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LIGHTNESS OF INDUCED MAPPINGS

By

Janusz J. CHARATONIK and Wrodzimierz J. CHARATONIK

Abstract. Relations are studied conceming lightness of a mapping
between continua and lightness of the two induced mappings:
between hyperspaces of closed subsets and between hyperspaces of
subcontinua.

1. Introduction

For a metric continuum $X$ we denote by $2^{x}$ and $C(X)$ the hyperspaces of all
nonempty closed and of all nonempty closed connected subsets of $X$, respectively.
Given a mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$, we let $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ and
$C(f):C(X)\rightarrow C(Y)$ to denote the corresponding induced mappings. Let $\mathfrak{M}$ be a
class of mappings between continua. A general problem which is related to a
given mapping and to the two induced mappings is to find all interrelations
between the following three statements:

(1.1) $f\in \mathfrak{M}$ ;

(1.2) $C(f)\in \mathfrak{M}$ ;

(1.3) $2^{f}\in \mathfrak{M}$ .

There are some papers in which particular results conceming this problem are
shown for various classes $\mathfrak{M}$ of mappings like open, monotone, confluent and
some others, see [2], [3], [4], [5], [6], [9], [12]. In the present paper we discuss the
problem in full for the class of light mappings, and we get some corollaries for
local homeomorphisms.
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valuable discussions on the topic of this paper; especially for his idea of Example
3.9.

2. Preliminaries

All spaces considered in this paper are assumed to be metric. A mapping
means a continuous function. We denote by $N$ the set of all positive integers, and
by $R$ the space of real numbers.

A continuum means a compact connected space. Given a continuum $X$ with a
metric $d$, we let $2^{X}$ to denote the hyperspace of all nonempty closed subsets of $X$

equipped with the Hausdorff metric $H$ defined by

$H(A, B)=\max\{\sup\{d(a, B) : a\in A\}, \sup\{d(b,A) : b\in B\}\}$

(equivalently: with the Vietoris topology: see e.g. [12, (0.1), p. 1 and (0.12), p. 10].
Further, we denote by $C(X)$ the hyperspace of all subcontinua of $X$, i.e., of all
connected elements of $2^{X}$ . For $\Lambda\subset 2^{X}$ we let $\Lambda^{*}$ to denote the union of all
elements of $\Lambda$ . It is well-known that if $\Lambda$ is closed in $2^{X}$ , then $\Lambda^{*}$ is a closed
subset of $X$ (see e.g. [8, \S 42, III, Theorem 5, p. 52]). The reader is referred to
Kuratowski’s monograph [8] and (mainly) to Nadler’s book [12] for needed
information on the stmcture of hyperspaces. In particular, the following fact is
well-known (see [12, Theorem (1.13), p. 65]).

2.1. FACT. For each continuum $X$ the hyperspace $C(X)$ is a subcontinuum of
the hyperspace $2^{X}$ .

For each $n\in N$ we put $F_{n}(X)=$ { $A\in 2^{X}$ : card $A\leq n$ }. Observe that

$F_{1}(X)\subset F_{2}(X)\subset\cdots\subset F_{n}(X)\subset\cdots\subset 2^{X}$ ,

and that each $F_{n}(X)$ is a closed subset of $2^{X}$ . Further, the following proposition is
a consequence of definitions.

2.2. PROPOSITION. For each continuum $X$ the space $F_{1}(X)$ of singletons is
homeomorphic (even isometric) to $X$, and thus it is a subcontinuum of the
hyperspace $C(X)$ . Consequently,

(2.3) $X\simeq F_{1}(X)\subset C(X)\subset 2^{X}$ .

By an order arc in $2^{X}$ we mean an arc $\Phi$ in $2^{X}$ such that if $A,$ $ B\in\Phi$ , then
either $A\subset B$ or $B\subset A$ . The following facts are known (see [12, Theorem (1.8),

p. 59 and Lemma (1.11), p. 64]).
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2.4. FACT. Let $A,$ $B\in 2^{X}$ with $A\neq B$ . Then there exists an order arc in $2^{X}$

from $A$ to $B\iota f$ and only $lfA\subset B$ and each component of $B$ intersects $A$ .

2.5. FACT. If an order arc $\Phi$ in $2^{X}$ begins with $A\in C(X)$ , then $\Phi\subset C(X)$ .
Given a mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$, we consider

mappings (called the induced ones)

$2^{f}$ : $2^{X}\rightarrow 2^{Y}$ and $C(f):C(X)\rightarrow C(Y)$

defined by

$2^{f}(A)=f(A)$ for every $A\in 2^{X}$ and $C(f)(A)=f(A)$ for every $A\in C(X)$ .

Thus, by Fact 2.1, the following is obvious.

2.6. FACT. For every continua $X$ and $Y$ and for each mapping $f$ : $X\rightarrow Y$ we
have $2^{f}|C(X)=C(f)$ .

A proof of the following fact is straightforward.

2.7. FACT. Let a mapping $f:X\rightarrow Y$ between continua $X$ and $Y$ be given.
Then $C(f)(F_{1}(X))\subset F_{1}(Y)$ .

Recall that two mappings $f_{1}$ : $X_{1}\rightarrow Y_{1}$ and $f_{2}$ : $X_{2}\rightarrow Y_{2}$ are said to be
equivalent provided that there exist homeomorphisms $h_{X}$ : $X_{1}\rightarrow X_{2}$ and $h_{Y}$ :
$Y_{1}\rightarrow Y_{2}$ such that $f_{2}(h_{X}(x))=h_{Y}(f_{1}(x))$ for each point $x\in X$ . Observe that
this relation is an equivalence in the class of mappings between topological spaces
(see [13, p. 127]).

2.8. PROPOSITION. The mappings

$f:X\rightarrow Y$ , $2^{f}|F_{1}(X):F_{1}(X)\rightarrow F_{1}(Y)$ and $C(f)|F_{1}(X):F_{1}(X)\rightarrow F_{1}(Y)$

are mutually equivalent.

PROOF. In fact, by Proposition 2.2 there are homeomorphisms $h:X\rightarrow F_{1}(X)$

and $g:Y\rightarrow F_{1}(Y)$ . Now, for each $x\in X$ , the equalities

$2^{f}|F_{1}(X)(h(x))=g(f(x))$ and $C(f)|F_{1}(X)(h(x))=g(f(x))$

hold by the definitions.
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We start our discussion conceming the problem mentioned in the intro-
duction from a result of a more general nature, which is related to all hereditary
classes of mappings.

Recall that a class $\mathfrak{M}$ of mappings between continua is said to have the
composition property provided that compositions of two mappings belonging to SM
also belongs to $\mathfrak{M}$ , and it is said to be hereditary (compare [11]) provided that for
each subcontinuum $S$ of the domain the partial mapping restricted to $S$ also is
in $\mathfrak{M}$ .

2.9. THEOREM. If a class $\mathfrak{M}$ of mappings between continua contains homeo-
morphisms, has the composition property and is hereditary, then (1.3) implies (1.2),
and (1.2) implies (1.1).

PROOF. Assume (1.3). Since $C(X)$ is a subcontinuum of $2^{X}$ by Fact 2.1, and
since $\mathfrak{M}$ is hereditary, the partial mapping $2^{f}|C(X)$ is in $\mathfrak{M}$ . Applying Fact 2.6
we get (1.2). Similarly, assuming (1.2) and using Proposition 2.2 we infer that
$C(f)|F_{1}(X)$ is in $\mathfrak{M}$ . Now (1.1) follows by Proposition 2.8.

3. Light mappings

A mapping $f:X\rightarrow Y$ between spaces $X$ and $Y$ is said to be light provided
that for each point $y\in Y$ the set $f^{-1}(y)$ has one-point components (equivalently,
if $f^{-1}(f(x))$ is totally disconnected for each $x\in X$ ; note that if the inverse images
of points are compact, this condition is equivalent to the property that they are
zero-dimensional).

3.1. THEOREM. Let a mapping $f:X\rightarrow Y$ between continua $X$ and $Y$ be
given. Then the following conditions are equivalent:

(3.2) $f$ is light;

(3.3) $(C(f))^{-1}(F_{1}(Y))\subset F_{1}(X)$ ;

(3.4) $F_{1}(X)=(C(f))^{-1}(F_{1}(Y))$ ;

(3.5) $F_{1}(X)$ is a component of $(C(f))^{-1}(F_{1}(Y))$ .

$PR\infty F$ . Assume (3.2). If a continuum $K$ is an element of $(C(f))^{-1}(F_{1}(Y))$ ,
then $C(f)(K)\in F_{1}(Y)$ , i.e., $f(K)$ is a singleton, say $\{y\}$ , which implies that
$K\subset f^{-1}(y)$ , and therefore $K$ is degenerate by (3.2). Hence $K\in F_{1}(X)$ and so (3.3)
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follows. (3.3) obviously implies (3.4). Since $F_{1}(X)$ is connected (see Proposition
2.2), (3.4) implies (3.5). To show that (3.5) implies (3.2) suppose $f$ is not light.
Then there exists a nondegenerate subcontinuum $Q$ of $X$ such that $f(Q)$ is a
singleton, say $\{q\}$ , in $Y$. So, $Q$ is an element of $C(X)\backslash F_{1}(X)$ and $ C(f)(Q)\in$

$F_{1}(Y)$ . Obviously, for each subcontinuum $Q^{\prime}$ of $Q$ we have $f(Q^{\prime})=f(Q)=\{q\}$ ,
whence it follows that $C(f)(C(Q))=\{q\}\in F_{1}(Y)$ . Thus $C(Q)\subset(C(f))^{-1}(F_{1}(Y))$ ,
contrary to (3.5). The proof is complete.

3.6. THEOREM. For each mapping $f:X\rightarrow Y$ between continua $X$ and $Y$ the
induced mapping $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ is light if and only if for every $A,$ $B\in 2^{X}$ the
conditions $A\subseteq B$ and each component of $B$ intersects $A$ imply the condition
$f(A)\rightarrow\subset f(B)$ .

PROOF. “Only if”. Suppose there are $A,$ $B\in 2^{X}$ such that $A\subsetneq B$, each
component of $B$ intersects $A$ , and $f(A)=f(B)$ . Put $D=f(A)$ . Then $A,$ $ B\in$

$(2^{f})^{-1}(D)$ and, by Fact 2.3, there exists an order arc $\Phi$ from $A$ to $B$ in $2^{X}$ .
Thus for each $ K\in\Phi$ we have $A\subset K\subset B$, whence $f(K)=D$ , and consequently
$\Phi\subset(2^{f})^{-1}(D)$ , so $2^{f}$ is not light.

“If”. Suppose there is $D\in 2^{Y}$ such that $(2^{f})^{-1}(D)$ contains a nondegenerate
continuum $\Delta$ . Then $\Delta^{*}\in 2^{X}$ and $f(\Delta^{*})=D$ . Since $\Delta$ is nondegenerate, there
exists $ A\in\Delta$ such that $A\neq\Delta^{*}$ . Put $B=\Delta^{*}$ . Then $A\subsetneq B$ and $f(A)=f(B)=D$ .
We shall show that each component of $B$ intersects $A$ . Suppose on the contrary
that there is a component $C$ of $B$ such that $ C\cap A=\emptyset$ . Thus there exists a set $U$

open in $X$ and such that

$A\subset U$ , $ C\cap c1U=\emptyset$ and $ B\cap bdU=\emptyset$ .

Define $\Gamma=2^{U}$ . Then $\Gamma$ is open in $2^{X}$ , and $ A\in\Gamma$ . Since $C$ is a component of $B$,

there is an element $E$ of $\Delta$ such that $ E\cap C\neq\emptyset$ . Thus $ E\in\Delta\backslash \Gamma$ . By con-
nectedness of $\Delta$ it follows that there is $ F\in\Delta\cap bd\Gamma$ . Thus $ F\cap bdU\neq\emptyset$ , whence
$\Delta^{*}\cap bdU\neq\emptyset$ , a contradiction. The proof is complete.

As a consequence of Theorem 3.6 and of Facts 2.4 and 2.5 we get the
following known result due to J. B. Fugate and S. B. Nadler, Jr., which is
formulated as an exercise in [12, (1.212.3), p. 204].

3.7. THEOREM. For each mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$ the
induced mapping $C(f):C(X)\rightarrow C(Y)$ is light if and only if for every $\Lambda$ ,
$B\in C(X)$ the condition $\Lambda\subseteq B$ implies the condition $f(A)\subseteq f(B)$ .
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Now the intend to study all the possible implications between lightness of a
mapping between continua and lightness of the two induced mappings between
the hyperspaces. We shall show that lightness of $f$ implies lightness of neither $2^{f}$

nor $C(f)$ , and that lightness of $C(f)$ does not imply that of $2^{f}$ . The other
implications are tme. We start with the needed examples.

Denote by $C$ the plane of complex numbers equipped with the Euclidean
metric, and let $S^{1}$ stand for the unit circle, i.e., $S^{1}=\{z\in C:|z|=1\}$ .

3.8. EXAMPLE. The mapping $f:S^{1}\rightarrow S^{1}$ defined by $f(z)=z^{2}$ is light, while
$C(f)$ and $2^{f}$ are not.

PROOF. Lightness of $f$ is evident. To see that $C(f)$ and $2^{f}$ are not light, we
apply Theorems 3.7 and 3.6, respectively. To this aim consider the right semi-
circle $A=\{z\in S^{1} : |\arg z|\leq\pi/2\}$ of the domain $S^{1}$ , and put $B=S^{1}$ . Then
$A\subseteq B$, while $f(A)=f(B)=S^{1}$ . The proof is complete.

3.9. EXAMPLE (Illanes). There is a light mapping $f:X\rightarrow Y$ between con-
tinua $X$ and $Y$ such that $C(f)$ is light, while $2^{f}$ is not.

PROOF. Let

$L_{1}=\{(x, \sin(1/x))\in R^{2} : x\in(O, 1]\}$ and $I_{1}=\{(0,y)\in R^{2} : y\in[-1,1]\}$ ,

and let $L_{2}$ and $I_{2}$ be the images of $L_{1}$ and $I_{1}$ , respectively, under the symmetry of
the plane $R^{2}$ with respect to the straight line $x=1$ . Let $L=L_{1}\cup L_{2}$ , and put
$X=L\cup I_{1}\cup I_{2}$ . Then $X$ is a continuum having $L,$ $I_{1}$ and $I_{2}$ as its arc-components.
Let a relation $\rho$ on $X$ identify points $(0,y)$ of $I_{1}$ and $(2, y)$ of $I_{2}$ only. Define
$ Y=X/\rho$ as the quotient space, and let $f$ : $X\rightarrow Y$ be the quotient mapping.
Then the continuum $Y$ has two arc-components: $f(L)$ and $f(I_{1})=f(I_{2})$ .
Obviously for each $y\in Y$ we have card $f^{-1}(y)\leq 2$ , so $f$ is light.

To see $C(f)$ is light take $K\in C(Y)$ and consider two cases. If $ K\cap f(L)\neq\emptyset$ ,
then the set $(C(f))^{-1}(K)$ is either one-element or empty. If $ K\cap f(L)=\emptyset$ , then
$K\subset f(I_{1})=f(I_{2})$ , and therefore $(C(f))^{-1}(K)$ has two elements.

To verify that $2^{f}$ is not light take a point $p\in I_{2}$ and put $A=I_{1}\cup\{p\}$ and
$B=I_{1}\cup I_{2}$ . Then $A\subseteq B$ and each component of $B$ intersects $A$ , while $f(A)=$

$f(B)=f(I_{1})$ , so $2^{f}$ is not light by Theorem 3.6. The proof is then complete.

3.10. THEOREM. Let a mapping $f:X\rightarrow Y$ between continua $X$ and $Y$ be
given. Consider the following conditions:
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(3.2) $f$ is light;

(3.11) $C(f)$ : $C(X)\rightarrow C(Y)$ is light;

(3.12) $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ is light.

Then (3.12) implies (3.11), and (3.11) implies (3.2). Consequently, (3.12) implies
(3.2). The other implications do not hold.

PROOF. In fact, it is enough to observe that the class of light mappings
contains homeomorphisms, is closed with respect to compositions, and is heredi-
tary, and next to apply Theorem 2.9. The implications listed in the formulation of
the theorem are the only tme, as it can be seen from Examples 3.8 and 3.9. The
proof is finished.

In connection with Example 3.8 we have the following observation.

3.13. $0BSERVATION$ . For every continuum $Y$, for every point $p\in Y$ and for
every number $n\in N$ with $n>1$ there exists a continuum $X$ and a surjective light
mapping $f:X\rightarrow Y$ such that

(3.14) card $f^{-1}(p)=1$ and card $f^{-1}(q)=n$ for each point $q\in Y\backslash \{p\}$ ;

(3.15) neither $C(f)$ nor $2^{f}$ is light.

PROOF. Take the disjoint union $U$ of $n$ copies $(Y_{i},p_{i})$ of the pointed
continuum $(Y,p)$ for $i\in\{1, \ldots , n\}$ . Define a relation $\rho$ on $U$ by

$x\rho y$ if $x=y$ or $x,y\in\{p_{i}:i\in\{1, \ldots, n\}\}$ .

Let $ X=U/\rho$ denote the quotient space, and let $f$ : $X\rightarrow Y$ be the natural
projection. Then (3.14) holds by the definition, whence lightness of $f$ follows.
Applying Theorem 3.7 we see that $C(f)$ is not light, and thus $2^{f}$ also is not, by
Theorem 3.10. This ends the proof.

4. Mappings of a constant degree. Local homeomorphisms

A mapping $f:X\rightarrow Y$ is said to be:
–of a constant degree if there is an $n\in N$ such that card $f^{-1}(y)=n$ for each
$y\in Y$ (in some papers these mappings are called n-to-l ones);

–a local homeomorphism provided that every point $x\in X$ has an open
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neighborhood $U$ such that $f(U)$ is an open subset of $Y$ and the partial mapping
$f|U:U\rightarrow f(U)$ is a homeomorphism;
–open, if $f$ maps each open set in $X$ onto an open set in $Y$.

It is known that a mapping $f:X\rightarrow Y$ of a compact space $X$ onto a
connected space $Y$ is a local homeomorphism if and only if it is open and of a
constant degree ([10, Proposition 2, p. 855 and Theorem 4, p. 856]). Since each
mapping of a constant degree is obviously light, we see that any local
homeomorphism between continua is light.

For homeomorphisms we have the following known result (see [12, (0.52),

p. 29].

4.1. THEOREM. If $\mathfrak{M}$ means the class of homeomorphisms, then conditions
(1.1), (1.2) and (1.3) are equivalent.

For local homeomorphisms however, such an equivalence does not hold.
Indeed, note that the mapping $f:S^{1}\rightarrow S^{1}$ of Example 3.8 is a local homeo-
morphism, while $C(f)$ and $2^{f}$ are not light even. Moreover, the following result
concems mappings of a constant degree.

4.2. THEOREM. Let $f:X\rightarrow Y$ be a mapping between continua $X$ and Y. If,
for some $n\in N$ , the induced mapping either $2^{f}$ or $C(f)$ is of the constant degree $n$ ,
then $n=1$ and $f,$

$2^{f}$ and $C(f)$ are homeomorphisms.

PROOF. Suppose $2^{f}$ is of the constant degree $n>1$ (for $C(f)$ the argument
is the same). Thus for the element $Y$ of 2 there are at least two nonempty closed
subsets $B=X$ and $A\subsetneq X$ of $X$ such that $f(A)=f(B)=$ Y. Thus $2^{f}$ is not light
by Theorem 3.6. Hence $n=1$ , and the rest of the conclusion follows from
Theorem 4.1.

4.3. COROLLARY. Let $f$ : $X\rightarrow Y$ be a mapping between continua $X$ and Y. If
the induced mapping either $2^{f}$ or $C(f)$ is a local homeomorphism, then $f,$

$2^{f}$ and
$C(f)$ are homeomorphisms.

4.4. REMARK. In the proof of the above theorem we use the “top” $Y$ of the
hyperspace $C(Y)$ to show that $C(f)$ is never of a constant degree $n>1$ . The
following example shows that if we delete the “top”, then the partial mapping
restricted to $C(X)\backslash \{X\}$ can be of degree 2.
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4.5. EXAMPLE. There are a continuum $X$ and a mapping $f$ : $X\rightarrow X$ such that
$f$ and the partial mapping $C(f)|(C(X)\backslash \{X\})$ are of the constant degree 2,
$(C(f))^{-1}(X)=\{X\}$ (thus $f$ and $C(f)$ are light), while $2^{f}$ is not light.

PROOF. Let $\{X_{i}, \phi_{i} : i\in N\}$ be an inverse sequence with $X_{i}=S^{1}$ and
$\phi_{i}$ : $X_{i+1}\rightarrow X_{i}$ defined by $\phi_{i}(z)=z^{3}$ for each $i\in N$ . Then the inverse limit
$X=\lim_{\leftarrow}\{X_{i}, \phi_{j}\}$ is the triadic solenoid. Define $f_{i}$ : $X_{i}\rightarrow X_{i}$ by $f_{i}(z)=z^{2}$ and
note that the diagram

$X_{i}$

$\underline{\phi_{i}}$

$X_{i+1}$

$f_{i}$ $f_{i+1}$

$\phi_{i}$

$X_{i}$ $\leftarrow$ $X_{i+1}$

commutes. Denote by $f$ : $X\rightarrow X$ the limit mapping $f=\lim f_{i}$ . Further, take
$h:X\rightarrow X$ defined by $h((x_{1}, x_{2}, \ldots))=(-x_{1}, -x_{2}, \ldots)$ and note that $f^{-1}(f(x))=$

$\{x, h(x)\}$ for $x\in X$ . Since $h(x)\neq x$ , the mapping $f$ is of the constant degree 2.
We claim that

(4.6) for each $x\in X$ there is no proper subcontinuum of $X$ containing both $x$ and
$h(x)$ .

Indeed, suppose on the contrary that there is $A\in C(X)\backslash \{X\}$ such that $x$,
$h(x)\in A$ . Then there is an index $m\in N$ such that if $\pi_{m}$ : $X\rightarrow X_{m}$ denotes the
m-th projection, then $\pi_{m}(A)\subseteq X_{m}$ . Then $\pi_{m+1}(A)$ contains two antipodal points
$\pi_{m+1}(x)$ and $\pi_{m+1}(h(x))$ . Note that $\pi_{m}(A)=\phi_{m}(\pi_{m+1}(A))$ , and since $\phi_{m}$ maps
every continuum containing any two antipodal points onto $X_{m}$ , we conclude that
$\pi_{m}(A)=X_{m}$ , a contradiction. Thus (4.6) is established.

To show that the partial mapping $C(f)|(C(X)\backslash \{X\})$ is of the constant
degree 2, take $A\in C(X)\backslash \{X\}$ and note that $A,$ $h(A)\in(C(f))^{-1}(C(f)(A))$ . By
(4.6) we have $A\neq h(A)$ . Assume that $f(A)=f(B)$ for some $B\in C(X)$ . We will
show that either $B=A$ or $B=h(A)$ . Recall that $f^{-1}(f(x))=\{x,h(x)\}$ and thus

(4.7) for each $x\in A$ either $x\in B$ or $h(x)\in B$ .

Thus $B=(A\cap B)\cup(h(A)\cap B)$ . By (4.6) this is a decomposition of the set $B$

into two disjoint closed subsets; so one of them, say $A\cap B$, is empty. Therefore
$B\subset h(A)$ , and by (4.7) it follows that $h(A)\subset B$ . If $ h(A)\cap B=\emptyset$ , the argument is
the same.
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To see that $2^{f}$ is not light take an arbitrary proper subcontinuum $P$ of $X$ and
a point $p\in P$ . Then for $A=P\cup\{h(p)\}$ and $B=P\cup h(P)$ we have $A\wedge\subset B$ , the sets
$P$ and $h(P)$ are components of $B$ by (4.6), thereby each component of $B$ intersects
$A$ , while $f(A)=f(B)$ . Thus $2^{f}$ is not light by Theorem 3.6. The proof is then
complete.

4.8. REMARK. Observe that the mapping $f$ of Example 4.5 is open, thus
weakly confluent, and therefore the induced mapping $C(f)$ is a surjection (see

[12, (0.49.1), p. 24]), unlike one of Example 3.9.

5. An intermediate condition

The continua of Examples 3.9 and 4.5 (showing that the conditions (1.1),
(1.2) and (1.3) are not equivalent if $\mathfrak{M}$ stands for the class of light mappings) are
not locally connected. They are not arcwise connected even. Thus the following
question is natural.

5.1. QUESTION. Are lightness of the induced mappings $2^{f}$ and $C(f)$ equiva-
lent conditions for a mapping $f$ between arcwise connected (in particular, locally
connected) continua?

Observe that in all the constmcted examples, i.e., in Examples 3.8, 3.9 and
4.5, nonlightness of $2^{f}$ is implied by the existence of two nondegenerate disjoint
subcontinua of $X$ having the same images under $f$ (for Example 3.8 one can take
$\{z\in S^{1} : \arg z\in[0, \pi/2]\}$ as one of them and $\{z\in S^{1} : \arg z\in[\pi, 3\pi/2]\}$ as the
other; for Example 3.9 we have $I_{1}$ and $I_{2}$ ; and in Example 4.5 we can take any
$A\in C(X)\backslash (F_{1}(X)\cup\{X\})$ and $h(A)$ as the needed subcontinua). Generalizing this,
we formulate a condition (viz. condition (5.3) below) which is shown in the next
theorem to be intermediate between (but not equivalent to) lightness of the two
induced mappings. We start with the following example.

5.2. EXAMPLE. There are continua $X$ and $Y$ and a surjective mapping
$f:X\rightarrow Y$ such that

(5.3) for every two continua $P,$ $Q\in C(X)\backslash F_{1}(X)$ with $ P\cap Q=\emptyset$ the inequality
$ f(P)\backslash f(Q)\neq\emptyset$ holds,

and that $2^{f}$ is not light.

PROOF. Let $C$ stand for the Cantor temary set. Denote by $F_{C}$ the Cantor
fan, i.e., the cone $(C\times[0,1])/(C\times\{1\})$ over $C$, and let $v=C\times\{1\}$ be the top
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of the cone. Then $F_{C}\backslash \{v\}$ is a locally compact, noncompact metric space. lt is
known (see [1, Theorem, p. 35]) that if $S$ a locally compact, noncompact, metric
space, then each continuum is a remainder of $S$ in some compactification of $S$.
So, take an arc $L$ as the remainder of $S=F_{C}\backslash \{v\}$ in a compactification $\gamma$ of $S$,
and let $X$ be the obtained compact space, i.e.,

$\gamma$ : $S\rightarrow\gamma(S)\subset c1\gamma(S)=X=\gamma(S)\cup L$ ,

with $\gamma(S)\cap L=\emptyset$ . Thus $X$ is a continuum. To define $Y$ and $f$ we need two
auxiliary mappings. The first is an arbitrary homeomorphism $h:L\rightarrow[0,1]$ of the
arc $L$ onto the closed unit interval. The second one, $g:C\rightarrow[0,1]$ , is defined as
the well-known Cantor-Lebesgue step-function from the Cantor set $C$ onto $[0,1]$

(compare e.g. [7, \S 16, II, (8) and footnote 1, p. 150] or [13, p. 35]). Consider now
a decomposition $\mathscr{D}$ of $X$ having the sets $h^{-1}(t)\cup\gamma((g^{-1}(t))\times\{0\})$ , for each
$t\in[0,1]$ , as the only nondegenerate elements; let $Y=X/\mathscr{D}$ be the decomposition
space, and take $f$ : $X\rightarrow Y$ as the quotient mapping. In other words, for the set
$E=\{e=\gamma((c, O))\in X:c\in C\}$ of the end points of $X$ we consider a mapping
$\psi$ : $E\rightarrow L$ defined by $\psi(e)=h^{-1}(g(c))$ (which is equivalent to $g$); then $f$ identifies
each end point $e\in E$ of $X$ with its image $\psi(e)$ , and is a homeomorphism on $X\backslash E$ .

To see that $2^{f}$ is not light choose a point $p\in L$ and put $A=E\cup\{p\}$ and
$B=E\cup L$ . Then we have $f(A)=f(B)$ and the conclusion follows from Theorem
3.6.

To verify that (5.3) holds suppose on the contrary that there are two
nondegenerate disjoint subcontinua $P$ and $Q$ of $X$ such that $f(P)\subset f(Q)$ . Since
the partial mapping $f|(X\backslash (E\cup L))$ is a homeomorphism, we conclude that $P$,
$Q\subset E\cup L$ . Therefore, since $P$ and $Q$ are nondegenerate, we have $P,$ $Q\subset L$ . But
the partial mapping $f|L$ is a homeomorphism, too, thus $f(P)$ and $f(Q)$ have to
be disjoint, which is a contradiction finishing the proof.

The above mentioned theorem, which supplies Theorem 3.10, mns as follows.

5.4. THEOREM. Let continua $X$ and $Y$ and a mapping $f:X\rightarrow Y$ be given.
Consider the following conditions:

(3.11) $C(f)$ : $C(X)\rightarrow C(Y)$ is light;

(5.3) for every two continua $P,$ $Q\in C(X)\backslash F_{1}(X)$ with $ P\cap Q=\emptyset$ the inequality
$ f(P)\backslash f(Q)\neq\emptyset$ holds;

(3.12) $2^{f}$ : $2^{x}\rightarrow 2^{Y}$ is light.
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Then (3. 12) implies (5.3), and (5.3) implies (3. 11). Consequently, (3. 12) implies
(3.11). The other implications do not hold.

PROOF. To show that (3.12) implies (5.3) suppose that there are two
continua $P,$ $Q\in C(X)\backslash F_{1}(X)$ with $ P\cap Q=\emptyset$ and $f(P)\subset f(Q)$ . Choose a point
$p\in P$ . Then for the sets $A=\{p\}\cup Q$ and $B=P\cup Q$ we see that $A\subsetneq B$, each
component of $B$ intersects $A$ , while $f(A)=f(B)$ . Thus $2^{f}$ is not light by Theorem
3.6.

To see that implication from (5.3) to (3.11) holds assume (5.3) and suppose
that $C(f)$ is not light. By Theorem 3.7 there are $A,$ $B\in C(X)$ such that $A\subseteq B$

and $f(A)=f(B)$ . Hence $B$ is nondegenerate. Enlarging $A$ in $B$ if necessary, we can
assume that $A$ is nondegenerate, too. Let $P$ be a nondegenerate subcontinuum
contained in $B\backslash A$ and put $Q=A$ . Then $f(P)\subset f(B)=f(A)=f(Q)$ contrary to
(5.3).

Example 5.2 shows that implication from (3.12) to (5.3) is not reversible.
Taking in Example 4.5 any $P\in C(X)\backslash (F_{1}(X)\cup\{X\})$ and $Q=h(P)$ we get the
needed subcontinua showing that (3.11) does not imply (5.3). This finishes the
proof.

Theorems 3.10 and 5.4 can be summarized in the following corollary.

5.5. COROLLARY. Let continua $X$ and $Y$ and a mapping $f$ : $X\rightarrow Y$ be given.
Consider the following conditions.

(3.2) $f$ is light;

(3.11) $C(f)$ : $C(X)\rightarrow C(Y)$ is light;

(5.3) for every two continua $P,$ $Q\in C(X)\backslash F_{1}(X)$ with $ P\cap Q=\emptyset$ the inequality
$ f(P)\backslash f(Q)\neq\emptyset$ holds;

(3.12) $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ is light.

Then the implications

$(3.12)\Rightarrow(5.3)\Rightarrow(3.11)\Rightarrow(3.2)$

hold, and none of them can be reversed.

5.6. THEOREM. Let an arcwise connected continuum $X$, a continuum $Y$ and a
mapping $f$ : $X\rightarrow Y$ be given. Then (3.11) implies (5.3).
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PROOF. Suppose that (5.3) does not hold, i.e., that there are two continua $P$,
$Q\in C(X)\backslash F_{1}(X)$ with $ P\cap Q=\emptyset$ and $f(P)\subset f(Q)$ . Denote by $L$ an irreducible
arc between $P$ and $Q$ . Putting $A=L\cup Q$ and $B=P\cup L\cup Q$ we have $A\subsetneq B$ and
$f(A)=f(B)$ . Thus by Theorem 3.7 we see that $C(f)$ is not light.

5.7. COROLLARY. For mappings $f$ with an arcwise connected (in particular
with a locally connected) domain $X$ conditions (3.11) and (5.3) are equivalent.

5.8. REMARK. The implication from lightness of $C(f)$ to lightness of $f$

cannot be reversed even for mappings $f$ between locally connected continua (see
Example 3.8). The authors do not know whether the implication from (3.12) to
(5.3) of Corollary 5.5 can be replaced by the equivalence under this additional
assumption. Thus we have the following question that is equivalent to Question
5.1.

5.9. QUESTION. Is the implication $(5.3)\Rightarrow(3.12)$ tme if the domain space $X$

is an arcwise connected (in particular locally connected) continuum?
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