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JACOBI OPERATORS ON REAL HYPERSURFACES OF
A COMPLEX PROJECTIVE SPACE

By

Jong Taek CHO* and U-Hang KI**

Abstract. In this paper, we investigate a real hypersurface of a
complex projective space $CP^{n}$ in terms of the Jacobi operators. We
give a local stmcture theorem of a real hypersurface of $CP^{n}$ sat-
isfying $R_{\xi}=k(I-\eta\otimes\xi)$ , where $ R_{\xi}=R(\cdot, \xi)\xi$ is the Jacobi operator
with respect to $\xi$ and $k$ is a function. Further, we classify real
hypersurfaces of $CP^{n}$ satisfying $\phi R_{\xi}=R_{\xi}\phi$ under the condition that
$ A\xi$ is a principal curvature vector. Also, we show that a complex
projective space does not admit a locally symmetric real hypersur-
face.

0. Introduction

Let $CP^{n}=(CP^{n}, J,\tilde{g})$ be an n-dimensional complex projective space with
Fubini-Study metric $\tilde{g}$ of constant holomorphic sectional curvature 4, and let $M$

be an orientable real hypersurface of $CP^{n}$ and $N$ be a unit normal vector on $M$.
Then $M$ has an almost contact metric structure $(\phi, \xi,\eta, g)$ induced from the
K\"ahlerian stmcture $(J,\tilde{g})$ of $CP^{n}$ (see section 1). One of the typical examples
of $M$ is a geodesic hypersphere. R. Takagi ([10]) classified homogeneous real
hypersurfaces of $CP^{n}$ by means of six model spaces of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ , and
$E$, further he explicitly write down their principal curvatures and multiplicities in
the table in [11]. T. E. Cecil and P. J. Ryan ([2]) extensively investigated a real
hypersurface which is realized as a tube of constant radius $r$ over a complex
submanifold of $CP^{n}$ on which $\xi$ is a principal curvature vector with principal
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curvature $\alpha=2\cot 2r$ and the corresponding focal map $\varphi_{r}$ : $M\rightarrow CP^{n}$ (defined by
$\varphi_{r}(p)=exp_{p}(rN))$ has constant rank.

We remark that, in particular, a homogeneous real hypersurface of type $A_{1}$ ,
$A_{2}$ has a lot of nice geometric properties. For example, M. Okumura ([9]) showed
that a real hypersurface of $CP^{n}$ is locally congruent to one of homogeneous real
hypersurfaces of type $A_{1},$ $A_{2}$ if and only if the stmcture vector field $\xi$ is Killing or
if and only if the structure tensor $\phi$ commutes with the shape operator $A$

$(\phi A=A\phi)$ .
We denote by $\nabla$ the Levi-Civita connection with respect to $g$ . The curvature

tensor field $R$ on $M$ is defined by $R(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$ , where $X$ and $Y$

are vector fields on $M$. We define the Jacobi operator field $R_{X}=R(\cdot, X)X$ with
respect to a unit vector field $X$. Then we see that $R_{X}$ is a self-adjoint endo-
morphism of the tangent space. It is related with the Jacobi vector fields, which
are solutions of the second order differential equation (the Jacobi equation)
$\nabla_{\dot{\gamma}}(\nabla_{\gamma}Y)+R(Y,\dot{\gamma})\dot{\gamma}=0$ along a geodesic $\gamma$ . It is well-known that the notion of
Jacobi vector fields involve many important geometric properties. In section 2,
particularly we show that the Jacobi operator $R_{\xi}$ with respect to the stmcture
vector field $\xi$ of a geodesic hypersphere is represented by $R_{\xi}=k(I-\eta\otimes\xi)$

where $I$ denotes the identity transformation and $k$ is a constant. Further, we give
a local stmcture theorem of a real hypersurface of $CP^{n}$ satisfying $R_{\xi}=$

$k(I-\eta\otimes\xi)$ where $k$ is a function.
In section 3, we prove that a real hypersurface of $CP^{n}$ is locally congment to

one of homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$ if and only if the stmcture
tensor $\phi$ commutes with the Jacobi operator $R_{\xi}(\phi R_{\xi}=R_{\xi}\phi)$ and $ A\xi$ is a principal
curvature vector. In section 4, we give another characterization of homogeneous
real hypersurfaces of type $A_{1},$ $A_{2}$ by the property that $(*)$ the structure vector
field $\xi$ is a geodesic vector field and further the Jacobi operator $R_{\xi}$ is diago-
nalizable by a parallel orthonormal frame field along each trajectory of $\xi$ and at
the same time their eigenvalues are constant along each trajectory of $\xi$ . We easily
see that the property $(*)$ is equivalent to the condition $R_{\xi}^{\prime}=0$ where we denote
$R_{X}^{\prime}=(\nabla_{X}R)(\cdot, X)X$ for any unit vector field $X$. Also, in section 4 we show that
$CP^{n}$ does not admit a locally symmetric $(\nabla R=0)$ real hypersurface.

In this paper, all manifolds are assumed to be connected and of class $C^{\infty}$ and
the real hypersurfaces are supposed to be oriented.

1. Preliminaries

At first, we review the fundamental facts on a real hypersurface of $CP^{n}$ . Let
$M$ be a real hypersurface of $CP^{n}$ and $N$ be a unit normal vector on $M$. By $\tilde{\nabla}$ we
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denote the Levi-Civita connection with respect to the Fubini-Study metric of
$CP^{n}$ . Then the Gauss and Weingarten formulas are given respectively by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$ , $\tilde{\nabla}_{X}N=-AX$

for any vector fields $X$ and $Y$ on $M$, where $g$ denotes the Riemannian metric of
$M$ induced from $\tilde{g}$ . An eigenvector (resp. eigenvalue) of the shape operator $A$ is
called a principal curvature vector (resp. principal curvature). For any vector field
$X$ tangent to $M$, we put

(1.1) $JX=\phi X+\eta(X)N$ , $ JN=-\xi$ .

Then we may see that the structure $(\phi, \xi,\eta, g)$ is an almost contact metric
stmcture on $M$, that is, we have

$\phi^{2}X=-X+\eta(X)\xi$ , $\eta(\xi)=1$ ,
(1.2)

$g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$ .

From (1.2), we get

(1.3) $\phi\xi=0$ , $\eta\circ\phi=0$ , $\eta(X)=g(X, \xi)$ .

From the fact $\tilde{\nabla}J=0$ and (1.1), making use of the Gauss and Weingarten
formulas, we have

(1.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$

(1.5) $\nabla_{X}\xi=\phi AX$ .

Since the ambient space is of constant holomorphic sectional curvature 4, we
have the following Gauss and Codazzi equations:

(1.6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

We recall the following:

PROPOSITION 1 ([8]). If $\xi$ is a principal curvature vector, then the corre-
sponding principal curvature $\alpha$ is locally constant.

PROPOSITION 2 ([8]). Assume that $\xi$ is a principal curvature vector and
corresponding principal curvature $\alpha$ . If $AX=\lambda X$ for $X$ orthogonal to $\xi$ , then we
have $A\phi X=(\alpha\lambda+2)/(2\lambda-\alpha)\phi X$ .
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THEOREM 1 ([9]). Let $M$ be a real hypersurface of $CP^{n}$ . Then the followings
are equivalent:

(i) $M$ is locally congruent to one of homogeneous real hypersurfaces of type $A_{1}$

and $A_{2}$ .
(ii) $\phi A=A\phi$ .

A mled real hypersurface of $CP^{n}$ is defined by a foliated one by complex
hyperplanes $CP^{n-1}$ and its shape operator is written down in [5]. Namely,

$A\xi=\alpha\xi+\mu W$ $(\mu\neq 0)$ ,

(1.8) A $ W=\mu\xi$ ,

$AZ=0$

for any $Z\perp\xi,$ $W$, where $W$ is unit vector orthogonal to $\xi,$ $\alpha$ and $\mu$ are functions
on $M$. For more details about a mled real hypersurface of $CP^{n}$ , we refer to [6].
The $\phi$-holomorphic sectional curvature $H(X)$ is defined by a sectional curvature
of $span\{X, \phi X\}$ . Further in [5], it was proved that

THEOREM 2. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ with constant $\phi-$

holomorphic sectional curvature. Then $M$ is locally congruent to the following
spaces:

(1) a geodesic hypersphere (that is, a homogeneous real hypersurface which lies
on a tube of radius $r$ over a hyperplane $CP^{n-1}$ , where $0<r<(\pi/2))$ ;

(2) a ruled real hypersurface;
(3) a real hypersurface on which there is a foliation of codimension two such

that each leaf of the foliation is contained in some complex hyperplane $CP^{n-1}$ as a
ruled hypersurface.

We denote $\alpha=g(A\xi, \xi)$ and $\beta=g(A^{2}\xi, \xi)$ . We define a vector field $U$ on $M$

by $ U=\nabla_{\xi}\xi$ . Then from (1.2) and (1.5) we easily observe that $U$ is orthogonal to
$\xi$ and also to $ A\xi$ . Since I $U\Vert^{2}=g(U, U)=\beta-\alpha^{2}$ , from (1.2), (1.5) and (1.9) we
have at once

LEMMA 1. The followings are equivalent:
(i) $\xi$ is a geodesic vector field
(ii) $\xi$ is a principal curvature vector field
(iii) $\beta-\alpha^{2}=0$ .
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2. Real hypersurfaces of $CP^{n}$ satisfying $R_{\xi}=k(I-\eta\otimes\xi)$

For each point $p\in M$ and each unit tangent vector $X\in T_{p}M$ , we define a
self-adjoint operator $R_{X}$ of $T_{p}M$ by $R_{X}=R(\cdot, X)X$ . We call $R_{X}$ Jacobi operator
with respect to $X$. It is well-known that a geodesic hypersphere $M$ of $CP^{n}$ is $\eta-$

umbilical, i.e., $M$ satisfies $ AX=aX+b\eta(X)\xi$ for any tangent vector field $X$ on
$M$, where $a$ and $b$ are constants on $M$ (cf. [11]). Thus from (1.6) we have

PROPOSITION 3. Let $M$ be a geodesic hypersphere of $CP^{n}$ . Then $M$ satisfies
$R_{\xi}=k(I-\eta\otimes\xi)$ where I denotes the identity transformation and $k$ is a constant
on $M$.

Furthermore, we prove

THEOREM 3. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ . Suppose that $M$

satisfies $R_{\xi}=k(I-\eta\otimes\xi)$ , where $k$ is a function on $M$.
In case that $\xi$ is a principal curvature vector field with the associated principal

curvature $\alpha=2\cot 2r$ and the rank of corresponding focal map $\varphi_{r}$ is constant, then
$M$ is locally congruent to one of the following spaces:

(1) a geodesic hypersphere;
(2) a homogeneous tube of radius $\pi/4$ over a totally geodesic $CP^{l}$

$(1\leq l\leq n-2)$ ;
(3) a non-homogeneous tube of radius $\pi/4$ over a $\varphi_{\pi/4}(M)$ with non-zero

principal curvatures $\neq\pm 1$ .
Or in case that $\xi$ is not a principal curvature vector field, then $M$ is locally

congruent to
(4) a non-homogeneous real hypersurface whose shape operator $A$ is written as

$A\xi=\alpha\xi+\mu W$ $(\alpha\neq 0, \mu\neq 0)$ ,

A $W=\mu\xi+vW$ ,

$AZ=(k-1)/\alpha Z$ , $k=1+\alpha v-\mu^{2}$

for any $Z\perp\xi,$ $W$, where $W$ is a unit vector field orthogonal to $\xi,$
$\alpha,$ $\mu$ and $v$ are

functions on $M$.

PROOF. From (1.6) it follows that

(2.1) $ R_{\xi}X=R(X, \xi)\xi=X-\eta(X)\xi+\alpha AX-\eta(AX)A\xi$
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for any vector field $X$ on $M$ . Suppose that $R_{\xi}X=k(X-\eta(X)\xi)$ , where $k$ is a
function. Then from (2.1) we get

(2.2) $\alpha AX=(k-1)(X-\eta(X)\xi)+\eta(AX)A\xi$

for any vector field $X$ on $M$.
First we consider the case that $\xi$ is a principal curvature vector field, that is,

$ A\xi=\alpha\xi$ . Then from (2.2) we get

(2.3) $\alpha AX=(k-1)X$

for any vector field $X$ orthogonal to $\xi$ . Since $\alpha$ is constant (Proposition 1), we
divide our arguments into two cases: (i) $\alpha=0$ or (ii) $\alpha\neq 0$ .

(i) $\alpha=0$ . First, from (2.1) we see that $k=1$ and $M$ satisfies $R_{\xi}X=$

$ X-\eta(X)\xi$ . Since the rank of the corresponding focal map $\varphi_{\pi/4}$ is constant, by
virtue of [2] we see that $M$ is locally congment to a homogeneous real
hypersurface which lies on a tube of radius $\pi/4$ over a totally geodesic $CP^{k}$

$(1\leq k\leq n-1)$ or locally congment to a non-homogeneous real hypersurface
which lies on a tube of radius $\pi/4$ over a K\"ahler submanifold $\tilde{N}$ with non-zero
principal curvatures $\neq\pm 1$ . (See also [7]).

(ii) $\alpha\neq 0$ . From (2.3) we see that $M$ has at most two distinct principal
curvatures. Henoe Theorem 3 in [2] implies that $M$ is locally congment to
geodesic hypersphere.

Next, we consider the case that $\xi$ is not principal. We may assume that

(2.4) $A\xi=\alpha\xi+\mu W$ ,

where $W$ is unit and orthogonal to $\xi,$ $\mu\neq 0$ . Then from (2.2) and (2.4) we get

(2.5) $\alpha AW=\alpha\mu\xi+(\mu^{2}+k-1)W$ .

Also, from (2.2) we get

(2.6) $\alpha AZ=(k-1)Z$ ,

where $Z$ is unit and orthogonal to $\xi$ and $W$ . Now we prove that $\alpha\neq 0$ . If $\alpha=0$

on $M$, then from (2.2) we get

(2.7) $(k-1)(X-\eta(X)\xi)+\eta(AX)A\xi=0$

for any vector field $X$ on $M$. Putting $X=U$ in (2.7), then we obtain

(2.8) $(k-1)U=0$ .
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Set $\Omega_{1}=\{p\in M:k(p)=1\}$ and $\Omega_{2}=\{p\in M:k(p)\neq 1\}$ . Then $M=\Omega_{1}\cup\Omega_{2}$ .
If $M=\Omega_{1}$ ( $\Omega_{2}$ is empty), then from (2.7) we find $\beta=0$ on $M$, and hence by
applying Lemma 1 we have $A\xi=0$ on $M$. If $M=\Omega_{2}$ ( $\Omega_{1}$ is empty), then from
(2.8) and Lemma 1 we see that $ A\xi=\alpha\xi$ on $M$. Or, in case that both $\Omega_{1}$ and $\Omega_{2}$

are non-empty, by Proposition 1 and the continuity of $\alpha$ yield that $\xi$ is a principal
curvature vector field on $M$. Hence all the cases yield a contradiction. Thus $\alpha\neq 0$

on $M$.
Therefore from (2.4), (2.5) and (2.6) we have our real hypersurface $M$ of the

case (4), where we have put $\mu^{2}+k-1=\alpha v$ . From (1.6) we can easily see that a
real hypersurface $CP^{n}$ whose shape operator written as (2.4), (2.5) and (2.6)

satisfies $R_{\xi}X=k(X-\eta(X)\xi)$ for any vector field $X$ on $M$. Also, since the
stmcture vector field $\xi$ on a homogeneous real hypersurface of $CP^{n}$ is a principal
curvature vector field ([10]), we see that a real hypersurface of this case is non-
homogeneous. (Q.E.D.)

REMARK 1. From Theorem 3 and the table in [11], we see that the normal
Jacobi vector field along each geodesic trajectory of $\xi$ on a geodesic hypersphere,
a homogeneous tube of radius $\pi/4$ over a totally geodesic $CP^{l}(1\leq l\leq n-2)$ , or
a non-homogeneous tube of radius $\pi/4$ of the case (3) in Theorem 3 satisfies the
spherical space form type Jacobi equation, i.e., $Y^{\prime\prime}+kY=0$ where $k$ is a positive
constant and $/denotes$ covariant derivative along a geodesic trajectory of $\xi$ .

The rank of $A$ at a point $p$ in $M$ is called a type number and is denoted by
$t(p)$ . Let $M$ be a real hypersurface of $CP^{n}$ which satisfies $ R_{\xi}X=X-\eta(X)\xi$ , i.e.,
$k=1$ . Then from (2.2) it follows that

(2.9) $\alpha AX=\eta(AX)A\xi$

for any vector field $X$ on $M$. If there exist a point $p$ in $M$ such that $\alpha(p)\neq 0$ , then
(2.9) implies that the type number $t(p)$ at $p$ is at most 1. It is however seen (cf.
[12]) that the point $p$ is geodesic. So it is contradiction to the assumption that
$\alpha(p)\neq 0$ . Thus $\alpha=0$ on $M$, and hence from (2.9) $\beta=0$ on $M$. Therefore by
Lemma 1, we see that $A\xi=0$ on $M$.

REMARK 2. The above arguements together with (1.8) in section 1 and (20)

in [7] imply that a non-homogeneous real hypersurface of the case (4) is neither a
mled real hypersurface nor of the case (3) in Theorem 2. But, we do not yet
know the constmction of the case (4) in Theorem 3.
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Due to Theorems 2, 3 and Remark 2, we characterized a geodesic hyper-
sphere of $CP^{n}$ by following

COROLLARY 1. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ with constant $\phi-$

holomorphic sectional curvature. In addition that $M$ satisfies $R_{\xi}=k(I-\eta\otimes\xi)$ ,
where $k$ is a function, then $M$ is locally congruent to a geodesic hypersphere.

3. Real hypersurfaces of $CP^{n}$ satisfying $\phi R_{\xi}=R_{X}\phi$

We see that all the cases appeared in Theorem 3 satisfies $\phi R_{\xi}=R_{\xi}\phi$ . In this
section, we prove

THEOREM 4. Let $M$ be a real hypersurface of $CP^{n}$ . The structure tensor $\phi$

commutes with the Jacobi operator $R_{\xi}$ and $A_{\xi}$ is principal curvature vector field on
M. Then $\xi$ is principal curvature field on M. Further assume that $\alpha=2\cot 2r$ and
the rank of the focal map $\varphi_{r}$ is constant, then $M$ is locally congruent to one of
homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$ or a non-homogeneous tube of
radius $\pi/4$ of the case (3) in Theorem 3.

PROOF. Assume that $\phi R_{\xi}=R_{\xi}\phi$ and A $\xi=\lambda A\xi$ . From (1.6) we get

$ R_{\xi}(\phi X)=\phi X+\alpha A\phi X+g(X, U)A\xi$ ,
(3.1)

$\phi(R_{\xi}X)=\phi X+\alpha\phi AX-g(AX, \xi)U$ .

From (3.1) and the assumption $\phi R_{\xi}=R_{\xi}\phi$ , we find

(3.2) $\alpha(\phi A-A\phi)X=g(X, U)A\xi+g(AX, \xi)U$ .

First, we prove that $\xi$ is principal curvature vector on $M$. We put $ X=A\xi$ in
(3.2) and using the another assumption $ A^{2}\xi=\lambda A\xi$ , then we get $\alpha AU=$

$(\alpha\lambda-\beta)U$, and hence we have

(3.3) $\alpha AU=0$ ,

because $\beta=\alpha\lambda$ . If there exists a point $p\in M$ such that $\alpha(p)=0$ , then we see that
$\beta(p)=0$ , and hence by using Lemma 1, we conclude that $A\xi=0$ at $p$ . So, from
now we discuss where $\alpha$ has not zero. Then from (3.3), it follows that

(3.4) A $U=0$ .

With (3.4) we easily see that

$g((\nabla_{X}A)\xi, \xi)=d\alpha(X)$ ,
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where $d$ denotes the exterior differential. Since $ U=\phi A\xi$ , from (1.4), (1.7) and
(3.4) we have

(3.5) $\nabla_{\xi}U=\alpha A\xi-\beta\xi+\phi\nabla\alpha$ ,

where $\nabla\alpha$ denotes the gradient vector of $\alpha$ . Differentiating (3.4) covariantly, then
by using (1.7) and (3.5) we have

(3.6) $(\nabla_{U}A)\xi=-\phi U-\alpha A^{2}\xi+\beta A\xi+A\phi\nabla\alpha$ .

Also, differentiating $ A^{2}\xi=\lambda A\xi$ covariantly along $M$, then together with (1.5) we
have

(3.7) $g(A\xi, (\nabla_{X}A)Y)+g$ ( $(\nabla_{X}A)\xi,$ A $Y$) $+g(\phi AX, A^{2}Y)$

$=d\lambda(X)g(A\xi, Y)+\lambda g((\nabla_{X}A)\xi, Y)+\lambda g$ ( $\phi AX,$ A $Y$).

From (1.7) and (3.7) we have

$\eta(X)g(A\xi, \phi Y)-\eta(Y)g(A\xi, \phi X)-2\alpha g(\phi X, Y)$

$+g$ ( $(\nabla_{X}A)\xi,$ A $Y$) $-g((\nabla_{Y}A)\xi, AX)+g(\phi AX, A^{2}Y)-g(\phi AY, A^{2}X)$

$=d\lambda(X)g(A\xi, Y)-d\lambda(Y)g(A\xi, X)+\lambda g((\nabla_{X}A)\xi, Y)-\lambda g((\nabla_{Y}A)\xi, X)$

$+2\lambda g$ ( $\phi AX,$ A $Y$)

for any vector fields $X$ and $Y$ on $M$. We put $X=U$ and making use of (1.7),
(3.4) and (3.6), then we have

(3.8) $g$ ( $(\nabla_{U}A)\xi,$ A $Y$ ) $=2(\alpha-\lambda)g(\phi U, Y)-\eta(Y)g(U, U)+d\lambda(U)g(A\xi, Y)$ .

Thus, from (3.6) and (3.8) we obtain

(3.9) $2(\alpha-\lambda)g(\phi U, Y)-\eta(Y)g(U, U)+d\lambda(U)g(A\xi, Y)$

$=-g$ ( $\phi U,$ A $Y$) $-\alpha g$ ( $A^{2}\xi,$ A $Y$) $+\beta g$ ($A\xi,$ A $Y$) $-d\alpha(\phi A^{2}Y)$ .

Putting $ Y=\xi$ in (3.9), then we get

$d(\lambda\alpha)(U)=2(\beta-\alpha^{2})$ .

Also, we put $ Y=A\xi$ in (3.9), we get

$\lambda d(\lambda\alpha)(U)=(\beta-\alpha^{2})(3\alpha-\lambda)$ .

Thus, we have $\beta-\alpha^{2}=\alpha(\lambda-\alpha)=0$ , from which using Lemma 1 we see that
$ A\xi=\alpha\xi$ on $M$.
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From (3.2) and Lemma 1, we see that

$\alpha(\phi A-A\phi)X=0$ .

Since $\alpha$ is constant, by a similar way as in the proof of Theorem 3 and using
Theorem 1, we have our assertions. (Q.E.D.)

REMARK 3. If we omit the condition that $ A\xi$ is a principal curvature vector,
then Theorem 4 is not tme. In fact, if a non-homogeneous real hypersurface of
the case (4) in Theorem 3 satisfies A $\xi=\lambda A\xi$ , then we can see that $\alpha v-\mu^{2}=0$

where $\alpha$ and $\mu$ have not zero, which yields a contradiction.

4. Real hypersurfaces of $CP$“ satisfying $R_{X}^{\prime}=0$

For each point $p\in M$ and each unit tangent vector $X\in T_{p}M$ , we define $R_{X}^{\prime}$

by $R_{X}^{\prime}=(\nabla_{X}R)(\cdot, X)X$ . Then, in particular supposing that the stmcture vector
field $\xi$ of $M$ is a geodesic vector field, it is easily seen that $R_{\xi}^{\prime}=0$ on $M$ if and
only if the Jacobi operator $R_{\xi}$ is diagonalizable by a parallel orthonormal frame
field along each trajectory of $\xi$ and at the same time their eigenvalues are
constant along each trajectory of $\xi$ (cf. [1] or [3]).

Now we prove

PROPOSITION 4. Let $M$ be a real hypersurface of $CP^{n}$ . Suppose that $\xi$ is a
geodesic vector field on $M$ and $M$ satisfies $R_{\xi}^{\prime}=0$ . Then $\xi$ is principal curvature

field on M. Further assume that $\alpha=2\cot 2r$ and the rank of the focal map $\varphi_{r}$ is
constant, then $M$ is locally congruent to one of homogeneous real hypersurfaces of
type $A_{1},$ $A_{2}$ or a non-homogeneous tube of radius $\pi/4$ of the case (3) in Theorem 3.

PROOF. Assume that $\xi$ is a geodesic vector field on $M$. Then by Lemma 1,
we immediately see that $ A\xi=\alpha\xi$ . Then from (1.6), taking account of (1.4), (1.7)

and Proposition 1, we get

$R_{\xi}^{\prime}Y=(\nabla_{\xi}R)(Y, \xi)\xi=\alpha(\nabla_{\xi}A)Y$

$=\alpha(\alpha\phi AY-A\phi AY+\phi Y)$ ,

for any vector field $Y$ on $M$. Thus from the hypothesis we get

$\alpha(\alpha\phi A-A\phi A+\phi)Y=0$ .

Assume $A$ $Y=\lambda Y$ for $Y$ orthogonal to $\xi$ . Then from Proposition 2 we have

$\alpha(\lambda^{2}-\alpha\lambda-1)=0$ .
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We see that $\lambda^{2}-\alpha\lambda-1=0$ implies $\lambda(2\lambda-\alpha)=\alpha\lambda+2$ , that is $\lambda=$

$(\alpha\lambda+2)/(2\lambda-\alpha)$ . From this we also see that $\phi A=A\phi$ , and hence from Theorem
1 and by similar arguments as in the proof of Theorem 3 in section 2, we have
our assertions. (Q.E.D.)

PROPOSITION 5. There does not exist a real hypersurface of $CP^{n}$ whose
structure vector field $\xi$ is principal curvature vector field and satisfying $R_{V}^{\prime}=0$ for
any vector field $V$ orthogonal to $\xi$ .

PROOF. From (1.6), taking account of (1.4), we get

(4.2) $(\nabla_{V}R)(Y, V)V=-3\{\eta(Y)g(AV, V)\phi V-g(\phi Y, V)g(AV, V)\xi\}$

$+g((\nabla_{V}A)V, V)AY+g(AV, V)(\nabla_{V}A)Y$

$-g((\nabla_{V}A)Y, V)AV-g(AY, V)(\nabla_{V}A)V$

for any vector field $Y$ on $M$ and any vector field $V$ orthogonal to $\xi$ . Assume that
$ A\xi=\alpha\xi$ and suppose that $M$ satisfies $R_{V}^{\prime}=(\nabla_{V}R)(\cdot, V)V=0$ for any vector field
$V$ orthogonal to $\xi$ . Then of course $R_{V}^{\prime}=(\nabla_{V}R)(\xi, V)V=0$ and from (4.2)

(4.3) $-3g(AV, V)\phi V+\alpha g((\nabla_{V}A)V, V)\xi+g(AV, V)(\alpha\phi AV-A\phi AV)$

$-\alpha g(\phi AV, V)AV+g(A\phi AV, V)AV=0$

for any vector field $V$ orthogonal to $\xi$ . From (4.3) we easily see that
$\alpha g((\nabla_{V}A)V, V)\xi=0$ and have

(4.4) $-3g(AV, V)\phi V+\alpha g((\nabla_{V}A)V, V)\xi+g(AV, V)(\alpha\phi AV-A\phi AV)$

$+g(A\phi AV, V)AV=0$

Assume $A$ $V=\lambda V$ and $g(V, V)=1$ . Then from (4.4) and Proposition 2 we have

(4.5) $\lambda\{\alpha\lambda^{2}-(8+\alpha^{2})\lambda+3\alpha\}=0$ .

From (4.5) and Proposition 1 we see that $M$ has at most four distinct constant
principal curvatures including $\alpha$ . But by the table in [11] we see that $\lambda\neq 0$ , and
(4.5) yield a contradiction. (Q.E.D.)

It is well-known that a locally symmetric space $(\nabla R=0)$ is locally
homogeneous. Thus by virtue of R. Takagi’s result ([10]) and Proposition 5, we
have
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COROLLARY 2. There does not exist a locally symmetric real hypersurface of
$CP^{n}$ .

REMARK 4. It was proved by the second author ([4]) that there does not
exist a real hypersurface $M$ with the parallel Ricci tensor in $CP^{n},$ $n\geq 3$ .
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