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WALL INVARIANT FOR THE SPACE SATISFYING
CONDITION $(T^{**})$

By

Sang-Eon HAN

Abstract. In this paper, we define the locally nilpotent space and
condition $(T^{**})$ , and study their properties.

Furthermore, we find the vanishing condition of the Wall
invariant of the space satisfying the condition $(T^{**})$ and locally
nilpotent space.

1. Introduction

Since C. T. C. Wall defined the Wall obstmction, V. J. Lal, G. Mislin, E. K.
Pedersen, L. R. Taylor and R. Oliver have studied the finiteness condition of the
nilpotent space and homologically nilpotent space [4, 13, 15, 18]. And there are
many results on the nilpotent space [5, 6, 7, 8].

In this paper, we define the condition $(T^{**})$ and locally nilpotent space as the
extensive concept of the nilpotent space and study their properties.

Furthermore, we study the Wall invariant of the space satisfying the con-
dition $(T^{**})$ .

All spaces are arcwise connected $CW$ complexes unless otherwise stated and
we denote the category $T$.

We assert the following:

THEOREM 3.2. For $X$ satisfying condition $(T^{**})$ with $\pi_{1}(X)$ finite, and the
action $\pi_{1}(X)\times H_{n}(\tilde{X})\rightarrow H_{n}(\tilde{X})$ is nilpotent for all $n\geq 0$ , then $X\in T_{N}$ .

THEOREM 3.3. Let $F\rightarrow E\rightarrow pB$ be a fibration with $F$ a finitely dominated
space. If $B$ is a finite space satisfying condition $(T^{**})$ , the action $\pi_{1}(B)\times$

$H_{n}(\tilde{B})\rightarrow H_{n}(\tilde{B})$ is nilpotent for all $n\geq 0$ and $\pi_{1}(B)(\neq 0)$ is finite then $\omega(E)=0$ .
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THEOREM 3.4. Let $F\rightarrow E\rightarrow pB$ be a fibration with $F$ a finitely dominated
space. For finite $B(\in T_{LN})$ if $\pi_{1}(B)$ is finite and $\pi_{1}(B)\neq 0$ or $\pi_{1}(B)$ is infinite with
the maximal condition on a normal subgroup of $\pi_{1}(B)$ then $\omega(E)=0$ .

THEOREM 3.6. Let $F\rightarrow E\rightarrow pB$ be a fibration under the following conditions
that $B$ is a finitely dominated space and $\pi_{1}(B)$ acts nilpotently on the homology
of the fiber F. If $F$ is a finite complex, such that $\pi_{1}(F)$ is nontrivial, $E$ is a space
satisfying condition $(T^{**})$ , and the action $\pi_{1}(E)\times H_{n}(\tilde{E})\rightarrow H_{n}(\tilde{E})$ is nilpotent
where $n\geq 0$ , with $\pi_{1}(E)(\neq 0)$ finite, then $\omega(E)\in Kerp_{*}$ , where $p_{*}$ : $ K_{0}(Z\pi_{1}(E))\rightarrow$

$K_{0}(Z\pi_{1}(B))$ .

2. Prelminaries

For a space $X$, we consider the group ring $Z\pi_{1}(X)$ . Let $K_{0}(Z\pi_{1}(X))$ denote
the Grothendieck group of the group ring $Z\pi_{1}(X)$ .

DEFINITION 2.1. A space is called of type $FP$, if the singular chain complex
$C_{i}\tilde{X}$ of the universal covering $\tilde{X}$ of $X$ is chain homotopy equivalent (as $Z\pi_{1}(X)-$

complex) to a finite projective complex, $i.e.$ , a complex $\overline{C}_{i}$ with $\overline{C}_{i}=0$ for $i$ big
enough, and with each $\overline{C}_{i}$ a finitely generated projective $Z\pi_{1}(X)$ module.

If $X$ is of type $FP$, the Wall obstruction $\omega(X)$ is defined by

$\omega(X)=\Sigma(-1)^{i}[\overline{C}_{i}]\in K_{0}(Z\pi_{1}(X))$

where $\overline{C}_{i}$ is a finite projective complex equivalent to $C_{i}\tilde{X}$, and $[\overline{C}_{i}]$ denotes the class
of $\overline{C}_{i}$ in the projective class group $K_{0}(Z\pi_{1}(X))$ . It is evident that $w(X)$ is in-
dependent of the choice of $\overline{C}_{i}$ .

Furthermore, a space $X$ of type $FP$ is dominated by a finite complex if and
only if $\pi_{1}(X)$ is finitely presented [12].

DEFINITION 2.2. A $\pi$-module $M$ is called nilpotent if $I^{k}M=0$ for some $k>0$

where I denotes the augmentation ideal of $Z\pi[9,10]$ . Furthermore, a space $X$ is
called nilpotent if $\pi_{1}(X)$ is nilpotent and the $\pi_{1}(X)$ -module $\pi_{i}(X)(i>1)$ are all
nilpotent.

We know the fact that: if $\pi_{1}(X)$ is nilpotent then $X$ is of type $FP_{l}f$ and only if
$X$ is finitely dominated [14].

And we denote the category of nilpotent spaces and continuous maps as $T_{N}$ .

DEFINITION 2.3. A space $X(\in T)$ is said to be a locally nilpotent space if
(1) $\pi_{1}(X)$ is a locally nilpotent group,
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(2) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$ .
And we denote the category of locally nilpotent spaces and continuous maps as

$T_{LN}$ .

We know that the category $T_{N}$ is a full subcategory of $T_{LN}$ .
Generally, for a group $G$ and a fixed $g\in G$ , we denote by $[g, G]$ the subgroup of

$G$ generated by all commutators in $G$ .
Since $[g, a]^{b}=[g, b]^{-1}$ [$g$ , ab] for each $a,$ $b\in G$ (where $a^{b}=b^{-1}$ ab), $[g, G]$ is a

normal subgroup of $G[17]$ .

DEFINITION 2.4. We say that a space $X(\in T)$ satisfies condition $(T^{*})$ iffor all
$g,$ $t\in\pi_{1}(X)$

either $g[g, \pi_{1}(X)]=t[t, \pi_{1}(X)]$

or $ g[g, \pi_{1}(X)]\cap t[t, \pi_{1}(X)]=\phi$.

LEMMA 2.5 [2]. Let $G$ be an arbitrary group. If $b\in a[a, G](a, b\in G)$ then
$b[b, G]\subset a[a, G]$ .

LEMMA 2.6 [2]. For $X\in T_{LN}$ , then $X$ satisfies the condition $(T^{*})$ .

PROOF. Since $\pi_{1}(X)$ is a locally nilpotent group, suppose $ c\in a[a, \pi_{1}(X)]\cap$

$b[b, \pi_{1}(X)]$ for some $a,$ $b,$ $c\in\pi_{1}(X)$ . We only show that $a[a, \pi_{1}(X)]=b[b, \pi_{1}(X)]$ .
By Lemma 2.5,

$c[c, \pi_{1}(X)]\subset a[a, \pi_{1}(X)]\cap b[b, \pi_{1}(X)]\cdots(*)$

Clearly, $c=h^{-1}a$ for some $h=\prod_{i=1}^{m}[a, g_{i}]^{\epsilon_{j}}\in[a, \pi_{1}(X)](g_{i}\in\pi_{1}(X), \epsilon_{i}=\pm 1)$ . Let
$ G_{1}=\langle a, g1, \ldots, g_{m}\rangle$ . Since $a=hc,$ $h\equiv\prod_{i=1}^{m}[h, g_{i}]^{\epsilon_{i}}$ modulo $[c, G_{1}]$ , that is, $h=$

$\prod_{i=1}^{m}[h, g_{i}]^{\epsilon_{i}}$ in $G_{1}/[c, G_{1}]$ . However, since the latter group is nilpotent it follows
that $h=1$ in $G_{1}/[c, G_{1}]$ and $h\in[c, G_{1}]$ . Therefore, $a=hc\in c[c, \pi_{1}(X)]$ and by
Lemma 2.5, $a[a, \pi_{1}(X)]\subset c[c, \pi_{1}(X)]$ . It follows from $(*)$ that $a[a, \pi_{1}(X)]=$

$c[c, \pi_{1}(X)]$ . Similarly, $b[b, \pi_{1}(X)]=c[c, \pi_{1}(X)]$ and consequently, $a[a, \pi_{1}(X)]=$

$b[b, \pi_{1}(X)]$ .

DEFINITION 2.7. For $X\in T$ , we say that $X$ satisfies the condition $(T^{**})$ iffor
all $g(\neq 1)\in\pi_{1}(X)$ , then $g\not\in[g, \pi_{1}(X)]$ .

Since the $[g, \pi_{1}(X)]$ is a normal subgroup of $\pi_{1}(X)$ , the $co\grave{n}$dition $(T^{**})$ is
homotopy invariant property. And the condition $(T^{**})$ is a very useful tool in the
study of the locally nilpotent space.
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THEOREM 2.8. For $X\in T_{LN},$ $X$ satisfies the condition $(T^{**})$ .

PROOF. Assume that $g\in[g, \pi_{1}(X)]$ for some $g(\neq 1)\in\pi_{1}(X)$ . Then $ g^{-}1\in$

$[g, \pi_{1}(X)]$ and $1\in g[g, \pi_{1}(X)]$ . Thus $ g[g, \pi_{1}(X)]\cap 1[1, \pi_{1}(X)]\neq\phi$ . Since $X$ satisfies
the condition $(T^{*})$ by Lemma 2.6, $g[g, \pi_{1}(X)]=1$ .

But $g(\neq 1)\in g[g, \pi_{1}(X)]$ . Thus we have a contradiction.

LEMMA 2.9 [14, THEOREM 2.1]. Let $F\rightarrow jE\rightarrow B$ be a fibration with $F$ a
finitely dominated complex and $B$ a finite complex. Then $E$ is a finitely dominated
complex and $w(E)=j_{*}w(F)\chi(B)$ , where $j_{*}$ : $K_{0}(Z\pi_{1}(F))\rightarrow K_{0}(Z\pi_{1}(E))$ is a group
homomorphisim and $\chi$ means the Euler characteristic.

LEMMA 2.10 [16, 10, THEOREM 3]. Let $F\rightarrow E\rightarrow pB$ be a fibration under the
condition that $\pi_{1}(B)$ acts nilpotently on the homology of the fiber F. $B$ and $F$ are
dominated by afinite CW-complex then $p_{*}w(E)=w(B)\chi(F)$ where $p_{*}$ : $ K_{0}(Z\pi_{1}(E))\rightarrow$

$K_{0}(Z\pi_{1}(B))$ is the group homomorphisim.

If a space $X$ is nilpotent, then $\pi_{1}(X)$ is also nilpotent and for all $i\geq 0$ the
$\pi_{1}(X)$ -modules $H_{i}(\tilde{X}, Z)$ are nilpotent. Next, suppose that $\pi_{1}(X)$ is nilpotent and
operates nilpotently on $H_{i}(\tilde{X})$ for all $i$, then we have the followings [14]: there
exists

a Cartan-Whitehead decomposition of $X$:

. . . $\rightarrow X(m)\rightarrow X(m-1)\rightarrow\cdots\rightarrow X(2)=\tilde{X}\rightarrow X$, such that

(1) the fibrations

$K(\pi_{m}X, m-1)\rightarrow X(m+1)\rightarrow X(m)$ ,

where $X(m)$ is $(m-1)$ connected, $K$ means the Eilenberg-Maclane space
(2) $\pi_{m}X\cong H_{m}(X(m))$ for $m\geq 2$ .
Assume inductively that $\pi_{1}(X)$ operates nilpotently on $H_{i}(X(m))$ for all $i$ and

all $m$ with $2\leq m\leq M$ . Then $\pi_{1}(X)$ operates nilpotently on $H_{j}(K(\pi_{M}(X), M-1))$ .
The Serre spectral sequence associated to the fibration

$K(\pi_{M}(X), M-1)\rightarrow X(M+1)\rightarrow X(M)$

has an $E^{2}$ -term

$E_{ij}^{2}=H_{i}(X(M);H_{j}(K(\pi_{M}(X), M-1))$
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which is a nilpotent $\pi_{1}(X)$ -module for every pair $(i, j)$ . Hence $\pi_{1}(X)$ operates
nilpotently on $H_{k}(X(M+1))$ for all $k$ and $\pi_{1}(X)$ operates nilpotently on
$\pi_{M+1}(X)\cong H_{M+1}(X(M+1))$ . With the facts above, the below lemma is
followed.

LEMMA 2.11 [11, PROPOSITION 2.1]. A space $X$ is nilpotent if and only if
$\pi_{1}(X)$ is nilpotent and for all $i\geq 0$ the $\pi_{1}(X)$ -modules $H_{i}$ ( $\tilde{X}$ : Z) are nilpotent.

3. Main Theorems

In this section, we make several results on the Wall invariant of the space
satisfying condition $(T^{**})$ .

LEMMA 3.1 [3, THEOREM]. If $\pi_{1}(X)$ contains a torsion free nontrivial normal
abelian subgroup which acts nilpotently on $H_{*}(\tilde{X})$ then Euler characteristic $\chi(X)=$

$0$ , where $X$ is a finite complex.

We know the following; if $\pi_{1}(X)$ is a nilpotent group then there exist finite
upper central series of $\pi_{1}(X)$ by virtue of the center of $\pi_{1}(X)$ .

THEOREM 3.2. For $X$ satisfying condition $(T^{**})$ with $\pi_{1}(X)$ finite, and the
action $\pi_{1}(X)\times H_{n}(\tilde{X})\rightarrow H_{n}(\tilde{X})$ is nilpotent for all $n\geq 0$ , then $X\in T_{N}$ .

PROOF. We only prove that $\pi_{1}(X)$ is a nilpotent group under the above
hypothesis. So assume that $\pi_{1}(X)$ is not nilpotent, then we don’t have finite upper
central series of $\pi_{1}(X)$ . $1fZ_{n}(\pi_{1}(X))$ denote the n-th center of $\pi_{1}(X)$ , we can find
an integer $n$ such that $Z_{n+1}(\pi_{1}(X))=Z_{n}(\pi_{1}(X))\subsetneq\pi_{1}(X)$ . It follows that if $ x\not\in$

$Z_{n}(\pi_{1}(X))$ , then $[x, \pi_{1}(X)]\not\in Z_{n}(\pi_{1}(X))$ . Choose any $x_{1}\not\in Z_{n}(\pi_{1}(X))$ , we know
$[x_{1}, \pi_{1}(X)]\not\in Z_{n}(\pi_{1}(X))$ by above. If $x_{1}\in[x_{1}, \pi_{1}(X)]$ , then we have shown that
the condition $(T^{**})$ does not hold, as required, so assume $x_{1}\not\in[x_{1}, \pi_{1}(X)]$ . Then
choose $x_{2}\in[x_{1}, \pi_{1}(X)],$ $x_{2}\not\in Z_{n}(\pi_{1}(X))$ . Since $[x_{1}, \pi_{1}(X)]$ is a normal subgroup of
$\pi_{1}(X),$ $[x_{2}, \pi_{1}(X)]\subseteq[x_{1}, \pi_{1}(X)]$ . If $x_{2}\in[x_{2}, \pi_{1}(X)]$ , we are done.

0therwise, we have $[x_{2}, \pi_{1}(X)]\subsetneq[x_{1}, \pi_{1}(X)]$ but also we noted $[x_{2}, \pi_{1}(X)]\not\in$

$Z_{n}(\pi_{1}(X))$ . So pick $x_{3}\in[x_{2}, \pi_{1}(X)],$ $x_{3}\not\in Z_{n}(\pi_{1}(X))$ and continue. Since $\pi_{1}(X)$ is
finite, this process must stop. After all we have $\alpha$ for which $x_{\alpha}(\neq 1)\in[x_{\alpha}, \pi_{1}(X)]$ .
This is a contradiction to the fact that $X$ satisfies the condition $(T^{**})$ . Thus we
know that $\pi_{1}(X)$ is a nilpotent group. Next, by Lemma 2.11, we get $X\in T_{N}$ .

Recall that for a nilpotent space $X$ if $\pi_{i}(X)$ is finitely generated for $i\geq 0$ , we
say that $X$ is of finite type.
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THEOREM 3.3. Let $F\rightarrow E\rightarrow pB$ be a fibration with $F$ a finitely dominated
space. If $B$ is a finite space satisfying condition $(T^{**})$ , the action $\pi_{1}(B)\times H_{n}(\tilde{B})\rightarrow$

$H_{n}(\tilde{B})$ is nilpotent for all $n\geq 0$ and $\pi_{1}(B)(\neq 0)$ is finite then $\omega(E)=0$ .

$PR\infty F$ . By Theorem 3.2, $B\in T_{N}$ . Thus $\chi(B)=0$, because $\pi_{1}(B)\neq 0$ . By
Lemma 2.9, our proof is completed.

We recall that a group $G$ satisfies the maximal condition if it has no infinite
strictly increasing chain of subgroups [16].

THEOREM 3.4. Let $F\rightarrow E\rightarrow pB$ be a fibration with $F$ a finitely dominated
space. For finite $B(\in T_{LN})\iota f\pi_{1}(B)$ is finite and $\pi_{1}(B)\neq 0$ or $\pi_{1}(B)$ is infinite with
the maximal condition on a normal subgroup of $\pi_{1}(B)$ then $\omega(E)=0$ .

PROOF. When $\pi_{1}(B)$ is infinite under the above hypothesis, $\pi_{1}(B)$ is finitely
generated nilpotent group. Then $\pi_{1}(B)$ has the infinite normal abelian center
group of $\pi_{1}(B)$ which acts nilpotently on $H_{*}\tilde{B},$ $*\geq 0$ . Then by Lemma 3.1, our
proof is completed.

Next, when $\pi_{1}(B)$ is finite, by the similar method of Theorem 3.3 and
Theorem 2.8, our proof is completed.

COROLLARY 3.5. Let $F\rightarrow E\rightarrow pB$ be a fibration with $F$ a finitely dominated
space. If $B$ is finite nilpotent space and $\pi_{1}(B)\neq 0$ then $\omega(E)=0$ .

THEOREM 3.6. Let $F\rightarrow E\rightarrow pB$ be a fibration under the following conditions
that $B$ is a finitely dominated space and $\pi_{1}(B)$ acts nilpotently on the homology of
the fiber F. If $F$ is a finite complex, such that $\pi_{1}(F)$ is nontrivial, $E$ is a space
satisfying condition $(T^{**})$ , and the action $\pi_{1}(E)\times H_{n}(\tilde{E})\rightarrow H_{n}(\tilde{E})$ is nilpotent
where $n\geq 0$ , with $\pi_{1}(E)(\neq 0)$ finite, then $\omega(E)\in Kerp_{*}$ , where $p_{*}$ : $ K_{0}(Z\pi_{1}(E))\rightarrow$

$K_{0}(Z\pi_{1}(B))$ .

PROOF. Since $E$ is a nilpotent space by Lemma 2.11 and Theorem 3.2, the
fiber $F$ is also a nilpotent space [1]. From the fact that $F$ is a finite complex,
$\pi \mathfrak{l}(F)$ is finitely generated. By Lemma 2.11 $\pi_{1}(F)$ acts nilpotently on $H_{t}(\tilde{F})$ . Now
we consider the Euler characteristic of $F$. By the similar method of proof
Theorem 3.4, if $\pi_{1}(F)$ is infinite, we get the infinite center subgroup of $\pi_{1}(F)$

which acts nilpotently on $H_{n}(\tilde{F})$ . By Lemma 3.1, $\chi(F)=0$ .
Next, if $\pi_{1}(F)$ is finite we know that $\chi(F)=\chi(\tilde{F})$ and $\chi(\tilde{F})=|\pi_{1}(F)|\chi(F)$

where $||$ means the order of $\pi_{1}(F)[11]$ . Since $\pi_{1}(F)\neq 0,$ $\chi(F)=0$ . In two cases
of $\pi_{1}(F)$ above, $\chi(F)=0$ . By Lemma 2.10, $\omega(E)\in Kerp_{*}$ .



Wall invariant for the space 163

References

[1] A. K. Bousfield and D. M. Kan,, Homotopy Limits, Completions and Localization. L.N.S.
vol. 304, Springer-Verlag, Berlin, 1972.

[2] M. Dokuchaev, On the property of nilpotent groups, Canad. Math. Bull. 37(2) (1994), 174-177.
[3] B. Eckmann, Nilpotent group action and Euler characteristic, L.N.S., vol. 1248, Springer-Verlag,

New-York, 1985, pp. 120-123.
[4] A. R. Filho, Nilpotent spaces: Some Inequalities on nilpotency degrees, Proc. of A.M.S.

115(no. 2) (1992), 510-512.
[5] B. Gray, Homotopy theory, Academic Press, New York, 1975.
[6] P. Hilton, On diret limits of nilpotent groups, L.N.S., vol. 418, Springer-Verlag, New-York,

1974, pp. 69-77.
[7] P. Hilton, Nilpotent action on nilpotent groups, Proc. Aust. summer Institute (1974), 174-196.
[8] P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland,

Amsterdam, 1975.
[9] A. G. Kurosh, The theory of groups II, Chelsea, New York, 1978.
[10] V. J. Lal, Wall obstruction of a fibration, Iven. Math. 6 (1968), 67-77.
[11] R. H. Lewis, Homology and cell stmcture of nilpotent space, Trans. of the A.M.S. 290(2)

(1985), 747-760.
[12] G. Mislin, Finitely dominated nilpotent spaces, Ann. of Math. 103(2) (1976), 547-556.
[13] –, The geometric realization of Wall obstmctions by nilpotent and simple space, Math.

Proc. Camb. Phil. Soc. 87(199) (1980), 199-206.
[14] –, Wall obstruction of the nilpotent spaces, Topolgy 14 (1975), 311-317.
[15] R. Oliver, Finiteness 0bstmctions for homologically nilpotent spaces, Top. and its Applications

25 (1987), 229-235.
[16] E. K. Pedersen and L. R. Taylor, The Wall finiteness obstmction for a fibration, Amer. J. Math.

100 (1978), 887-896.
[17] D. J. S. Robinson, A Courses in the Theory of Groups, Springer-Verlag, New York, 1980.
[18] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81 (1965), 56-69.

Department of Mathematics
College of Natural Sciences, Honam University
$Kwang|u506- 090$ , Korea


	WALL INVARIANT FOR THE ...
	1. Introduction
	THEOREM 3.2. ...
	THEOREM 3.3. ...
	THEOREM 3.4. ...
	THEOREM 3.6. ...

	2. Prelminaries
	THEOREM 2.8. ...
	THEOREM 3.2. ...
	THEOREM 3.3. ...
	THEOREM 3.4. ...
	THEOREM 3.6. ...

	References


