ON A CLASS OF SELF-INJECTIVE LOCALLY BOUNDED CATEGORIES

By
Zygmunt Pogorzaly ${ }^{1}$

Throughout the paper K denotes a fixed algebraically closed field. Let R be a locally bounded K-category in the sense of [3]. It is well-known that every locally bounded K-category R is isomorphic to a factor category $K Q_{R} / I_{R}$, where $K Q_{R}$ is a path category of a locally-finite quiver and I_{R} is some admissible ideal in $K Q_{R}$. A locally bounded K-category $R \cong K Q_{R} / I_{R}$ is said to be triangular if Q_{R} has no oriented cycles.

For a locally bounded K-category R we denote by $\bmod (R)$ the category of all finite-dimensional right R-modules.

We are interested in self-injective locally bounded K-categories. Assume that R is a self-injective locally bounded triangular K-category which is connected. Then there is the Nakayama K-automorphism $v_{R}: R \rightarrow R$ which is induced by a permutation π_{R} of the isoclasses of simple right R-modules such that $\pi_{R}(\operatorname{top}(P))=\operatorname{soc}(P)$ for every indecomposable projective right R-module P. Consequently, the infinite cyclic group $\left(v_{R}\right)$ generated by the Nakayama automorphism v_{R} acts freely on the objects of R. We consider self-injective, locally bounded, triangular and connected K-categories R whose quotient categories $R /\left(v_{R}\right)$ are finite-dimensional K-algebras and there is no indecomposable projective R-module of length smaller than 3.

Every basic finite-dimensional K-algebra A can be considered as a locally bounded K-category, because $A \cong K Q_{A} / I_{A}$ for a finite quiver Q_{A}. The repetitive category (see [5]) of a basic finite-dimensional K-algebra A is the self-injective locally bounded K-category \hat{A} whose objects are formed by the pairs $(z, x)=x_{z}$, $x \in o b(A), z \in Z$ and $\hat{A}\left(x_{z}, y_{z}\right)=\{z\} \times A(x, y), \hat{A}\left(x_{z+1}, y_{z}\right)=\{z\} \times D A(y, x)$, and $\hat{A}\left(x_{p}, y_{q}\right)=0$ if $p \neq q, q+1$, where $D V$ denotes the dual space $\operatorname{Hom}_{K}(V, K)$. It is well-known that if A is triangular then \hat{A} is triangular. Moreover, $\hat{A} /\left(v_{\hat{A}}\right)$ is

[^0]isomorphic to the trivial extension $T(A)$ of A by its minimal injective cogenerator bimodule $D(A)$.

The class of K-categories satisfying the above conditions was studied by several authors [$1,5,8,9,11]$. These categories were considered mainly as Galois covers of some classes of finite-dimensional algebras. In particular, they always were isomorphic to the repetitive categories of triangular algebras. Nevertheless there is not given any general enough structural result on such K-categories. The aim of this note is to provide such a result for the considered class of K categories. The main result is the following.

Theorem. Let R be a locally bounded triangular and connected self-injective K-category whose quotient category $R /\left(v_{R}\right)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Then there is a triangular finite-dimensional connected K-algebra A such that $R \cong \hat{A}$.

The proof of our result is rather easy. Nevertheless it is worth to stress that our proof is independent of the representation type of R.

1. v-sections

1.1. Throughout the note let R be a locally bounded self-injective triangular and connected K-category whose quotient category $R /\left(v_{R}\right)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Moreover, we shall assume that $R=K Q_{R} / I_{R}$ for a bound quiver $\left(Q_{R}, I_{R}\right)$. All considered algebras are finite-dimensional, associative K-algebras with unit 1 , basic and connected.
1.2. Recall from [12] that an algebra A is said to be weakly symmetric if each indecomposable projective left or right A-module has a simple socle which is isomorphic to its top.

Lemma. $\quad R /\left(v_{R}\right)$ is a weakly symmetric algebra.
Proof. Obvious.
1.3. Since the Nakayama automorphism permutes the objects of R, the group (v_{R}) acts also on $\left(Q_{R}, I_{R}\right) . R /\left(v_{R}\right)$ is a finite-dimensional algebra by our assumption, hence there is only finitely many $\left(v_{R}\right)$-orbits of vertices in Q_{R}.

A full convex subquiver (S, I) of $\left(Q_{R}, I_{R}\right)$ is called a v_{R}-section of $\left(Q_{R}, I_{R}\right)$ if it satisfies the following conditions:
(1) For every vertex x of Q_{R} the intersection of its $\left(v_{R}\right)$-orbit with S consists of exactly one element.
(2) If $x \in S$ and $y \in Q_{R}$ are such vertices that there is an arrow α (respectively, β) in Q_{R} sourced at x (respectively, y) and targetted at y (respectively, x) then either y or $v_{R}^{-1}(y)$ (respectively, either $v_{R}(y)$ or y) belongs to S.
(3) $I=K S \cap I_{R}$.
1.4. For a bound quiver $\left(Q_{R}, I_{R}\right)$ of R we define a cone C_{x} at a vertex $x \in Q_{R}$ to be the full subquiver of Q_{R} formed by all the vertices y of Q_{R} such that there exists a path of finite length in Q_{R} sourced at x and targetted at y. A reduced cone S_{x} at a vertex $x \in Q_{R}$ is the full subquiver of Q_{R} formed by the vertices from $C_{x} \backslash C_{v_{R}(x)}$.
1.5. Lemma. Let S_{x} be a reduced cone at a vertex $x \in Q_{R}$. If $y \in S_{x}$ then $\nu_{R}^{n}(y) \notin S_{x}$ for every $n \in \boldsymbol{Z} \backslash\{0\}$.

Proof. We prove our lemma by induction on the length $l(w)$ of the shortest path w in Q_{R} from x to y. If $l(w)=0$ then $y=x$ and clearly $v_{R}^{n}(x) \notin S_{x}$ for $n<0$, because Q_{R} is without oriented cycles. On the other hand $\nu_{R}^{n}(x) \notin S_{x}$ for $n>0$, because there is a path in Q_{R} from $v_{R}(x)$ to $v_{R}^{n}(x)$ for every $n>0$.

Assume that for all vertices y in S_{x} such that the length $l(w)$ of the shortest path from x to y is not greater than l the required condition holds.

Consider a vertex $y_{0} \in S_{x}$ such that $l\left(w_{0}\right)=l+1$ for the shortest path w_{0} from x to y_{0}. Suppose to the contrary that there is $n \in \boldsymbol{Z} \backslash\{0\}$ such that $v_{R}^{n}\left(y_{0}\right) \in S_{x}$. Let $w_{0}=w_{1} \alpha$, where α is an arrow from y_{1} to y_{0}. It is clear that w_{1} is the shortest path from x to y_{1}, because w_{0} would not be the shortest one otherwise. Moreover, there is an arrow $v_{R}^{n}(\alpha)$ from $v_{R}^{n}\left(y_{1}\right)$ to $v_{R}^{n}\left(y_{0}\right)$. Thus we know from the inductive assumption that $v_{R}^{n}\left(y_{1}\right) \notin S_{x}$. Hence there is a path v from $v_{R}(x)$ to $v_{R}^{n}\left(y_{1}\right)$. Then we have the path $v v_{R}^{n}(\alpha)$ from $v_{R}(x)$ to $v_{R}^{n}\left(y_{0}\right)$ which contradicts the above assumption. Consequently, $v_{R}^{n}\left(y_{0}\right) \notin S_{x}$ for every $n \in \boldsymbol{Z} \backslash\{0\}$ and the lemma follows by induction.
1.6. Lemma. Let S_{x} be a reduced cone at a vertex $x \in Q_{R}$. Then S_{x} is a full convex connected and finite subquiver of Q_{R}.

Proof. Connectedness of S_{x} is clear, because every two vertices of S_{x} are connected by a walk passing through x. Fullness of S_{x} is clear by the definition of S_{x}. Observe that S_{x} is finite. Indeed, there is only finitely many $\left(\nu_{R}\right)$-orbits of
vertices in Q_{R}. Thus S_{x} has only finitely many vertices by Lemma 1.5 . Since Q_{R} is locally finite, S_{x} is finite.

In order to show that S_{x} is convex, consider a path w from y_{1} to y_{2}, where $y_{1}, y_{2} \in S_{x}$. If there is a decomposition $w=w_{1} w_{2}$ such that w_{1} is targetted at z with $z \notin S_{x}$ then there is a path v from $v_{R}(x)$ to z. Thus $v w_{2}$ is a path from $v_{R}(x)$ to y_{2} which contradicts the fact that $y_{2} \in S_{x}$. Consequently, $z \in S_{x}$ and our lemma is proved.
1.7. Lemma. Let S_{x} be a reduced cone at a vertex $x \in Q_{R}$. If $y \in C_{v_{R}(x)}$ then there exists a natural number $n \geq 1$ such that $v_{R}^{-n}(y) \in S_{x}$.

Proof. We prove the lemma by induction on the length $l(w)$ of the shortest path w from $v_{R}(x)$ to y. If $l(w)=0$ then $y=v_{R}(x)$ and $v_{R}^{-1}(y)=x \in S_{x}$.

Assume that for any vertex y in $C_{v_{R}(x)}$ with $l(w) \leq l$ there exists a natural number n such that $v_{R}^{-n}(y) \in S_{x}$, where w is the shortest path in Q_{R} from $v_{R}(x)$ to y.

Consider a vertex $y \in C_{v_{R}(x)}$ such that the length $l(w)=l+1$ for the shortest path w in Q_{R} from $v_{R}(x)$ to y. Consider the decomposition $w=w_{1} \alpha$, where α is an arrow sourced at y_{0} and targetted at y. Then $y_{0} \in C_{v_{R}(x)}$ and we obtain by the inductive assumption that there is a natural number n_{0} such that $v_{R}^{-n_{0}}\left(y_{0}\right) \in S_{x}$. Consider the vertex $v_{R}^{-n_{0}}(y)$. Since $v_{R}^{-n_{0}}\left(y_{0}\right) \in S_{x}$, there is a path u from x to $v_{R}^{-n_{0}}\left(y_{0}\right)$. Hence there is the path $u v_{R}^{-n_{0}}(\alpha)$ from x to $v_{R}^{-n_{0}}(y)$. Therefore $v_{R}^{-n_{0}}(y) \in C_{x}$. If there is no path from $v_{R}(x)$ to $v_{R}^{-n_{0}}(y)$ then $v_{R}^{-n_{0}}(y) \in S_{x}$. If there is a path z from $v_{R}(x)$ to $v_{R}^{-n_{0}}(y)$ then there is the path $v_{R}^{-1}(z)$ from x to $v_{R}^{-n_{0}-1}(y)$, and so $v_{R}^{-n_{0}-1}(y) \in C_{x}$. If there is a path v from $v_{R}(x)$ to $v_{R}^{-n_{0}-1}(y)$ then we obtain a contradiction to the fact that $v_{R}^{-n_{0}}\left(y_{0}\right)$ belongs to S_{x}. Indeed, in the case there is a path b from $v_{R}^{-n_{0}-1}(y)$ to $v_{R}^{-n_{0}}\left(y_{0}\right)$ since R is self-injective. Thus there is the path $v b$ from $v_{R}(x)$ to $v_{R}^{-n_{0}}\left(y_{0}\right)$ which contradicts the choice of $v_{R}^{-n_{0}}\left(y_{0}\right)$. Consequently, $v_{R}^{-n_{0}-1}(y) \in S_{x}$ and the lemma is proved by induction.
1.8. Lemma. Let C_{x} be a cone at a vertex $x \in Q_{R}$. Then every $\left(v_{R}\right)$-orbit of a vertex $z \in Q_{R}$ has a common vertex with C_{x}.

Proof. We prove the lemma by induction on the length $l(w)$ of minimal walk in Q_{R} connecting a vertex $z \in Q_{R}$ to x. Such a walk always exists since Q_{R} is connected. If $l(w)=0$ then $x=z$ and the required condition holds.

Assume that for all vertices $z \in Q_{R}$ with $l(w) \leq l_{0}$ the required condition holds, where w is a minimal walk connecting z to x.

Consider $z_{0} \in Q_{R}$ such that there is a minimal walk w in Q_{R} connecting z_{0} to x with $l(w)=l_{0}+1$. Then $w=\alpha w_{1}$ or $w=\alpha^{-1} w_{1}$, where α is an arrow sourced or targetted at z_{0}, respectively. If $w=\alpha w_{1}$ and z_{0} is the source of α then there is a path v in Q_{R} from x to $v_{R}^{n}\left(z_{1}\right)$ for the target z_{1} of α and for some $n \in \boldsymbol{Z}$ by the inductive assumption. Since R is self-injective, there is a path $v_{R}^{n}(\alpha) u$ in Q_{R} from $v_{R}^{n}\left(z_{0}\right)$ to $v_{R}^{n+1}\left(z_{0}\right)$. Thus there is the path $v u$ from x to $v_{R}^{n+1}\left(z_{0}\right)$ in Q_{R}, and so $v_{R}^{n+1}\left(z_{0}\right) \in C_{x}$.

If $w=\alpha^{-1} w_{1}$ and z_{0} is the target of α then there is a path v in Q_{R} from x to $v_{R}^{n}\left(z_{1}\right)$ for the source z_{1} of α and for some $n \in \boldsymbol{Z}$ by the inductive assumption. On the other hand we have the arrow $v_{R}^{n}(\alpha)$ from $v_{R}^{n}\left(z_{1}\right)$ to $v_{R}^{n}\left(z_{0}\right)$. Hence there is the path $v v_{R}^{n}(\alpha)$ from x to $v_{R}^{n}\left(z_{0}\right)$ in Q_{R}, and so $v_{R}^{n}\left(z_{0}\right) \in C_{x}$. Consequently, our lemma is proved by induction.
1.9. Proposition. Let $R=K Q_{R} / I_{R}$ be a self-injective triangular and connected locally bounded K-category whose quotient category $R /\left(v_{R}\right)$ is a finitedimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Then there exists a v_{R}-section of $\left(Q_{R}, I_{R}\right)$.

Proof. Fix a vertex $x \in Q_{R}$. Consider the reduced cone S_{x} at the vertex x. Let $I_{x}=K S_{x} \cap I_{R}$. We shall show that $\left(S_{x}, I_{x}\right)$ is a v_{R}-section of $\left(Q_{R}, I_{R}\right)$. We infer by Lemma 1.6 that S_{x} is a full convex connected and finite subquiver of Q_{R}. Applying Lemma 1.8 to the cone $C_{\nu_{R}(x)}$ at the vertex $v_{R}(x)$, we obtain that every $\left(v_{R}\right)$-orbit of a vertex $z \in Q_{R}$ has a common vertex to $C_{v_{R}(x)}$. Furthermore, we deduce from Lemma 1.7 that every $\left(v_{R}\right)$-orbit of a vertex z in Q_{R} has a common vertex to S_{x}. Thus we obtain from Lemma 1.5 that there is only one such a common vertex. Consequently, 1.3(1) holds for (S_{x}, I_{x}).

Suppose that a vertex z belongs to S_{x} and there is an arrow α in Q_{R} sourced at z and targeted at $y \in Q_{R}$. If $y \notin S_{x}$ then there is a path u in Q_{R} from $v_{R}(x)$ to y. Thus there is the path $v_{R}^{-1}(u)$ from x to $v_{R}^{-1}(y)$. Hence $v_{R}^{-1}(y) \in C_{x}$. If $v_{R}^{-1}(y) \notin S_{x}$ then there is a path v in Q_{R} from $v_{R}(x)$ to $v_{R}^{-1}(y)$. But R is selfinjective hence there is a path $w \alpha$ in Q_{R} from $v_{R}^{-1}(y)$ to y. Consequently, there is the path $v w$ from $v_{R}(x)$ to z which contradicts to the fact that $z \in S_{x}$. Therefore $v_{R}^{-1}(y) \in S_{x}$.

Now suppose that a vertex z belongs to S_{x} and there is an arrow β in Q_{R} sourced at $y \in Q_{R}$ and targetted at z, and suppose that there is a path βw in Q_{R} from y to $v_{R}(y)$. Since $z \in S_{x}$, there is a path u in Q_{R} from x to z. Thus the path $u w$ connects x to $v_{R}(y)$ hence $v_{R}(y) \in C_{x}$. If $v_{R}(y) \in C_{v_{R}(x)}$ then there is a nonnegative integer n such that $v_{R}^{-n}\left(v_{R}(y)\right) \in S_{x}$ by Lemma 1.7. Since $y \notin S_{x}, n>1$.

But there is a path v in Q_{R} from x to $v_{R}^{-n}(y)$. Hence there are a path v^{\prime} from $v_{R}^{n}(x)$ to y of the form $v_{R}^{n}(v)$ and a path $v^{\prime \prime}$ from $v_{R}(x)$ to $v_{R}^{n}(x)$. Thus there exists the path $v^{\prime \prime} v^{\prime} \beta$ from $v_{R}(x)$ to z which contradicts that $z \in S_{x}$. Consequently, $v_{R}(y) \notin C_{v_{R}(x)}$, and so $v_{R}(y) \in S_{x}$.

In this way we have proved that $1.3(2)$ holds. Since $1.3(3)$ is obvious by the definition of I_{x}, the proposition is proved.

2. v-sectional partitions

2.1. Let (S, I) be a fixed v_{R}-section of $\left(Q_{R}, I_{R}\right)$, where S is a reduced cone at a vertex $x \in Q_{R}$. A collecting arrow with respect to (S, I) is any arrow α in Q_{R} which does not belong to S and such that there is an arrow β in S with $\beta \alpha \notin I_{R}$.
2.2. Lemma. Let $w=\alpha_{1} \cdots \alpha_{n}$ be a maximal nonzero path in $\left(Q_{R}, I_{R}\right)$ whose source is a vertex $s \in S$. Then w contains exactly one collecting arrow α with respect to (S,I).

Proof. Suppose that $w=\alpha_{1} \cdots \alpha_{n}$ is a maximal nonzero path in $\left(Q_{R}, I_{R}\right)$ and $s \in S$ is its source. Since R is self-injective without indecomposable projective R-modules of length 2 then $n \geq 2$ and w connects s with $v_{R}(s)$ by the maximality of w. But if $s \in S$ then $\nu_{R}(s) \notin S$ by Lemma 1.5. Hence there is $i_{0} \in\{1, \ldots, n\}$ such that $\alpha_{i_{0}}$ is a collecting arrow.

Now suppose that there are two collecting arrows $\alpha_{i_{0}}, \alpha_{j_{0}}$ in w with $j_{0}>i_{0}$. Since (S, I) is a full convex subquiver in $\left(Q_{R}, I_{R}\right)$, the target of $\alpha_{i_{0}}$ cannot belong to S, because $\alpha_{i_{0}} \notin S$. But again $\alpha_{j_{0}}$ has the source in S by the definition of collecting arrows. Thus the target of $\alpha_{i_{0}}$ belongs to S by the convexity of S. The obtained contradiction shows the lemma.
2.3. An (S, I)-partition of $\left(Q_{R}, I_{R}\right)$ is the non-connected bound quiver $\left(P, I_{P}\right)=\coprod_{z \in Z}\left(v_{R}^{z}(S), v_{R}^{z}(I)\right)$.

Lemma. If an arrow α in Q_{R} does not belong to the (S, I)-partition $\left(P, I_{P}\right)$ of $\left(Q_{R}, I_{R}\right)$ then there exists $z_{0} \in \boldsymbol{Z}$ such that α is a collecting arrow with respect to $\left(v_{R}^{z_{0}}(S), v_{R}^{z_{0}}(I)\right)$.

Proof. Let α be an arrow in Q_{R} which does not belong to P. Then there exists a maximal nonzero path in Q_{R} of the form $\beta_{1} \cdots \beta_{r} \alpha$, because R is selfinjective without indecomposable projective R-modules of length smaller than 3. Now look at the vertices of the arrows β_{1}, α. Clearly for the source s of β_{1} and
the target y of α it holds $v_{R}(s)=y$. Then there is $z_{0} \in \boldsymbol{Z}$ such that $s \in v_{R}^{z_{0}}(S)$ by the definition of $\left(P, I_{P}\right)$. Observe that the target v of β_{r} belongs to $v_{R}^{z_{0}}(S)$. Indeed, if $v \notin v_{R}^{z_{0}}(S)$ then $v_{R}^{-1}(v) \in v_{R}^{z_{0}}(S)$ by $1.3(2)$ for the v_{R}-section $\left(v_{R}^{z_{0}+1}(S), v_{R}^{z_{0}+1}(I)\right)$. Thus $v, y=v_{R}(s) \in v_{R}^{z_{0}+1}(S)$, and so $\alpha \in v_{R}^{z_{0}+1}(S)$ which contradicts the choice of α. Consequently, $v \in v_{R}^{z_{0}}(S)$ and $\beta \in v_{R}^{z_{0}}(S)$ since S is convex. Hence α is a collecting arrow with respect to $\left(v_{R}^{z_{0}}(S), v_{R}^{z_{0}}(I)\right)$, because $\beta_{r} \propto \notin I_{P}$.
2.4. For a fixed v_{R}-section (S, I) of $\left(Q_{R}, I_{R}\right)$ consider the (S, I)-partition $\left(P, I_{P}\right)$ of $\left(Q_{R}, I_{R}\right)$. Define a two-sided ideal I_{P} in $R=K Q_{R} / I_{R}$ with respect to $\left(P, I_{P}\right)$ as the ideal generated by the arrows α which do not belong to P.

Lemma. $\quad I_{P}^{2}=0$.

Proof. Clearly it is sufficient to show that if we have two paths $u, v \in I_{P}$ then $u v=0$. But if u is a path in I_{P} then $u=u_{1} \alpha_{1} u_{2}$, where $\alpha_{1} \notin P$. The same holds for v, e.g. $v=v_{1} \alpha_{2} v_{2}$ with $\alpha_{2} \notin P$. If u and v are not composable then clearly $u v=0$. Consider the case when u and v are composable. Then we infer by Lemma 2.3 that there is $z_{0} \in \boldsymbol{Z}$ such that α_{1} is a collecting arrow with respect to $\left(\nu_{R}^{z_{0}}(S), \nu_{R}^{z_{0}}(I)\right)$. The same holds for α_{2} hence there is $z_{1} \in \boldsymbol{Z}$ such that α_{2} is a collecting arrow with respect to $\left(v_{R}^{z_{1}}(S), v_{R}^{z_{1}}(I)\right)$. We may assume that u, v are nonzero in $\left(Q_{R}, I_{R}\right)$. Hence, by the triangularity of R, we infer that $z_{1}=z_{0}+1$. Then $u_{1} \alpha_{1} u_{2} v_{1} \alpha_{2} v_{2}$ is a path which contains two collecting arrows (with respect to different v_{R}-sections). Consider the path $\alpha_{1} u_{2} v_{1} \alpha_{2}$. The source s of it is in $v_{R}^{z_{0}}(S)$ and the target y of it is in $\nu_{R}^{z_{0}+2}(S)$. We deduce from the self-injectivity of R that if $\alpha_{1} u_{2} v_{1} \alpha_{2}$ is nonzero in $\left(Q_{R}, I_{R}\right)$ then there is a path $\gamma_{1} \cdots \gamma_{t}$ from $v_{R}^{-1}(y)$ to s such that $\gamma_{1} \cdots \gamma_{t} \alpha_{1} u_{2} v_{1} \alpha_{2}$ is nonzero in $\left(Q_{R}, I_{R}\right)$. But $v_{R}^{-1}(y) \in v_{R}^{z_{0}+1}(S)$ and $s \in v_{R}^{z_{0}}(S)$. Since the target b of α_{1} belongs to $v_{R}^{z_{0}+1}(S)$, we get by the convexity of $v_{R}^{z_{0}+1}(S)$ that $s \in v_{R}^{z_{0}+1}(S)$ which contradicts the above choice of α_{1}. Thus $\alpha_{1} u_{2} v_{1} \alpha_{2}$ is a zero path in $\left(Q_{R}, I_{R}\right)$ and the lemma follows.

$$
\text { 2.5. PROPOSITION. } \quad R / I_{P} \cong \bigoplus_{z \in Z} K\left(v_{R}^{z}(S)\right) / v_{R}^{z}(I) \text {. }
$$

Proof. Consider a surjective functor $p: K Q_{R} / I_{R} \rightarrow \bigoplus_{z \in Z} K\left(v_{R}^{z}(S)\right) / v_{R}^{z}(I)$ defined as follows: for every vertex $q \in Q_{R}, p(q)=q$. For every path u in Q_{R} which does not contain a collecting arrow we put $p(u)=u$. For every path v in Q_{R} which contains a collecting arrow we put $p(v)=0$. Then we extend p linearly to a functor. It is clear by the definition of p that $I_{P}=\operatorname{ker}(p)$. Moreover, we get that p is surjective by Lemma 2.3 and the definition of a v_{R}-section in $\left(Q_{R}, I_{R}\right)$.

3. Proof of the main result

3.1. Proposition. Let $R=K Q_{R} / I_{R}$ be a self-injective triangular and connected locally bounded K-category whose quotient category $R /\left(v_{R}\right)$ is a finitedimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. If $\left(Q_{R}, I_{R}\right)$ contains a v_{R}-section then there is an epimorphism $p: R /\left(v_{R}\right) \rightarrow A$ such that A is a triangular connected algebra and $\operatorname{ker}(p)=\boldsymbol{I}$ is such a two-sided ideal in $R /\left(v_{R}\right)$ that $\boldsymbol{I}^{2}=0$.

Proof. Let (S, I) be a v_{R}-section of $\left(Q_{R}, I_{R}\right)$. Consider the (S, I)-partition $\left(P, I_{P}\right)$ of $\left(Q_{R}, I_{R}\right)$. Then we have an ideal I_{P} in R such $I_{P}^{2}=0$ by Lemma 2.4. Moreover, $R / I_{P} \cong \bigoplus_{z \in Z} K\left(v_{R}^{z}(S)\right) / v_{R}^{z}(I)$ by Proposition 2.5. It is easily seen that the group (ν_{R}) acts freely on R / I_{P} and on I_{P}, because it acts freely on R. Then we have an epimorphism $p: R /\left(v_{R}\right) \rightarrow\left(R / I_{P}\right) /\left(v_{R}\right)$ whose kernel is $\boldsymbol{I}_{P} /\left(v_{R}\right)$. Put $\boldsymbol{I}=I_{P} /\left(v_{R}\right)$ and $A=\left(R / I_{P}\right) /\left(v_{R}\right)$. We know from Lemma 2.4 that $I^{2}=0 . A$ is triangular and connected, because $A \cong K S / I$. Thus the proposition follows.
3.2. If A and I are as in Proposition 3.1 then we have.

Lemma. $D(A)=I$ as right A-modules.

Proof. We shall prove our lemma considering $K S / I$ as a subcategory of R, where (S, I) is a fixed v_{R}-section of $\left(Q_{R}, I_{R}\right)$. Then consider the two-sided ideal J in R generated by the collecting arrows in Q_{R} with respect to (S, I). We infer by Propositions 2.5, 3.1 that $I_{P}=\bigoplus_{z \in \boldsymbol{Z}} v_{R}^{z}(J)$ and $R / I_{P}=\bigoplus_{z \in \boldsymbol{Z}} v_{R}^{z}(K S / I)$. Since $I^{2}=0, I$ is a right A-module. Thus I is a submodule of $D(A)$, because $\operatorname{soc}_{R /\left(v_{R}\right)}(I)=\operatorname{soc}_{R /\left(v_{R}\right)}\left(R /\left(v_{R}\right)\right)=\operatorname{soc}_{R /\left(v_{R}\right)}(D(A))$. Suppose to the contrary that $I \neq D(A)$. Then there is a morphism from $D(A)$ to A which is a nonzero morphism from $v_{R}(D(K S / I))$ to $K S / I$ which does not factorize through J. Thus we have a path u in $\left(v_{R}(S), v_{R}(I)\right)$ which is nonzero, sourced at s and targetted at y with $s \in S \cap v_{R}(S), y \in v_{R}(S)$ which contradicts to the fact that (S, I) is a ν_{R}-section of $\left(Q_{R}, I_{R}\right)$ by $1.3(1)$. Therefore $D(A)=I$.
3.3. The following fact was proved in [6].

Lemma. Let I be such a two-sided ideal in a self-injective finite-dimensional K-algebra Λ that $I^{2}=0$ and Λ / I is triangular. If I is injective as a right Λ / I module, then for any isomorphism $\varphi: I \rightarrow D(\Lambda / I)$ of right Λ / I-modules there is a Λ / I-bimodule isomorphism $\varphi^{\prime}: I \rightarrow D(\Lambda / I)$.
3.4. The following proposition in a weaker form was shown in [7]. We repeat the modified version of its proof for the convenience of the reader.

Proposition. Let R_{1}, R_{2} be triangular connected self-injective locally bounded K-categories whose quotient categories $R_{1} /\left(v_{R_{1}}\right), R_{2} /\left(v_{R_{2}}\right)$ are finitedimensional K-algebras. If $R_{1} /\left(v_{R_{1}}\right) \cong R_{2} /\left(v_{R_{2}}\right)$ then $R_{1} \cong R_{2}$.

Proof. Under the assumptions of the proposition fix some representatives $\left\{P_{x}\right\}_{x \in X}$ of the isomorphism classes of indecomposable projective R_{1}-modules and some representatives $\left\{Q_{y}\right\}_{y \in Y}$ of the isomorphism classes of indecomposable projective R_{2}-modules. Then $R_{1} \cong \operatorname{End}_{R_{1}}\left(\bigoplus_{x \in X} P_{x}\right)^{o p}$ and $R_{2} \cong$ $\operatorname{End}_{R_{2}}\left(\oplus_{y \in Y} Q_{y}\right)^{o p}$. Let $F_{\lambda, t}: \bmod \left(R_{t}\right) \longrightarrow \bmod \left(R_{t} /\left(v_{R_{t}}\right)\right), t=1,2$, be the pushdown functors induced by the actions of ($v_{R_{t}}$) on R_{t} (see [3, 2]). It is well-known that indecomposable projective $R_{t} /\left(v_{R_{t}}\right)$-modules and their radicals are contained in the image of $F_{\lambda, t}, t=1,2$. Moreover, $F_{\lambda, t}$ preserves projectives and their radicals.

Fix some $x_{0} \in X$. Let $L F_{\lambda, 1}\left(P_{x_{0}}\right) \cong F_{\lambda, 2}\left(Q_{y_{0}}\right)$ for a fixed $y_{0} \in Y$, where $L: \bmod \left(R_{1} /\left(v_{R_{1}}\right)\right) \longrightarrow \bmod \left(R_{2} /\left(v_{R_{2}}\right)\right)$ is the equivalence induced by a fixed isomorphism from $R_{1} /\left(v_{R_{1}}\right)$ onto $R_{2} /\left(v_{R_{2}}\right)$. Let $R_{1,1}$ be the subcategory of R_{1} formed by $P_{x_{0}}$ and the $P_{x}, P_{x^{\prime}}$ such that the following conditions are satisfied:
(a) there is a nonzero morphism $f_{x}: P_{x} \rightarrow P_{x_{0}}$ in $\bmod \left(R_{1}\right)$ of the form $f_{x}=f^{*} f_{x}^{\prime}$, where $f_{x}^{\prime}: P_{x} \rightarrow \operatorname{rad}\left(P_{x_{0}}\right)$ satisfies $\pi_{x_{0}} f_{x}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{x_{0}}: \operatorname{rad}\left(P_{x_{0}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{x_{0}}\right)\right)$, and $f^{*}: \operatorname{rad}\left(P_{x_{0}}\right) \rightarrow P_{x_{0}}$ is the identity monomorphism;
(b) there is a nonzero morphism $h_{x^{\prime}}: P_{x_{0}} \rightarrow P_{x^{\prime}}$ of the form $h_{x^{\prime}}=h_{x^{\prime},}^{\prime \prime} h_{x^{\prime}}^{\prime}$, where $h_{x^{\prime}}^{\prime}: P_{x_{0}} \rightarrow \operatorname{rad}\left(P_{x^{\prime}}\right)$ satisfies $\pi_{x^{\prime}} h_{x^{\prime}}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{x^{\prime}}: \operatorname{rad}\left(P_{x^{\prime}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{x^{\prime}}\right)\right)$, and $h_{x^{\prime}}^{\prime \prime}: \operatorname{rad}\left(P_{x^{\prime}}\right) \rightarrow P_{x^{\prime}}$ is the identity monomorphism.

If P, P^{\prime} are objects of $R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}\left(P, P^{\prime}\right)$ is the subspace of $\operatorname{Hom}_{R_{1}}\left(P, P^{\prime}\right)$ generated by the isomorphisms between P and P^{\prime} and the morphisms of the form $a=a_{1} a_{2}$, where $a_{1}=h_{x^{\prime}}$ for some x^{\prime} and a_{2} is an automorphism of $P_{x_{0}}$, or $a_{2}=f_{x}$ for some x and a_{1} is an automorphism of $P_{x_{0}}$, or else $a_{1}=h_{x^{\prime}}$ for some x^{\prime} and $a_{2}=f_{x}$ for some x. Since R_{1} is locally bounded K category, $R_{1,1}$ is finite.

Let $R_{2,1}$ be the subcategory of R_{2} formed by $Q_{y_{0}}$ and the $Q_{y}, Q_{y^{\prime}}$ such that the following conditions are satisfied:
(a) there is a nonzero morphism $r_{y}: Q_{y} \rightarrow Q_{y_{0}}$ of the form $r_{y}=r^{*} r_{y}^{\prime}$, where $r_{y}^{\prime}: Q_{y} \rightarrow \operatorname{rad}\left(Q_{y_{0}}\right) \quad$ satisfies $\quad \kappa_{y_{0}} r_{y}^{\prime} \neq 0$ for the canonical epimorphism
$\kappa_{y_{0}}: \operatorname{rad}\left(Q_{y_{0}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(Q_{y_{0}}\right)\right)$, and $r^{*}: \operatorname{rad}\left(Q_{y_{0}}\right) \rightarrow Q_{y_{0}}$ is the identity monomorphism;
(b) there is a nonzero morphism $s_{y^{\prime}}: Q_{y_{0}} \rightarrow Q_{y^{\prime}}$ of the form $s_{y^{\prime}}=s_{y^{\prime}}^{\prime \prime} s_{y^{\prime}}^{\prime}$, where $s_{y^{\prime}}^{\prime}: Q_{y_{0}} \rightarrow \operatorname{rad}\left(Q_{y^{\prime}}\right)$ satisfies $\kappa_{y^{\prime}} s_{y^{\prime}}^{\prime} \neq 0$ for the canonical epimorphism $\kappa_{y^{\prime}}: \operatorname{rad}\left(Q_{y^{\prime}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(Q_{y^{\prime}}\right)\right)$, and $s_{y^{\prime}}^{\prime \prime}: \operatorname{rad}\left(Q_{y^{\prime}} \rightarrow Q_{y^{\prime}}\right.$ is the identity monomorphism.

If Q, Q^{\prime} are objects of $R_{2,1}$ then $\operatorname{Hom}_{R_{2,1}}\left(Q, Q^{\prime}\right)$ is the subspace of $\operatorname{Hom}_{R_{2}}\left(Q, Q^{\prime}\right)$ generated by the isomorphisms between Q and Q^{\prime} and the morphisms of the form $w=w_{1} w_{2}$, where $w_{1}=s_{y^{\prime}}$ for some y^{\prime} and w_{2} is an automorphism of $Q_{y_{0}}$, or $w_{2}=r_{y}$ for some y and w_{1} is an automorphism of $Q_{y_{0}}$, or else $w_{1}=s_{y^{\prime}}$ for some y^{\prime} and $w_{2}=r_{y}$ for some y. Since R_{2} is locally bounded K-category, $R_{2,1}$ is finite.

Observe that if $P_{x_{1}} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}\left(P_{x_{1}}, P_{x_{0}}\right) \neq 0$ then there is a uniquely determined $Q_{y_{1}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{y_{1}}, Q_{y_{0}}\right) \neq 0$ and $L F_{\lambda_{1} 1}\left(P_{x_{1}}\right) \cong F_{\lambda, 2}\left(Q_{y_{1}}\right)$. Indeed, if there are $Q_{y_{1}}, Q_{y_{2}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{y_{l}}, Q_{y_{0}}\right) \neq 0, l=1,2$, and $L F_{\lambda, 1}\left(P_{x_{1}}\right) \cong F_{\lambda, 2}\left(Q_{y_{l}}\right)$, then there is $z \in Z$ such that ${ }^{v_{R_{2}}}\left(Q_{y_{1}}\right) \cong Q_{y_{2}}$. Furthermore, there are $0 \neq r_{y_{l}}: Q_{y_{l}} \rightarrow Q_{y_{0}}, l=1,2$, such that $r_{y_{l}}$ factorize through $\operatorname{rad}\left(Q_{y_{0}}\right)$ by the definition of $R_{2,1}$. Hence $\operatorname{top}\left(Q_{y_{l}}\right), l=1,2$, are direct summands in $\operatorname{top}\left(\operatorname{rad}\left(Q_{y_{0}}\right)\right)$. Then in case $z>0$ we get that there is a sequence $Q_{1}^{\prime}, \ldots, Q_{z}^{\prime}$ of indecomposable projective R_{2}-modules such that $\operatorname{soc}\left(Q_{m}^{\prime}\right) \cong \operatorname{top}\left(Q_{m-1}^{\prime}\right), m=$ $2, \ldots, z$, and $\operatorname{top}\left(Q_{y_{1}}\right) \cong \operatorname{soc}\left(Q_{1}^{\prime}\right), \operatorname{top}\left(Q_{z}^{\prime}\right) \cong \operatorname{soc}\left(Q_{y_{2}}\right)$. But top $\left(Q_{y_{0}}\right)$ is contained in the support of Q_{1}^{\prime} hence R_{2} is not triangular which contradicts our assumption. Similarly we obtain a contradiction if $z<0$. Thus $z=0$ and $Q_{y_{1}}=Q_{y_{2}}$. Dually one proves that if $P_{x_{1}^{\prime}} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}\left(P_{x_{0}}, P_{x_{1}^{\prime}}\right) \neq 0$ then there exists the uniquely determined $Q_{y_{1}^{\prime}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{y_{0}}, Q_{y_{1}^{\prime}}\right) \neq 0$ and $L F_{\lambda, 1}\left(P_{x_{1}^{\prime}}\right) \cong$ $F_{\lambda, 2}\left(Q_{y_{1}^{\prime}}\right)$.

Now we define a functor $F_{1}: R_{1,1} \rightarrow R_{2,1}$ putting $F_{1}\left(P_{x_{0}}\right)=Q_{y_{0}}$, and for all possible x_{1}, x_{1}^{\prime} we put $F_{1}\left(P_{x_{1}}\right)=Q_{y_{1}}, F_{1}\left(P_{x_{1}^{\prime}}\right)=Q_{y_{1}^{\prime}}$. If $P, P^{\prime} \in R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}\left(P, P^{\prime}\right)$ either consists of isomorphisms (if $P=P^{\prime}$) or is generated by the above a. If $P=P^{\prime}$ then $\operatorname{Hom}_{R_{1,1}}(P, P) \cong K \cdot \mathrm{id}_{P} \cong K \cdot \mathrm{id}_{F_{1,1}(P)}$ as K-spaces and $\operatorname{Hom}_{R_{2,1}}\left(F_{1}(P), F_{1}(P)\right) \cong K \cdot \operatorname{id}_{F_{1}(P)} \cong K \cdot \operatorname{id}_{F_{\lambda_{1}(2}\left(F_{1}(P)\right)}$. Then, since L induces a K space isomorphism, $K \cdot \operatorname{id}_{F_{1,1}(P)} \cong K \cdot \operatorname{id}_{F_{\lambda_{1} 2}\left(F_{1}(P)\right)}$, for every $f \in \operatorname{Hom}_{R_{1,1}(P, P)}(P)$ there is exactly one $r \in \operatorname{Hom}_{R_{2,1}}\left(F_{1}(P), F_{1}(P)\right)$ such that $L F_{\lambda, 1}(f)=F_{\lambda, 2}(r)$. Thus we put $F_{1}(f)=r$. If $P \neq P^{\prime}$ then we define F_{1} for the morphisms of the form $a=a^{\prime \prime} a^{\prime}$, where $a^{\prime}: P \rightarrow \operatorname{rad}\left(P^{\prime}\right)$ satisfies $\pi a^{\prime} \neq 0$ for the canonical epimorphism $\pi: \operatorname{rad}\left(P^{\prime}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P^{\prime}\right)\right)$ and $a^{\prime \prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow P^{\prime}$ is the inclusion monomorphism. If $a: P \rightarrow P^{\prime}$ is such a morphism then there is the uniquely determined $r: F_{1}(P) \rightarrow F_{1}\left(P^{\prime}\right)$ in $\operatorname{Hom}_{R_{2,1}}\left(F_{1}(P), F_{1}\left(P^{\prime}\right)\right)$ such that $L F_{\lambda, 1}(a)=F_{\lambda, 2}(r)$. Indeed,
if r_{1}, r_{2} satisfy $L F_{\lambda, 1}(a)=F_{\lambda, 2}\left(r_{1}\right)=F_{\lambda, 2}\left(r_{2}\right)$ then there are $r_{1}^{\prime}, r_{2}^{\prime}: F_{1}(P) \rightarrow$ $\operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right)$ such that $\pi^{\prime} r_{1}^{\prime}, \pi^{\prime} r_{2}^{\prime} \neq 0$ for the canonical projection $\pi^{\prime}: \operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right) \rightarrow$ $\operatorname{top}\left(\operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right)\right)$. Furthermore, for the inclusion $r^{\prime \prime}: \operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right) \rightarrow F_{1}\left(P^{\prime}\right)$ we have $r_{1}=r^{\prime \prime} r_{1}^{\prime}, r_{2}=r^{\prime \prime} r_{2}^{\prime}$. But if $r_{1}^{\prime}, r_{2}^{\prime}$ are different then $F_{\lambda, 2}\left(r_{1}^{\prime}\right) \neq F_{\lambda, 2}\left(r_{2}^{\prime}\right)$, because R_{2} is triangular and $F_{\lambda, 2}$ is induced by the action of $\left(v_{R_{2}}\right)$. Thus $F_{\lambda, 2}\left(r_{1}\right) \neq F_{\lambda, 2}\left(r_{2}\right)$ for $r_{1} \neq r_{2}$. Consequently, $r_{1}=r_{2}$ if $F_{\lambda, 2}\left(r_{1}\right)=F_{\lambda, 2}\left(r_{2}\right)$. Then we put $F_{1}(a)=r$. If $a=a_{1} a_{2}$ is a composition of either an isomorphism and a morphism of the above form or two morphisms of the above form then we put $F_{1}(a)=F_{1}\left(a_{1}\right) F_{1}\left(a_{2}\right)$. Finally we extend F_{1} linearly to a K-functor. It is clear by the above considerations that we obtained a functor $F_{1}: R_{1,1} \rightarrow R_{2,1}$ which is dense and fully faithful. Thus F_{1} yields an equivalence of categories.

Assume now that we defined a subcategory $R_{1, n}$ in R_{1} such that for every pair P, P^{\prime} of objects from $R_{1, n}$ it holds either $P=P^{\prime}$ and $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ consists only of automorphisms or $P \neq P^{\prime}$ and $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ is generated by the morphisms of the form $a=a_{s} \cdots a_{2} a_{1}$ such that:
(i) $a_{l}: P_{l} \rightarrow P_{l+1}$ for some objects P_{1}, \ldots, P_{s+1} of $R_{1, n}$, where $P_{1}=P$, $P_{s+1}=P^{\prime}$;
(ii) $a_{l}=a_{l}^{\prime \prime} a_{l}^{\prime}, \quad l=1, \ldots, s, \quad a_{l}^{\prime}: P_{l} \rightarrow \operatorname{rad}\left(P_{l+1}\right)$ satisfies $\pi_{l+1} a_{l}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{l+1}: \operatorname{rad}\left(P_{l+1}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{l+1}\right)\right)$;
(iii) $a_{l}^{\prime \prime}: \operatorname{rad}\left(P_{l+1}\right) \rightarrow P_{l+1}$ is the inclusion for $l=1, \ldots, s$.

Moreover, assume that we have defined a subcategory $R_{2, n}$ of R_{2} satisfying the above conditions for morphisms, and a functor $F_{n}: R_{1, n} \rightarrow R_{2, n}$ which is a K linear equivalence such that it maps the generators of $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ onto the generators of $\operatorname{Hom}_{R_{2, n}}\left(F_{n}(P), F_{n}\left(P^{\prime}\right)\right)$.

Define a subcategory $R_{1, n+1}$ of R_{1} in the following way. The objects of $R_{1, n+1}$ are those of $R_{1, n}$ and the objects P of R_{1} such that either there is a nonzero morphism $a: P \rightarrow P^{\prime}$ with $P^{\prime} \in R_{1, n}$ and $a=a^{\prime \prime} a^{\prime}$, where $a^{\prime}: P \rightarrow \operatorname{rad}\left(P^{\prime}\right)$ satisfies $\pi^{\prime} a^{\prime} \neq 0 \quad$ for the canonical projection $\pi^{\prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P^{\prime}\right)\right)$ and $a^{\prime \prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow P^{\prime}$ is the inclusion, or there is a nonzero morphism $h: P^{\prime} \rightarrow P$ with $P^{\prime} \in R_{1, n}$ and $h=h^{\prime \prime} h^{\prime}$, where $h^{\prime}: P^{\prime} \rightarrow \operatorname{rad}(P)$ satisfies $\pi h^{\prime} \neq 0$ for the canonical epimorphism $\pi: \operatorname{rad}(P) \rightarrow \operatorname{top}(\operatorname{rad}(P))$ and $h^{\prime \prime}: \operatorname{rad}(P) \rightarrow P$ is the inclusion. For every two objects $P, P^{\prime \prime}$ from $R_{1, n+1}$ the morphism space $\operatorname{Hom}_{R_{1, n+1}}\left(P, P^{\prime \prime}\right)$ is generated by the isomorphisms between P and $P^{\prime \prime}$ and the compositions $a=a_{s} \cdots a_{2} a_{1}$ which satisfy conditions (i)-(iii) above. In the same way we define a subcategory $R_{2, n+1}$ of R_{2}. Then repeating the arguments used for $R_{1,1}$ and $R_{2,1}$ we get that for every $P \in R_{1, n+1}$ such that there is a nonzero morphism $a: P \rightarrow P^{\prime}$ with $P^{\prime} \in R_{1, n}$ there is the uniquely determined object $Q \in R_{2, n+1}$ such that there is a nonzero morphism $r: Q \rightarrow F_{n}\left(P^{\prime}\right)$ in $R_{2, n+1}$ and $L F_{\lambda, 1}(P) \cong F_{\lambda, 2}(Q)$.

Furthermore, for every object $P \in R_{1, n+1}$ such that there is a nonzero morphism $h: P^{\prime} \rightarrow P$ in $R_{1, n+1}$ with $P^{\prime} \in R_{1, n}$ there is the uniquely determined object $Q \in R_{2, n+1}$ such that there is a nonzero morphism $r: F_{n}\left(P^{\prime}\right) \rightarrow Q$ in $R_{2, n+1}$ and $L F_{\lambda, 1}(P) \cong F_{\lambda, 2}(Q)$. Moreover, we have also the same uniqueness for generating morphisms $a: P \rightarrow P^{\prime \prime}$ with $P, P^{\prime \prime} \in R_{1, n+1}$. Thus we define $F_{n+1}: R_{1, n+1} \rightarrow R_{2, n+1}$ in the following way. For every $P \in R_{1, n+1} \backslash R_{1, n}$ we put $F_{n+1}(P)=Q$, where Q is a uniquely determined object of $R_{2, n+1}$ as above. For every $P^{\prime} \in R_{1, n}$ we put $F_{n+1}\left(P^{\prime}\right)=F_{n}\left(P^{\prime}\right)$. For every pair $P, P^{\prime \prime} \in R_{1, n+1}$; if $a: P \rightarrow P^{\prime \prime}$ is a generator of $\operatorname{Hom}_{R_{1, n+1}}\left(P, P^{\prime \prime}\right)$ then we put $F_{n+1}(a)=r$, where r is a uniquely determined generator of $\operatorname{Hom}_{R_{2, n+1}}\left(F_{n+1}(P), F_{n+1}\left(P^{\prime \prime}\right)\right)$. It is clear that for a generating morphism $a: P \rightarrow P^{\prime \prime}$ with $P, P^{\prime \prime} \in R_{1, n}$ it holds $F_{n+1}(a)=F_{n}(a)$. If $a: P \rightarrow P^{\prime \prime}$ is an isomorphism then we put $F_{n+1}(a)=r$, where $L F_{\lambda, 1}(a)=F_{\lambda, 2}(r)$. Finally we extend F_{n+1} for the compositions of generating morphisms and isomorphisms $a=a_{s} \cdots a_{1}$ by putting $F_{n+1}(a)=F_{n+1}\left(a_{s}\right) \cdots F_{n+1}\left(a_{1}\right)$. Then we extend F_{n+1} to a K-linear functor. In this way we obtain a functor $F_{n+1}: R_{1, n+1} \rightarrow R_{2, n+1}$ which is dense and fully faithful. Thus F_{n+1} yields an equivalence of categories.

Consequently, we construct inductively a functor $F: R_{1} \rightarrow R_{2}$ which is dense and fully faithful since R_{1}, R_{2} are connected locally bounded K-categories. Thus the proposition follows.

Proof of Theorem. We prove that $R \cong \hat{A}$, where $A \cong K S / I$ for a v_{R}-section (S, I) of $\left(Q_{R}, I_{R}\right)$. Since $D(A)=I$ as right A-modules by Lemma 3.2, where I is the two-sided ideal in $R /\left(v_{R}\right)$ chosen in Proposition 3.1, we get by Lemma 3.3 that the structures of A-bimodules on $D(A)$ and on I coincide. Since A is triangular, the second Hochschild cohomology group vanishes (see [4, 10]). Thus $R /\left(v_{R}\right) \cong T(A)$. Then applying Proposition 3.4 we obtain that $R \cong \hat{A}$.

Acknowledgement. The paper was written during the author's stay at Universität-GH Paderborn. He would like to express his gratitude to Helmut Lenzing for his hospitality and many stimulating discussions.

References

[1] I. Assem and A. Skowroński, Algebras with Cycle-Finite Derived Categories, Math. Ann. 280 (1988), 441-463.
[2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
[3] P. Gabriel, The universal cover of a representation-finite algebra, Proc. ICRA III (Puebla, 1980), (Lecture Notes in Math. Vol. 903, pp. 68-105), Berlin Heidelberg New York: Springer 1981.
[4] D. Happel, Hochschild cohomology of finite dimensional algebras, Séminair d'Algèbre P. Dubreil et M.-P. Malliavin 1987-88, Lecture Notes in Math. Vol. 1404 (Springer, Berlin, 1989), 108-126.
[5] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
[6] Z. Pogorzaly, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint (Toruń 1994).
[7] Z. Pogorzaly, On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras, Coll. Math. 172 (1997), 123-146.
[8] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
[9] A. Skowronski, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
[10] A. Skowroński and K. Yamagata, Socle deformations of self-injective algebras, Proc. London Math. Soc. (3) 72 (1996), 545-566.
[11] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.
[12] K. Yamagata, Frobenius Algebras, in: Handbook of Algebra Vol. 1 (ed. M. Hazewinkel), (Elssevier, Amsterdam, 1996), 841-887.

Zygmunt Pogorzały Faculty of Mathematics and Informatics Nicholas Copernicus University ul. Chopina $12 / 18,87-100$ Toruń Poland
e-mail: zypo@mat.uni.torun.pl

[^0]: ${ }^{1}$ Supported by Polish Scientific Grant KBN 2 PO3A 02008.
 Received June 20, 1996
 Revised January 7, 1997

