t’ x)

(1) b=l =1 in [0, T] x R”
u(O’ x) = uo(X), atu(O,x) =u (X),

where A(t,x) = {amn(t,x)}<;p<n 15 @ real symmetric matrix whose components
satisfy

(2) an(t, x) € Z([0, T); B{Fj} g, (R})),

and the weakly hyperbolic condition
(3) > an(t,x)&E 20 for“te[0,T], "xe R}, "ée RY,
Lh=1

and B(t,x) = {bi(t,x)},<;<, is @ vector whose components satisfy
(4) bi(t,x), c(t,x) € C°([0, T; B{F} , (RY))-

Here we used the following notations of the function classes.
i) the function classes Z([0, T]) is defined with the increasing function w(?)
on [0, 0] satisfying

(5) w(0)=0, o) =w(!), w@=t for'te (0,x),

as follows
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Z([0,T)) = {f (1) € C°([0, T]); | (1) = f(s)| < *Ca(t —s) for *1,”s € [0, T]
such that ¢t — s € {0, 1]}.

(e.g. if w(?) = 1| (0 < o < 1), the the function space Z(|0, T]) coincides Holder
space.)
ii) the function classes B{F;}z(R}) is defined as follows

B{F;}z(R?) = {f(x) € C*(R}); max |0%f(x)| < MR'F; for "x € R* Ya € N"}.
al=j

There are a lot of papers concerned with the relation between the Holder
continuous coefficients and the Gevrey wellposedness for weakly hyperbolic
equations (see [CJS], [D], [Ki2], [Ki3], [OT]). We know the fact that the
combination of Hoélder classes in ¢ and the Gevrey classes in x is well suited for
this kind of the study. In order to treat the problem in the ultradifferentiable
classes we introduced the function classes Z([0, 7).

THEOREM 1. Let T >0, Ry > 0, and {F; } o0 {Gj} be sequences of positive
numbers. Assume that the coefficients satisfy (2), (3), (4 ). Then there exists the
positive function p(t) € C'(R}) such that for any p(t) < p(t) and ug(x) and u;(x) €
D1, {Gj} 01 (RY), g(1,x) € C°(Jo, T); Dr,{Gj} -1 (RY)), the Cauchy problem (1)
has a unique soltion ue C%(|0, T, D1,{Gj} 5, (RY)), provided {Gj};2o satsfying
the logarithmically convex condition i.e.,

i— j—

and
(7N Gj = Fj,
and

(t)l/zG[l/z]

8 hm———— =0,

®) o TG
where

w 1/2
Dp2{G}r(R]) = {f(x e DRRD: Y { ) na;fuiz} JRIG; < oo}-

J=1 \la|=j
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We remark that the logarithmically convex condition has many equivalent
forms (see [M]). The condition (6) is one of them, and for example the following
is also a logarithmically convex condition

G’ < Gi_1Gjy for j=1,2,....

When o(f) =|t|° (0 <o <1) and G; =, the condition (8) is satisfied if
s <1+ (a/2). Hence includes the Gevrey case (see [CJS], [D], [N]).

This result of the linear problem may be applied to some nonlinear problems.
For example, the quasianalytic class which is one of the ultradifferentiable classes,
is meaningful in the treatment of the Kirchhoff equations (see [H). In this
paper we shall also consider the another type of the nonlinear equation

2 _
o) { G = Ou{at X)) + S (5t =00

u(0,x) = up(x), 0u(0,x) = ui(x),
where P is a fixed closed interval, and the coefficients satisfy
2) a(t,x) € Z([0, T); B{Fj} g, (P)),
(3) a(t,x) >0  for"te0,T)], "xe P,
(10) f(t,x,u,v) € C°([0, T); B{F;} g, (P), B{E}} p,(R"), B{E} s, (R")).

When F; = and E; =,!, K. Kajitani proved the wellposedness for the
Leray-Volevich’s systems (see [Kal]. When F;=j!* and E; = with the
exponents satisfying & <s, P. D’ancona and R. Manfrin proved the well-
posedness for the abstract n-dimensional equations of second order (see [DM]).
For the simplicity we shall only treat the 1-dimensional and P-periodic case.

THEOREM 2. Let R >0, Ry >0, and {E;}2,, {Fj}20, {Gj};2y be sequences
of positive numbers. Assume that the function w(t) satisfyies w(t) >t for "t € [0,1]
and the coefficients satisfy (2), (3), (10). Then there exist T > 0 and the positive
function p(t) € CY(R}) such that for any p(t) <p(t), and wuo(x) and u(x) e
DLz{Gj}p(o)—‘ (P), f(2,x,0,0) e CO([0, T; DLZ{Gj}p(t)—l(P)), the Cauchy problem (9)
has a unique soltion u € C%([0, T], D1,{G;} 0~ (P)), provided {Gj}2 satisfying the
logarithmically convex condition (6), and (7), and

1/2
t G
(11) sup —_w( ) /4

< o0,
te©1] [1/Gryq-1
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and moreover there exist p > 1, C > 0 such that

G; G;
<
J?Gi—1 ¢ PGy

(12)

for1 <Vi<Vj,
and for any fixed R > 0,

(13) > R EJ < 0.

7

The condition [11) is weaker than the condition (8), since the solution of
is local, while the solution of is global. We remark that
the condition (12) is not contrary to the condition (6). For example the Gevrey
case G; =j!° satisfies (6) obviously and also satisfies (12) with p > s, C=1.

Since the ultradifferentiable classes of our theorems are included by the
Gevrey class whose order is equal to two, Levi condition for the lower terms is
not necessary. In the Gevrey classes whose order is greater than or equal to two,
M. Reissig and K. Yagdjian also solved linear and nonlinear problems with the
generalized Levi condition (see [RY1], [RY2]).

In the proofs of theorems we don’t use the theory of the pseudo-differential
operators. If one use the pseudo-differential operators in the Gevrey or ultra-
differentiable classes, one may generalize the principal part of the equation (see
[C], [Nt]). Concerned with the theory for the pseudo-differential operators in the
Gevrey or ultradifferentiable classes, many useful methods are introduced in

§2. Preliminaries

In this section we shall introduce some notations and inequalities.
The energy estimate in §3 is derived as a approximation of the strictly
- hyperbolic equations with the smooth enough coefficients. Therefore we need to
regularize the coefficients. With the function ¢(f) e C®(R!) such that supp ¢
< [-1,1], ¢(1) =0 and [*_ ¢(t)dr =1, we shall put

¢ () =0 +v)((j+v)) forj=2,v=>0

and
Ajpy(t) = A * ¢, () am, j+(2) = amm * ¢;,.,(2))-

Then we get the following lemma.
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LEMMA 1. Let A(t,x) = {am(t,X)}1 <1<, be a matrix whose components ay,
(1 <1,h < n) satisfy (2). Then it holds that

14(2) = 4j1s Dl p1gry < Cr0(j + )7

(14)
10:Ajs (D] po(mry < C2(J + V) (J + v~

ProoF. By (5) we can easily get for « € N" satisfying |a| <1

AW ~ )] < G+ [ $U+ 090G+ 9) - )

00

<+ [ #U+nsolsl)ds

—o0

- son(h)s

< Ca;(]i_v>J o(s) ds

= Ca(j+v)™

Noting that (j+v) [* ¢'(s)A(¢f)ds =0, by (5) we also get
00

Budyan(8)] < ’(j+ D[ GG+ - 046 ds

00

‘(] +v) J_w ¢'(s){A(t) - A(t+j%) } ds

—C’<J+v>j VOlo(-EL)

<cG+vo() [ Wela

= C"(j+ V(i +v)"

The logarithmically convex condition is often used in the proofs of theorems.
In particular it is required in order to show the following lemma.

LEMMA 2. Let {G]};io be sequences of positive numbers which satisfies the
logarithmically convex condition
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G: G:
6 L < or1 <Vi<V.
®) iGi1 ~ JjGjia J J
Then it holds that
G'—k+le+lj!
15 1 < Ck(k+1
13 G-k k=1 ~ KEFD
fork=12,..., j=k+1,k+2,...,

where C is independent of j and k.

This lemma plays important role to estimate the commutator part of the
energy (see (22)). For the sequences of the Gevrey classes, i.e., G; = (s > 1),
this inequality is also satisfied (see [D], [RY1]). We assert that for the
sequences of the ultradifferrentiable classes, still holds under the logarith-
mically convex condition (6).

Proor. Noting the ranges of j and k, by (6) we get

Gj—k+1Gx11J! Gj_k+1Gr41J!

=k(k+1
GU—k+Dik—D1  E VGG rr DI+ D)
Gaw G G G
_ (G—k+1)Gix 1 (k+1)G 1
=k(k+1) G o e
JGi-1 j—1)Gj—2 1
if j—k+1>k+1
Gj—k+1 G
— (j_k+ 1)Gj—k 3G2
=k(k+1) G o

jGo e+ 2)Gern

G G G G
><(k+1)Gk 1 2G; 1
Gi+1 Gy 1

k+1)G. 1

<k(k+1)-1-1-C
— Ck(k+1) fork=12,..., j=k+1,k+2,....

ifk+1>j—k+1
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Gr1 Gs
(k+1)G: 3G
=k(k+1
S/ /e
JGi-1 (J—k+2)Gjn
Gn G G G
(-k+1)Gx 1 2G 1
Gj—k+1 Gy 1

G-k+1)G 1
<k(k+1)-1-1-C
= Ck(k+1) fork=1,2,..., j=k+1,k+2,...,

where C depends on only G; and G,. This implies [I5).
In order to estimate the lower parts of the energy, we also need the another
inequality which is similar to (15).

CorOLLARY 3. Let {G;};2, be a sequence of positive numbers which satisfies
the logarithmically convex condition (6). Then it holds that

Gj—r-1G(j — 1)!
G1(j—k - DK

<l fork=0,1,..., j=k+1,k+2,....

Naturally in the Gevrey case we can see easily that the above inequality
holds. But in the ultradifferentiable case we still need the logarithmically convex
condition (6) to show the above inequality.

PrOOF. By (6) we get

Gj—k-1 LG G G
Gi-1G (-1 _(=k-1)Gr2 1kG1 1
Gi_1(j —k—1)k! Gj-1 G- G
(J-1Gj—2 (j—2)Gi-3 1
ifj—k—12k
Gir 6 G G
_U-k—"DGs2r 1 kG 1
Gi—1 Gr+1 Gy _(_;l

G-DG2 (k+1)Gk kGey 1
<1l-1=1 fork=0,1,..., j=k+1,k+2,....
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ifk+1>j—k—1

G & Gj—k-1 Lo

_ kG111 (-k=1)Gjk—2 1
A — E—
(G-1G—2 (j—-k)Gik1 (J—k—1)Gj4—2 1
<1-1=1 fork=01,..., j=k+1,k+2,....

This implies the corollary.
Furthermore, in order to estimate the nonlinear term in the proof of [Theorem|
2, we need the following lemma.

LemMA 4. Let {Gj};2, be a sequence of positive numbers which satisfies the
logarithmically convex condition (6). Then it holds that for hiy>1 (1 <i<pu)
satisfying hy + hy + -+ h, =1

IGhy -~ Gh, G _ (Gl)"

Gihy!---hu! ~ \G,

This inequality appear when we consider the compositions of functions. This
can be also shown clearly in the Gevrey case. We shall prove this with the
logarithmically convex condition (6).

ProoF. By (6) we get

1Gy, - Gy, G
Gl h, !
G G G Gr __Gn G
__H#Gu 1 MGh1 Go (u—=1)Gu2 h2Gp,_1 Gy
G Gi—m+1 Gi—n Gi—h—hy+1
Gt (I-m+1)Gy, (I—m)Ginr  (I—h —h2+1)Gip—n,
Gi_On G
o x Go h,Gh,—1  Go
G, G
hyGp,—1  Go
L 66 G_ (G}
T GGy Gy \Go)°

This implies the lemma.
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§3. Proof of Theorem 1

In this section our main task is to invistigate the regularity in the space
variable x of solutions. Therefore we shall derive the energy inequality which can
be also applied to a certain extent in the proof of [Theorem 2. The method of the
finite or infinite order energy are used by many people. We shall also use this
kind of energy for the proof. But the form of our energy is different slightly from
others.

Using the notations which are prepared in §2, we shall first define the partial
energies

ejy(t) = { J Z (Ajyv(t,x,0)0%u, Ou) + w(j+v)~ Z |0%u)?

n .
Ry |u|=j-1 o=/

1/2

NIED R Y |aza§zu|2dx} ,
|otf=j—1 || =j—1

where 4;.,(,x,0) = 31— Ox,@1njsv(t, X) O,

Our energy includes the parameter v which gives the various benefits to the
proofs. In the proof of theorem 1, v is taken large enough and play a role to
show the global solution. In the proof of theorem 2, v is taken zero and play a
role as the weight for energies.

Hence we can easily see the following relations between the partial energies
and the L,-norms of the derivatives of u

a, 112 . -2 2 2 . 2
D S, < G+v) e D 1%ullz, < o+ v)ew(1)?,

|| =j—1 o=/

(16) )
D lodulz, <en®? D N10d5ulz, < en1n(2).
|o|=j~1 |ee|=f

Differentiating {e;,(¢)}%, by (14) we get
d 2
a0}
=J Z ((atAj+V(t,xv 6))6?14, 5zu)+2m Z (Af+v(t1xa 5)5ta§”a a?cu)
forl=j—1 |e|=j—1

+2Rw(j +v) ™' D (8:85u, ) + 2R(j +v)* D (8,05, Ou)
lo|=F |o|=j—1
+2R Y (820%u,0,05u) dx
e|=j—1
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< D (e (t, x,8)) O, 82u)
|o|=j—1

+2R Y (i, X, 8) — A2, x,0)) 0,05, u)

lol=j—1

+2Ro(j +v) ' (005, ), + 2RG+v) D (8%, 82u)

el=f forl=j—1
+2R Y (0% Alu, 0,85u), — 2R D (6LB(t, x, 0)u, 0,0%u)
|| =j—1 Ja|=j—1
—2R > (Fc(t,x)u,0,0%u), +2R D (%g(t,x), 0,8%u)
|oe|=j~1 or|=j—1
<GU+veG+v Y (Z||a“+”u||)
le|=j—-1 \|Bl=1
+2Ci0(i+v)7 Y (Zna‘;:*ﬂun) (Zna,az*”un)
fal=j~1 \|BI=1 18l=1

+20(j +v) 7Y llSull 1885l + 20 +v)* D 6%l |85
oel=j lo|=j—1

+2 ) |I[8%, A, x, O)lull [|8:8%ull +2 Y |18%B(t, x, B)ul| ||0:8%u|

[or]=j—1 [or|=j—1
+2 ) 8t x)ull |8:85ul +2 D 18590l 10:2%ull,
| =j—1 || =j—1

where A(t,x,0) = 3} Oxam(t, x)0x, and B(t,x,0) = 3, bi(t, x)0x,.
Noting (16) and dividing by e;,(¢), we get

d 7 . - "y .
(17) Zow®) < Cali +V)ein(0) + Crooli + 1) epra(t) + Coli +V)e(0)

+ C"{ > N[8% A(t,x, 8)]ull } + CL’{ 3 [l%B(t,x, a)ullz}l/z

a|=j—1 |a|=j—1
1/2 1/2
+C:.’{ > na:c(t,x)u||2} +c::{ 3 ||a§g<z)||2}
la=j1 lo=j—1

In order to estimate the last four terms, we introduce the whole energy and
investigate them more carefully. With the positive function p(¢) satisfying

(18) p(ORy < 1,
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we shall define the infinite order

(19) E(=Y"2

By (17), we have

energy

00 ( )j+v—1

PO ).
j=2 Gj+v-2 Y

251

j+v—2 Jj+v-1
@0 G0 = 3= 2 0l + 3P G+ )
p(t)H-v‘Z / 1/2 p(t )j+v—1 "y
> PGty =10 + Z—(—;j—zc,. (+7)e0)
=3 v— =2 +v—
+ L(2),
where
L) =320 IC”{ S8 At x, a)1u||2}”2
= G- le|=j—1

—+

j=2 G]+V

p(t)j+v 1C// ap
|0%B(t, x, 0)ul|
Z 2 {|a|2~1:1 }

+Z”(’)J - lc"{ 3 et x)u|| }

j=2 j+v

2 || =j—1

tj+v1

Picking up the last term, we

+3 0o ol 3 waor)”

lod=/—1

preceed to estimate.

We start to invistigate the first term of L(¢) which has the commutater. But

moreover we need separate this term to three parts as follows (see [D]).

+v—1

= G2 lal=j-1

_C//Zp )j+v 1{ Z

00 J+v—-1
_ N\~ PO
—qud{z
=2 vl | a1

* AL x, a>1u||2}” ’

E (6§+e’a1h0fj'u - ai’alha;-’_e" u)
Lh

) (Z ( ; ) (5 P+

Lh \f<a

2}1/2
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+ Z( ) (aa—ﬂam 6ﬁ+el+ehu (5?a1h)6§+‘-’"u _ alhagtc+e1+e,, u)

p<a
o
> > < ) (%P ay)dlteru
Lh <af+#a ﬁ

2}1/2

2}]/2

= CIIZP(I)I+V 1{ Z

=2 J+V -2 lotj=j—1

(%) e aﬂ)

f<a

=1+ 1I + III,
where
" P(t)]+VI * o—pte Pren "
I_CZ D122 2 (p) @ an)d
=2 ]+V—2 |o|=j—1 Lh f<a,f#a

Z Z ( o ) (a;_ﬂalh)ag+ez+ehu
Lh B <alBl<|a|-1 ﬂ

j+v—
I = CII Zp { Z

__2 ]+V 2 |a|=j—]

2}1/2
2}1/2

LEMMA 5. Let H > 1, and {xg} a sequence of non-negative real numbers,
indicized by B e N", Then for every integer j

{Z ( Z xﬂ)z}l/zSCn,HiHj—k—l(Zxﬁ)l/z‘

lod=j—1 \B<a|B|<s k=0 |Bl=k

(;) (8% Pay)dbrerteny

I = C" ZP(’)]-H- { Z

Gjyv—2 la|=j-1 1" 1h B < alfl=|e]-1

Now we introduce the useful lemma to estimate I and II.

For the proof refer to [AS]
Thanks to this lemma, we can make desirable changes of the parameters of
summations. Using with

1 e
xﬂ_Z(Jlﬂl )RJ \ﬂlF |ﬂ|”aﬁ+ hu”, S—] 2

we get
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jHv—1 i1 ._ 25 1/2
R {IIZ'I (Z > U)o Iﬂlﬁ}"'g"'agmu”) }
o|=j—

j=2 Gjsv—2 Th f<af#a
p j+v 1 j-2 .
C"§ : M,Cop Y  HI™!
_2 ]+V— k=0

X Z Z(j—l)Rj—lmF 1] 24172
e\ \ 1Bl 1 -8l

Putting /' =f+en, k' =k +1,

" ,0 t)j+v ! & j—k'
= C, M,Chy H/~
Z; Gigva " ;::1

. 2y 1/2
J— 1 P
x { 2 (E(k,_l)Rf "*‘E-mnafun) }
Bl=k' \ Lk

" pt)j+VI ' J—1 J—k'+1 B 12 12
cz M,C, Z w1 )(HRD) Foal > 18| :

|B|=k'
Similarly using with

-1 1- .
w= (g )R Bl 5= =3

we get
00 t)j+v—1
n<c, L—M
" 12___'; Gj+v—2 “
-1 » 25 1/2
AT (2 T () )R )
Jee|=j—1 Lh B <a|fl<|a]—1 |ﬁ|

tj+v1

j-3
< C// Z p() M,Cox Z HI+-1
Gjtv-2 k=0

=1\ 2y 172
x Z ( )R{_ “|,B|F}_l_wl”a£+el+ehu”
ok \ a7 \ 1B
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Putting ﬂ'=ﬁ+e1+eh, k' =k+2,

0 p(t)j-i—v——l j—1 o
D STV S

j=2 Gj+v—2 k=2
J=1Y ks I s
x4 30 (2 oy )R Bl ?ul
|B1=k" \ Lh
v—1 j— . 1/2
p(1)™* SE
S L e ol G (L) e W B SR A O
=2 j+v 2 k=2 1B |=k’

Noting that (é,—_ll) + (]i,__lz) = (k’l— 1), we obtain

(22) I+IIsC$§i£gXiiﬁlC’ §:< )

j=2 Gj+V—2

X (HRl)j—k+lF}'—k+l{Z “agullz}l/z

|Bl=k

1" 2 = - j—k—1 Gk+v—l Gj
< CnMa(HRl) E E (p(t)HRl) —Czc—-.-l—m
j4v—

k=1 j=k+1

g {F}'—k+l}{ Gj—k+1Grr1/! }p(t k+v{Z 1l }1/2.

Gi—ir1) \Gi(j—k+ 1)k — Gietv—1 \ 5

In the next step we use the following inequalities.
i) By (7) it holds that

Fj k41

<1 fork=1,2,..., j=k+1,k+2,....
Gjk+1

ii) It holds that
when v>3

Gitv-1 Girv—2 G4z

Gi+v-1 G; — Girv—2 Gryv—3 Gi41

Gi+1 G2 Giv—2Gjrv-3 Gy

Gj+v-3 Gjtv-4 G
k+v—1lk+v-2 k+2
by (6) < — - s

R By, B e S|

<l1 fork=1,2,..., j=k+1,k+2,...
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when v =2
Grrv-1 Gy -1 fork=1,2,..., j=k+1,k+2,....
Gi+1 Gjyv—2

when v=1

Gewv-1_ G Ge G
Grr1 Gipv2  Gry1 Gy

j p

< C(j—k)? fork=1,2,..., j=k+1,k+2,....
when v=0
G Gj-1
Gitv—1 G] _ Gj—l Gj_z
Git1 Gipv—2  Gr+1 G

Gr Gr_1
i Y e(i=1Y
by (12)sc(k+l) c( - )
<Cj-k¥» fork=1,2,..., j=k+1,k+2,....

Then by (16), [(18), (22), i), ii) and [Lemma 2, we get

o0 k+v
I+ < C/M, > k(k+1)(k+1+v)" ’é(t) ext1,(?)
=1 k+v—1
CIIIM = p(t)j+v—1 ( 1) ( )
< CIM, Y ————(j — Deju(2).

As for III, we introduce the another useful lemma.

LemMA 6. Let (Ti(x)) be a Hermitian non-negative matrix of functions in
C2(R"). Then for every n x n symmetric matrix (n,), for j—1,...,n

2
(Z O Tt (x)’hh) < Cor > Tin(X)NigMng-
Ih Lihg
For the proof refer to [O]. We remark that this lemma is needed to derive the
hyperbolicity from n-dimensional equations of second order (see [D]). While
Glaeser’s inquality is also used in the 1-dimensional case (see [RY1], [RY2]).
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Nothing that (a+5)"? < a!/2 + b'/2 for a =0, b >0, it holds that

j+v—1
m<c" E”(’)—{ )
a1

o

S 5 (5) et
L p<a|Bl=|e|-1

2}1/2

j=2 Gj+v 2

j+v—1

CII Z p(t)J

J=2 ]+V—

2}1/2
Putting y = « — B satisfying |y| = 1, by and (14) we get
i+ 24172
III<C”Zp(t) 1){ 3 }

=2 j+V—2 le|]=j—1
> (@ {am — am j }) TR

S ()@ an - an it

Lh B<o,|Bl=|a|-1

DD (B, )BT R

Th =1

a3 g i %

2}1/2

= G2 laj=j—1 1 Lh [yi=1
1)/ ! _
<C//Zp( Cn,a(,]’_l)
]+V -2
oa—y+g+e, oa—y+q+e 1/2
x { > (Z i, 35T, 05 )}
le|=j—1,l7I=1,]ql=1 \ Lh
Jj+v—1
CI/ p ) s 1
Z Gy Crali= D)

- _ 1/2
) { o(j+v)7 5% W’*“"ullz}
|a|=j—lv|y|=lv|el|=l>|eh|=l

o0 Jj+v—1 12
< C:l, 'p(t)— Cn,a(] — 1 Z (A].H;(t X, 6)6“14 6“ ) /
Gj+v—2 la|=7—1

B , 1y 1/2
FGY G Gali= Do+ v){z uazuuz}

|oe|=7

< Cra(J — Deju(0).
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Thus finally we obtain

(23) the first term of L(z) = Z”(’)M 1c"{ 3 e, A(t,x,@)]u||2}1/2

7= Gin—2 |} =j—1
<I+II+11I
0 )1-+-v 1
Z — 1)e;,(2).
=2 ]+v—

Secondly we shall estimate the lower terms of L(¢). and i) are also
used again. But we must modify ii) and use [Corollary 3 instead of in
§2 to estimate them. It is not necessary to change the inhomogeneous term of

L(¢).
Since the third term of L(¢) can be treated quite similarly as the second term
of L(t), we only estimate the second term of L(f). Using with

. e |
xﬂ:E(JIBI )RJ SR _glléftel, s=j—1,

we get
the second term of L(z)

= C” Zp(t)j+v : { Z

ZZ(“)az‘ﬁbzaéaf:u
| p<a ﬂ

2y 172
=2 J+V—2 || =j—1 }
p(t)j+v 1 1| 24172

! -] +
sy ol 3 (S, ) A et

j=2 Gj+v-2 le|=j—1 \ | f<a

e
MyCppp Y HI7F

J+v—1
< C/IZP )
+V -2 k=0

% Z Z(J - I)Rj—l—lﬂlF. ”aﬂ+elu” ake
{U;[:k < - Iﬂl 1 J-1-|B1V% ) }

j+v—1 j—2 _
< C! M, ZBW—Z(’ kl)Mwal)f kE k{ > uas’;unz}‘”

= G2 i3 |Bl=k+1

)J+V 1

t 1/2
+ My > :”( {§ ) ||af,’;u||2} /
R U=
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Fi 1) [ Gkav—1 Gj-y
= C) yM, (t)HR; f"‘{f }{ / }
mH bz Z ) Gj-1-k G

=2 j=k+2 Gjyv-2

Gj—k—1Gk(j — D! | p(8)*" 2172
) {Gj—l(j—k— 1)!k!} Gerv { > N1d%ul }

|Bl=k+1

JHv—1
+ C”HM Fo ZP(’) {Z ||5pu|| }1/2

= G2\

In the next step we use the following which is modifications of ii).
ii) It holds that when v > 2

Giervr_Gj1 <1 fork=23,..., j=k+2,k+3,...
Gk Gj+v-—2
when v=1
Giiv-1 Gj ;
_ =1 fork=2,3,..., =k+2,k+3,
Gk c;j+v—2 !
when v=20
Gitv-1_Gj1 <C(j—-k? fork=23,..., j=k+2,k+3,....

Gr  Gjpv—2

Then by (16), (18}, i), ii), and [Corollary 3 we get

k+v
(24) the second term of L(f) < C,'y M Zp( J wlk+v+ 1) Per1,(2)

Gk+v—
Jj+v—1
+ ChaMoFy YL ()4 e, ()
=2 Gjv-
0 p(t)j-l—v—l ‘ 12
<C ——ow(j+v) e (1)
4; Girvez (J ) e ()
Similarly we get
J+v—1
(25) the third term of L(f) < Cs Z&——w( J+v)ei(0).

j=2 G]+v—2
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At last summing up (23), (24), (25), we can get

j+v 1

@6) 320 crr < S 2 D Cai— 1) + (Co + Cs)oli + ) eyt
. =2 j+v— =2 1+v—2
v—1
§_2j {.a§| ,:1” 29(2)|| }

Consequently by (20), (26) we have
(27)

E(t)<Zp(

=2 _]+v—2

: : 1
X {p’(t)+p(t) (Cn ,—Ji_—z——-f— Cc/ _]—+v——+ Cs -2

)]+v -2
(J+v—1)e,(2)

j+v—-1 "j+v—1 jt+v-—1

+ Cy

0+ o @G+ el +v =1 G
j+v-1 j+v—1 " (J+v—1)Gjty-3

J+v—1
Zp(t) CII{ Z ”aa ()H }
J=2 Joe|=j—1
00 p(t)]+v-—2
Gj+v—2

(J+v—1e() {p’(t) +p(2)

j=2

-1 .
x (2C, +2C”+C3+\/—C4+\/—C5)+C”w(1+v ) Gjyv—2
(J v_—l)GH-v—

)j+v 1

DI e { 2 193001 }

Jj=2 |ee|=j—1

here we used

. . . N2 . 1/2
TS T S h G S i < V2 oY

>1,v>0.

PorosITION 7. Let u be a solution to the Cauchy problem (1). Then there exist
the positive function p(t) and vy such that for any T > 0 and any v > v

(28)
E(t)<E(0)+C”J Z”(“)W 1{ 3 ot s)||2}1/2ds foro<t<T.

Jj=2 Gjtv-2 lo|=j—1
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ProOOF. Noting that from the logarithmically convex condition (6)
G} < GG forj=1,2,...,

we get

1 1/2
, _ o ———) G
0 +v=1""Gu _ (J+V—1) A

i +v—1)Gipyo - 1
(] ) JHv=3 (j———-——+ o 1)Gj+v—2

Hence by (8) we can see that there exists a large enough vp > 0 such that for
arbitrary ¢ > 0

w(i+v—1)""Guy
(] +v-— 1)Gj+v—3

<e forv=v (2 2).

Now we shall determine p(z) such that

{p'(t) +p(t)(2C, +2C" + C3 + V2Cs + V2Cs) + Cle = 0
p(0) = py

Hence we get the monotone decreasing function

p(t) = e_(ZC"+2C::+C3+\/§C4+\/§Cs)t Po — C:,E
26, 1 2C1 1 G + V2Ca 1 V3Cs

x ( 2(2Cn+2C+C3+V2Ce+V2Cs)t _ 1)}.

Here we remark that for any given 7" > 0, by taking small enough ¢ > 0, we can
make p(T) positive. ‘
Thus by (27) we have

—E(t)<c”Z”(')l - { 3 e } for0<t<T.

j=2 Gjv-2 laf=j—1

Therefore we obtain (28). This implies the proposition.

In order to conclude Theorem 1, we must modify the energy inequality (28).
Since the index number of the sequence G; is slided by v in this energy inequality,
we shall pull back the index number to the standard one.
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From the definition of E,(z) and e;,(f), we can see that

(29) i”(’)]v o(j+v)" ‘/2{2||a°‘un SR }

Gy
=2 TtV || =7 |a|=j—1

p()’ ! /2
< E,(¢) <cZ {Z||6°‘u|| + > llatu }

Jj=1 Gj+r—2 le|=/ la|=j—1
Moreover noting that

Git1 Gjr2  Gjpy—2
G G Gy

Gj+v—-2 = G]

by (8) < G{C(j + V(i + 1)'*HC(j + 2w(j +2)"/*}
{CU+v-2)w(j+v-2)""}
<{CU+ DG+ DPHCG+2)(+2)"?}-{CU+v=2)(j +v-2)"*}
< C"2Gi(j + v — 2)¥/*2),
and while

G Git1 Giv2  Gjpy—2
7 G Gy Giav-s

Gy =

by @2 G{U+ D {0+ D} {u+v -2 2]
> CG; (C>0),

we can see that

1 1 1
30 Cii+v—2)320-2 _ < < Cy —
(30) 7(J+v—2) G = G G

Thus by (29), it holds that

v-—l(j +y— 2)(_3/2)(v_2)C()(j + v)—l/Z}

(31) Ev(t)zi”g?j
=

{Zna“un + 3 ol }"2

|oe|=f Jorl=j—1
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y—1 p t) {(~3/2)(v—2) 172 ( P(2) g
> Conlt) Z { o) (53) }
x {Z ozl + Y natazunz}‘”

o=/ lol=j—1

V— t o 1/2
> rCop(ryt 322 (e + 3 o)
j=2 Gj lal=j la|=/—1
By (29), we also easily obtain the followings.
— O oL oL
(32)  E(0) < CCap(0)’ ‘Z”() (1ol + 3 10t (0>u}

]

[or|=j Joef=—1
(33)
Z”")Jm T 1eta0lP) " < Cap0 3oL 1S (o)
=5 G {|u|—11 } = O {lal=f—l ’ }

Finally by (28), (31), (32), (33) we have a priori estimate

J

520 {Sior+ 3 wozuor)”

j=2 Joel=7 Joe|=j—1
©_ »(0)’ 1/2 1/2
< CT{Z”(G? {(Zua;uouz) +( > ||ag;u1||2) }
=1 7 le|=/ la|=j~1

_— .

+J ZPLGQi{ Z ||5§9(S)||2}1/2 ds} for0<t<T.
0j=2 7 k=1

where Cr = C7'C5' CsCs((p(0))/(p(T)))"™" (v = vo).

In our ultradifferentiable case the existence and uniqueness of solutions are
also shown by the same argument as Gevrey case. (see [CJS], [D],
[RYT]) We shall comment briefly. The above a priori estimate with the initial
data = 0 gives the uniqueness. In order to show the existence, we may approximate
the coeflicients and the inhomogeneous term and the initial data by the sequences
such that the Cauchy problems have a solution. Using the above a priori
estimate, by compactness argument we can get a solution to (1) as a limit of
solutions to the auxiliary Cauchy problems. Hence we find that u belongs to
C%([0, T], D1,{Gj} 5, (R})) for any ug(x) and ui(x) € Dr,{Gj} o)1 (RS), g(t,x) €
C%([0, T); DL, {Gj} -1 (R7)). This concludes the proof of Theorem 1.
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§4. Proof of Theorem 2

We shall first show the semilinear equation (9) is equivalent to the following
more convenient form of semilinear 2 x 2 system.

in [0,7] x P

(34) { Uy — (a(t, x) Ux), + {fy(t, %, Ui, Uz) — ax(t,x)} Ux + g(U) = 0
U(0, x) = (uo(x),uox(x)), 8,:U(0,x) = (u1(x), 1x(x)),

where

g(U) — ( f(t’ X, Ula U2) _fq(t7 X, Ula U2)U2 + ax(ta x) U2 )
f};(t’ X, Ul) U2)U2 +fx(t, X, UI; UZ) - axx(t, x) U2 ’

and -}; = aUlfJ .ﬁ] - 6U2f-

If u is a solution of (9), by differentiating (9) we can easily see that
U = (u,uy) is a solution of (34).

Conversely if U = (U, U,) is a solution of (34), V = U, — U, is a solution
of the linear equation

Vi —(a(t, x) V), + {f5(t, x, Ur, Uz) — 2ax(t,x)} Vx
+ {0x(fo(t, x, Ut, Uz) — ax(t, x)) + fo(t,x, U1, U2) — axx(t,x)}V =0
V(0,x)=0, &,V(0,x)=0,

Noting that the initial data and ihnomogeneous term are zero, we get V' =0, i.e.,
U, = Ujx. Hence returning to (34), we find that U, satisfies

{Ultt — (a(t, x) le)x +f(t, x, Uy, Uz) =0
Ul(O, x) = uo(x), a,Ul(O, x) = ul(x).

Thus u = U, is a solution of (9).
We remark that the principle part of the system can be written with the
particular form of the matrix as follows.

Vu= ((a(téx) a(f x))U")x

Hence we can also calculate the energy quite similarly for the two dimensions
of the system (34), which can be treated as the 1-dimensional equation. Therefore
we may consider the following equation instead of (9).
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6fu — Ox(a(t,x)0xu) + fo(t,x,u)0xu
(35) + fe(t,x,w)u+ f(¢,x,0) =0 in[0,7] x P
u(0,x) = up(x), 0u(0,x) = u1(x),

where
(36) fb(t, X, u)’ fr.'(ta X, u) € CO([O’ T]aB{EI}Rl (P)’B{E}}RZ(RI))

In this section our aim is to derive the energy inequality of the linearized
equation such that u in the coefficients of is replased by v. Here we must pay
attention to the lower term and bounded term whose coefficients are composite
functions. In order to further investigate the composite functions, we shall use the
energy defined with the partial sum (see [RYI], [RY2]). Moreover since the
solution of is local, v > vy is not necessary. In particular by taking
v = 0, we can get the same effect as the weight for the partial enagies, whose form
is j& (where k depends on the dimension and s is Gevrey order). This weight j*
often apears in the Gevrey case to treat the nonlinear problem (see [DM]).
For the proof of theorem 2 we can not use the weight j*, since there exists no
exponent corresponding to s in the case of the ultradifferentiable classes.

Thus we put v=0 and define the energy

(V) AN O
E () =) a ejo(u)(t) for N >2,
= -2
where

. . . ‘ 172
60)(0) = { [ = 4010l + () lofuf + 7100w + 20 Mul x|

The nonlinear lower term is changed into the three term as follows.

N 1
61 P e (ol
j=2 2

=S ol + 32 et s

j=2 Gj-2

Jj—
e3P0 515 (100 - 2,0,

=2 Gj-2

where f{"*) denotes d.0"f;(,x,v).
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We shall investigate this term separately. By we can get

p(t)’ P2 j-2 j—2—k k-+2
(38) the first term < E G > A 105" Solloo 1105 "l
k=0

Jj—2—k k+1
< 3RO ey, nwz” ’) 10+

j=k+2 Gj-2-k k=0
N k-1
t t
{Z”() 164l }{Z—”“ ua’;uu},
= G- k=2 k-2
where || - ||, denotes L, -norm. In particular picking up the first factor of the first

term, we proceed to estimate. By Leibniz formula, we obtain

(39) the first factor

< Zp(t) Z (J 1'2) Z#' ”fbl,ﬂ)(x U)“

=2 Gj-2 i+l=j—2 o u=0
h h

y 1% ol - - 108l
h!---h,

Byt tha=l1 <h;

N 1 .
E F i G'G[(_]—2)!
< MR R -E— ) /‘{——' y
;i+§z,§ * 2G G; Gyill!
P00l - - PPt |0l NG -+ G, G
Gp, -Gy Gihy!- - - h,\u! :

u

X
|h|=1,1 <hy

Noting that by Sobolev embedding theorem for periodical functions and (14),
it holds that

18" 0]l < Colld**10]|,, < Colhi +2) " enr20(2)

< % en+2,0(0)(2) fori=1,2,...,v,

by (7), (39), [Corollary 3, and we get
(40) the first factor

< M”jzj;i+§2(p(t)Rl) Z(pl('{;) (.;0 gcl;) (%)

P e 120(0)(2) - - - phetlen, 120 (v)(2)
Gp, -~ Gy

X

h|=1,1 <h; z
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Mb{i (£)Ry) }{: :(pf;“) = Gl) ( u) (Nz:?p;: em42,0(v (t))ﬂ}

N-2
< Co > (Cup(D BV 00 (&),

u=0

where Cio = M 3.2,(p(t)R1)’, Ci1 = R3(C3/3)(G1/Go).
Thus by (38), (40) we get

N-2 N pk_l
(41) theﬁrstterm<C10{Z(C11p(T) LEM™ (v)(2)) ( )}{Z—ua’;un}.

§=0 = Ok-2

For the second term and the third term, with some small changes we can get
almost similarly

pu=0
N pk_l

X {Z—k‘_—zﬂai_l“”},
k=2

(43) the third term < Clo{Nz:z Ry(Cup(T)~ lE(N)(v)(t))“( ll+l> (_%1_)}

pu=0 G/l G/H- 1

N=2 E
(42) the second term < C12{Z(Cnp(T)"‘E(()N)(v)(t))“ (6&) }

N tk_l _
x {Zﬂ,f—_z—na’; (@x0 - )l
k=2

where Ciz = MyR1 3720 (p()R1) (Gis1/Gi) < MyRIC 24 (p(1)Ry) (i + 1) (< 00).

The estimate of the second term ends by [42), but we continue to estimate the
third term. Picking up the last factor of the third term, by (16) and Sobolev
embedding theorem we obtain.

N k 1 k-2 k-2
(44) the last factor < Z Z( )||5k My O |

k= k-2 =0

klm m+1

m pU m
PO ety 52Oy
m=0

m

k—2—m

< p(T) Z”(’) na’”nz”(’) 1omull,

m—2
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N k-1 m—1
<p(r) LS LY g0 032" o)
m=2 M-

k=2 =

= CiEM (0)( 1)2”(’) 116™ul|.

m—

E(N)(v)(t) in the last factor enters into the power of ESN ) (v)(?) in the first factor.
Hence the summation Z,u—O in the first factor is changed to 2’;11.
Thus by (43), (44) we get the estimate of the third term

(45) the third term < C10C13R2{Ii(cup(T)_lEéN)(v)(t))”( u+1> (M)}

> . ) \Gomn
y {mz’::z P(G’i': ”a;"ull}
< 014{ g(cup(T)”'EéN) (0)(®)" (g—ﬁ) }
{Z:zp(t) B ||}

At last by (41), (42), (45) we have the estimate of the nonlinear lower term

1
(46) Z” O 55104, - 00

j=2 Gj-2
N j-1
Cio+C Cup(T) ™ ES (o) (1)) P afu}
< (Co+ 14){”2_; w0 B @0 (& )}{2 o lou]
N-2 ‘ N i—1
~1 (V) u(En PO o
+c12{;0(cup(r) E§00)(0) (G)}{S;; oo un}-

Concerned with the nonlinear bounded term, we also separate this to the
three terms and similarly we can get

j—1
@n PO o)

j=2 Gj-2
N ) j-1

=35

=2 -2

j—1

t _
ERGGE u>||+§j”( — (10 (/O 00
_2 j
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1
Z”( a2 )|
Jj=2

]_

N-2 N i1
<c15{Z<Cmp<T> B0 ) (& )}{Z——”(G’)z ua;;-2u||}

u=0 =
j—1
+C”{Z(C‘6”<T> B0y (2 )}{Zp(t,) 1o M}
4=0 = —

Here the constants Cys and Cj;7 correspond to the constant C); in (46), and the
constant Cj¢ corresponds to the constant Cj; in (46).

By (14), (16), (46), (47) we have the estimate of the nonlinear term

1 1
(48) Z”(’I)’ 1051 - 8 xu>||+2”(’)’ 10571 - )|
j=2

N Jj-1
< cls{Z(cwpw)"Eé”’(v)(t))“ ('é—) } {Z" (O ()20 (z)}

u=0 j=2 ]‘2
N

< 3207 () P00,

j=2 Gj-2

where Cy¢ depends on E((,N)(v)(t) and p(T)™!

Hence we can reduce to (24), (25) and get the energy inequality (28) of
proposition 7 with vy = 0.

PrROPOSITION 8. There exist T*>0, D >0 such that if E(()N)(v)(t) =
S o(p(t) ™! /Gi_2)ej0(v)(t) < D, then it holds that

(49) EMw)(t)<D  fortel0, T
Proor. We first suppose D = 2E((,N) (4)(0) and p(T)™" < (py/2)”" for some

T > 0. Hence the constant Cy, of (48) depends on D and p,.
We can get the following instead of (27).

-2
4 MG (0) < Z”(’)] G = Deyol)

Jj=2 =2

x {p'(t) + p(1)(C2 + 2 + C3 + V2Cp) + (C1 + 1)C1}

-1
+ngj_ 1271, %, 0,

j=2
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here we used by

1 \!/2
- ol—) G_
0 =1)Gy _ (;— 1) - (0)'” Gy

; < < sup
- 1)Gi_ 1 1
(J ) j—3 <j - 1) Gj—2 te(0,1] [;] G[l/t]—l

< (3.

Now we take p(¢) such that

{p’(t) +p()(Ca+ 2+ C3 + V2Cx0) + (C1 + 1)C =0
P(0) = py.

Hence we get the monotone decreasing function

p(t) — e“(Cz+2+C3+\/iC2o)t{po _ (Cl + 1)C21 (e(C2+2+C3+\/iCzo)t _ 1)}’
Cy+2+ Cs+V2Cx

and we can find small enough 7 > 0 such that p(T)~" < (po/2)”". Then we have
the energy inequality

(50) Eé”(u)(t)sEé”’<u><0)+jjif’—(g?$:na,{*‘f<s,x,o>||ds for ¢ € [0, T).
=2 -

Moreover we can find small enough 7* € (0, 7] such that

T* o© j—1 .
(51) J, 206 1o v 04 5 BV @)

Thus by (50), we have
EM @) (1) < EM(u)(0) + EMM(u)(0) <D forre (0, T

Based on a priori estimates [49), the local existence and uniqueness is shown
similarly as the Gevrey case. (see [RY?2]) We shall give a brief statement.
Defining the bounded set

Xp = {ve C'([0,T), D1, {Gy} (- (P); By (v) (1) < D}

in the locally convex space C!([0,T],D,{G;} o' (P)), and the operator
Q :v— u, from Proposition § we can see that Q maps continuously Xp into
itself. Using Tichonoff Fixed Point Theorem, we can get a solution ue€
C?([o, T), Dr,{Gj} -1 (P)). While assuming that uy, uz € C([0, T], D1, {Gj} ;-1 (P))
are solutions of [35), and putting w = u; — u;, we get
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(52)
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07w — 0x(a(t, x)0xw) + fo (1) 0xw + { fe(wr) + g (1, u2) Oz + ge(ur, u2)uz}w = 0
w(0,x) =0, dw(0,x) =0,

where gp(u1,uz) = folfb(o’l)(t, x,tuy + (1 — up) dr, gc(uy,uz) = fol c(o’l)(t, x, Tu; +
(1 = 1)up) dz.

Using the same methods, we can derive the energy inequality of (52), and
obtain u; = u,. This concludes the proof of Mheorem 2.
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