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ON A CLASS OF SELF-INJECTIVE LOCALLY BOUNDED
CATEGORIES

By

Zygmunt POGORZALY!

Throughout the paper K denotes a fixed algebraically closed field. Let R be a
locally bounded K-category in the sense of [3] It is well-known that every locally
bounded K-category R is isomorphic to a factor category KQr/Ig, where KQpg is
a path category of a locally-finite quiver and Ig is some admissible ideal in KQg.
A locally bounded K-category R =~ KQg/Iy is said to be triangular if Qr has no
oriented cycles.

For a locally bounded K-category R we denote by mod(R) the category of all
finite-dimensional right R-modules.

We are interested in self-injective locally bounded K-categories. Assume that
R is a self-injective locally bounded triangular K-category which is connected.
Then there is the Nakayama K-automorphism vz : R — R which is induced by
a permutation mg of the isoclasses of simple right R-modules such that
nr(top(P)) = soc(P) for every indecomposable projective right R-module P.
Consequently, the infinite cyclic group (vg) generated by the Nakayama auto-
morphism vy acts freely on the objects of R. We consider self-injective, locally
bounded, triangular and connected K-categories R whose quotient categories
R/(vr) are finite-dimensional K-algebras and there is no indecomposable pro-
jective R-module of length smaller than 3.

Every basic finite-dimensional K-algebra 4 can be considered as a locally
bounded K-category, because 4 =~ KQ,/14 for a finite quiver Q4. The repetitive
category (see [5]) of a basic finite-dimensional K-algebra A is the self-injective
locally bounded K-category A whose objects are formed by the pairs (z,x) = x;,
x€0b(A), ze Z and A(x,,y,) = {z} x A(x,y), A(xz41,¥.) = {z} x DA(y,x), and
/f(xp,yq) =0if p # ¢q, g+ 1, where DV denotes the dual space Homg(V, K). It is
well-known that if 4 is triangular then A is triangular. Moreover, 4/(v 7) 18
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isomorphic to the trivial extension 7(4) of 4 by its minimal injective cogenerator
bimodule D(4).

The class of K-categories satisfying the above conditions was studied by
several authors [1, 5, 8, 9, 11]. These categories were considered mainly as Galois
covers of some classes of finite-dimensional algebras. In particular, they always
were isomorphic to the repetitive categories of triangular algebras. Nevertheless
there is not given any general enough structural result on such K-categories. The
aim of this note is to provide such a result for the considered class of K-
categories. The main result is the following.

THEOREM. Let R be a locally bounded triangular and connected self-injective
K-category whose quotient category R/(vg) is a finite-dimensional K-algebra and
there is no indecomposable projective R-module of length smaller than 3. Then there
is a triangular finite-dimensional connected K-algebra A such that R~ A.

The proof of our result is rather easy. Nevertheless it is worth to stress that
our proof is independent of the representation type of R.

1. v-sections

1.1. Throughout the note let R be a locally bounded self-injective triangular
and connected K-category whose quotient category R/(vg) is a finite-dimensional
K-algebra and there is no indecomposable projective R-module of length smaller
than 3. Moreover, we shall assume that R = KQg/Ir for a bound quiver (Qg, Ir)-
All considered algebras are finite-dimensional, associative K-algebras with unit 1,
basic and connected.

1.2. Recall from [12] that an algebra A is said to be weakly symmetric if
each indecomposable projective left or right 4-module has a simple socle which is
isomorphic to its top.

LEMMA. R/(vgr) is a weakly symmetric algebra.
PrROOF. Obvious.

1.3. Since the Nakayama automorphism permutes the objects of R, the
group (vg) acts also on (Qg,Ir). R/(vr) is a finite-dimensional algebra by our
assumption, hence there is only finitely many (vg)-orbits of vertices in Qg.

A full convex subquiver (S, ) of (Qr,Ir) is called a vg-section of (Qg, Ir) if
it satisfies the following conditions:
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(1) For every vertex x of Qg the intersection of its (vg)-orbit with S consists
of exactly one element.

(2) If xeS and ye Qgr are such vertices that there is an arrow «
(respectively, B) in Qg sourced at x (respectively, y) and targetted at y
(respectively, x) then either y or vz!(y) (respectively, either vg(y) or y) belongs
to S.

(3) I =KSNIg.

1.4. For a bound quiver (Qg,Igr) of R we define a cone C; at a vertex
x € Qg to be the full subquiver of Qg formed by all the vertices y of Qg such that
there exists a path of finite length in Qr sourced at x and targetted at y. A
reduced cone S, at a vertex x € Qg is the full subquiver of Qr formed by the
vertices from Cy\C,(x)-

1.5. LeMMA. Let S, be a reduced cone at a vertex x € Qr. If y € S then
Vi(¥) € Sx for every ne Z\{0}.

PrOOF. We prove our lemma by induction on the length /(w) of the shortest
path w in Qg from x to y. If I(w) = 0 then y = x and clearly vi(x) ¢ Sx for n < 0,
because Qg is without oriented cycles. On the other hand vi(x) ¢ S, for n > 0,
because there is a path in Qg from vg(x) to Vi(x) for every n > 0.

Assume that for all vertices y in S, such that the length /(w) of the shortest
path from x to y is not greater than / the required condition holds.

Consider a vertex yo € Sy such that /(wg) =7+ 1 for the shortest path wy
from x to yo. Suppose to the contrary that there is ne Z\{0} such that
Vi (»0) € Sx. Let wop = wya, where a is an arrow from y; to yo. It is clear that w; is
the shortest path from x to y;, because wy would not be the shortest one
otherwise. Moreover, there is an arrow Vvi(a) from Vvi(y1) to vi(»o). Thus we
know from the inductive assumption that vi(y;) ¢ Sx. Hence there is a path v
from vg(x) to vi(»1). Then we have the path vwj(a) from vg(x) to vi(yo) which
contradicts the above assumption. Consequently, v(yo) ¢ Sx for every n e Z\{0}
and the lemma follows by induction.

1.6. LeMMA. Let S be a reduced cone at a vertex x € Qr. Then Sy is a full
convex connected and finite subquiver of Qgr.

Proor. Connectedness of S, is clear, because every two vertices of S, are
connected by a walk passing through x. Fullness of Sy is clear by the definition of
Sx. Observe that S, is finite. Indeed, there is only finitely many (vg)-orbits of
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vertices in Qg. Thus S, has only finitely many vertices by Lemma 1.5. Since Qg
is locally finite, S, is finite.

In order to show that S, is convex, consider a path w from y; to y,, where
1, ¥2 € Sy. If there is a decomposition w = wyw, such that w; is targetted at z
with z ¢ S, then there is a path v from vg(x) to z. Thus vw; is a path from vz(x)
to y, which contradicts the fact that y, € S,. Consequently, z € S, and our lemma
is proved.

1.7. LeMMA. Let Sy be a reduced cone at a vertex x € Qr. If y € Cyp(x) then
there exists a natural number n > 1 such that vg"(y) € Sx.

Proor. We prove the lemma by induction on the length /(w) of the shortest
path w from vg(x) to y. If /(w) =0 then y = vg(x) and vz!(y) = x € Sx.

Assume that for any vertex y in C,.(,) with /(w) <[ there exists a natural
number n such that vz"(y) € Sx, where w is the shortest path in Qg from vg(x) to
y.

Consider a vertex y € C,,(y) such that the length /(w) =/+ 1 for the shortest
path w in Qg from vg(x) to y. Consider the decomposition w = wja, where a is
an arrow sourced at yo and targetted at y. Then yo € C,, () and we obtain by the
inductive assumption that there is a natural number ny such that vy™(yo) € Si.
Consider the vertex vx™(y). Since vg™(yo) € Sk, there is a path u from x to
v (o). Hence there is the path wvi™(a) from x to vg™(y). Therefore
VR (y) € Cy. If there is no path from vg(x) to vi™(y) then vi™(y) € Sy. If there is
a path z from vg(x) to vg™(p) then there is the path vz'(z) from x to vg™ ' (y),
and so vg™ ! (y) € C,. If there is a path v from vg(x) to vz '(y) then we obtain
a contradiction to the fact that vz™(yo) belongs to Sx. Indeed, in the case there is
a path b from vz™ ' (y) to vz™ (yo) since R is self-injective. Thus there is the path
vb from vg(x) to vg™(yo) which contradicts the choice of vi™ (o). Consequently,
vg® !(y) € S; and the lemma is proved by induction.

1.8. LeMMA. Let C, be a cone at a vertex x € Qr. Then every (vg)-orbit of a
vertex z € Qr has a common vertex with C,.

PrROOF. We prove the lemma by induction on the length /(w) of minimal
walk in Qx connecting a vertex z € Qg to x. Such a walk always exists since Qg
is connected. If /(w) =0 then x =z and the required condition holds.

Assume that for all vertices z € Qr with /(w) <y the required condition
holds, where w is a minimal walk connecting z to x.
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Consider zy € Qg such that there is a minimal walk w in Qg connecting zy to
x with I(w) = Ip + 1. Then w = aw; or w = a~!wy, where « is an arrow sourced or
targetted at zy, respectively. If w = aw; and zy is the source of a then there is a
path v in Qg from x to Vi(z1) for the target z; of « and for some n € Z by the
inductive assumption. Since R is self-injective, there is a path vi(«)u in Qg from
Vi(20) to Vi (z0). Thus there is the path vu from x to Vg '(zp) in Qg, and so
Vitl(z0) € Cy.

If w=a"!

w1 and zj is the target of « then there is a path v in Qr from x to
Vk(z1) for the source z; of « and for some n € Z by the inductive assumption. On
the other hand we have the arrow vy (a) from v(z1) to vi(z0). Hence there is the

path vy (a) from x to Vi(zo) in Qgr, and so Vi(zp) € Cx. Consequently, our lemma
is proved by induction.

1.9. PROPOSITION. Let R = KQgr/Ir be a self-injective triangular and con-
nected locally bounded K-category whose quotient category R/(vg) is a finite-
dimensional K-algebra and there is no indecomposable projective R-module of
length smaller than 3. Then there exists a vg-section of (Qg,IR).

Proor. Fix a vertex x € Qgr. Consider the reduced cone S, at the vertex x.
Let I, = KS,NIz. We shall show that (Sy,I;) is a vg-section of (Qg,Ig). We
infer by Lemma 1.6 that S, is a full convex connected and finite subquiver of Qx.
Applying Lemma 1.8 to the cone C,, ) at the vertex vg(x), we obtain that every
(vr)-orbit of a vertex ze Qr has a common vertex to C,.). Furthermore, we
deduce from Lemma 1.7 that every (vg)-orbit of a vertex z in Qr has a common
vertex to S,. Thus we obtain from Lemma 1.5 that there is only one such a
common vertex. Consequently, 1.3(1) holds for (S, Iy).

Suppose that a vertex z belongs to Sy and there is an arrow « in Qg sourced
at z and targeted at y € Qg. If y ¢ S, then there is a path u in Qr from vg(x)
to y. Thus there is the path vz!(x) from x to vg'(y). Hence vi'(y) € Cx. If
vz!(») ¢ Sx then there is a path v in Qg from vg(x) to vg'(y). But R is self-
injective hence there is a path wa in Qg from vz!(y) to y. Consequently, there is
the path vw from vg(x) to z which contradicts to the fact that z € Sx. Therefore
vg' () € Sx.

Now suppose that a vertex z belongs to S, and there is an arrow f in Qg
sourced at y € Qr and targetted at z, and suppose that there is a path fw in Qg
from y to vgr(y). Since z € Sy, there is a path u in Qg from x to z. Thus the path
uw connects x to vg(y) hence vg(y) € Cx. If vr(y) € C,p(x) then there is a non-
negative integer n such that vz"(vr(y)) € Sx by Lemma 1.7. Since y ¢ S, n > 1.
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But there is a path v in Qg from x to vz"(y). Hence there are a path v from
Vik(x) to y of the form v}(v) and a path v” from vg(x) to Vi(x). Thus there exists
the path v"v/f from vg(x) to z which contradicts that z e S,. Consequently,
VR(Y) ¢ Cyp(x), and so vg(y) € Sx.

In this way we have proved that 1.3(2) holds. Since 1.3(3) is obvious by the
definition of I, the proposition is proved.

2. v-sectional partitions

2.1. Let (S,I) be a fixed vg-section of (Qg, Ir), where S is a reduced cone
at a vertex x € Qg. A collecting arrow with respect to (S, ) is any arrow « in Qg
which does not belong to S and such that there is an arrow g in S with fa ¢ I.

2.2. LEMMA. Let w=ay---a, be a maximal nonzero path in (Qr,Ir) whose
source is a vertex s€S. Then w contains exactly one collecting arrow a with
respect to (S,I).

PROOF. Suppose that w = o, ---a, is a maximal nonzero path in (Qg,Ir)
and s € S is its source. Since R is self-injective without indecomposable projective
R-modules of length 2 then n > 2 and w connects s with vg(s) by the maximality
of w. But if s€ S then vg(s) ¢ S by Lemma 1.5. Hence there is iy € {1,...,n}
such that a; is a collecting arrow.

Now suppose that there are two collecting arrows «;, a;, in w with jo > i.
Since (S, 7) is a full convex subquiver in (Qg, Ir), the target of a; cannot belong
to S, because «;, ¢ S. But again o, has the source in S by the definition of
collecting arrows. Thus the target of a;, belongs to S by the convexity of S. The
obtained contradiction shows the lemma.

23. An (S,I)-partition of (Qg,Ir) is the non-connected bound quiver

(P7 IP) = HzeZ(v;((S)’ Vﬁ([))

LEMMA. If an arrow o in Qg does not belong to the (S, I)-partition (P, Ip) of
(QRr,IR) then there exists zo € Z such that a is a collecting arrow with respect to

(V& (S), vr (D).

PrROOF. Let a be an arrow in Qr which does not belong to P. Then there
exists a maximal nonzero path in Qg of the form g, ---B,a, because R is self-
injective without indecomposable projective R-modules of length smaller than 3.
Now look at the vertices of the arrows f;, a. Clearly for the source s of f; and
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the target y of « it holds vg(s) = y. Then there is zp € Z such that s € v3(S) by
the definition of (P, Ip). Observe that the target v of f, belongs to v (S). Indeed,
if v¢ve(S) then vx!(v) e vR(S) by 1.3(2) for the vg-section (vz°+1(S) Vvari(ny).
Thus v, y = vg(s) € vz°+1(S) and so a € v2T!(S) which contradicts the choice of a.
Consequently, v € v3(S) and B € v¥(S) since S is convex. Hence « is a collecting
arrow with respect to (v (S),vx(I)), because f,a ¢ Ip.

24. For a fixed vg-section (S,I) of (Qg,Ir) consider the (S,I)-partition
(P, Ip) of (Qr,Ir). Define a two-sided ideal Ip in R = KQg/Ir with respect to
(P,Ip) as the ideal generated by the arrows a which do not belong to P.

Lemma. I3 =0.

Proor. Clearly it is sufficient to show that if we have two paths u, ve Ip
then uv = 0. But if u is a path in Ip then u = ujajup, where a; ¢ P. The same
holds for v, e.g. v = vyav; With ap ¢ P. If u and v are not composable then clearly
uv = 0. Consider the case when u and v are composable. Then we infer by
Lemma 2.3 that there is zp € Z such that a; is a collecting arrow with respect to
(vR(S),vZ(I)). The same holds for a, hence there is z; € Z such that o, is a
collecting arrow with respect to (vi(S),va(l)). We may assume that u, v are
nonzero in (Qg,Ig). Hence, by the triangularity of R, we infer that z; = zo + 1.
Then ujoyupv1050; 1s a path which contains two collecting arrows (with respect to
different vg-sections). Consider the path ojusvi0. The source s of it is in v (S)
and the target y of it is in v22(S). We deduce from the self-injectivity of R that
if ayupviap is nonzero in (Qg,Ir) then there is a path y,---y, from vg'(y) to s
such that y,---y,0upvy0p is nonzero in (Qg,Ig). But v;‘(y) e v2*!(S) and
s € v3(S). Since the target b of a; belongs to vz°+1(S), we get by the convexity of
vj?“(S) that s e vz"“(S) which contradicts the above choice of «;. Thus ajuvi0;
is a zero path in (Qg,/r) and the lemma follows.

2.5. ProposITION. R/Ip = P, , K(vi(S))/va(D).

ProoF. Consider a surjective functor p: KQr/Ir — @, ., K(vi(S))/va()
defined as follows: for every vertex q € Qr, p(q) = q. For every path u in Qg
which does not contain a collecting arrow we put p(u) = u. For every path v in
QOr which contains a collecting arrow we put p(v) = 0. Then we extend p linearly
to a functor. It is clear by the definition of p that Ip = ker(p). Moreover, we get
that p is surjective by Lemma 2.3 and the definition of a vg-section in (Qg, Ir).
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3. Proof of the main result

3.1. PrROPOSITION. Let R = KQgr/Ir be a self-injective triangular and con-
nected locally bounded K-category whose quotient category R/(vr) is a finite-
dimensional K-algebra and there is no indecomposable projective R-module of
length smaller than 3. If (Qr,IRr) contains a vg-section then there is an epi-
morphism p: R/(vg) = A such that A is a triangular connected algebra and
ker(p) = I is such a two-sided ideal in R/(vg) that I’ =0,

PrOOF. Let (S,7) be a vg-section of (Qg,Igr). Consider the (S,I)-partition
(P, Ip) of (Qr,Ir). Then we have an ideal Ip in R such I3 =0 by Lemma 2.4.
Moreover, R/Ip = @),_, K(v4(S))/va(I) by Proposition 2.5. It is easily seen
that the group (vg) acts freely on R/Ip and on Ip, because it acts freely on R.
Then we have an epimorphism p: R/(vg) — (R/Ip)/(vrk) whose kernel is
Ip/(vg). Put I =Ip/(vg) and A = (R/Ip)/(vr). We know from Lemma 2.4 that
I> =0. A is triangular and connected, because 4 =~ KS/I. Thus the proposition
follows.

3.2. If A4 and I are as in Proposition 3.1 then we have.

LEMMA. D(A) =1 as right A-modules.

PrOOF. We shall prove our lemma considering KS/I as a subcategory of R,
where (S,7) is a fixed vg-section of (Qg, Ir). Then consider the two-sided ideal J
in R generated by the collecting arrows in Qg with respect to (S,7). We infer by
Propositions 2.5, 3.1 that Ip = @),_, vx(J) and R/Ip =P, _, va(KS/I). Since
I?=0, I is a right A-module. Thus I is a submodule of D(A), because
SOCR/(vz) (I) = SOCR/(vz)(R/(VR)) = SOCR/(vz)(D(A4)). Suppose to the contrary that
I # D(A). Then there is a morphism from D(A4) to A which is a nonzero
morphism from vg(D(KS/I)) to KS/I which does not factorize through J. Thus
we have a path u in (vg(S),vr(I)) which is nonzero, sourced at s and targetted
at y with s € SNvg(S), y € vg(S) which contradicts to the fact that (S,7) is a
vgr-section of (Qg,Ir) by 1.3(1). Therefore D(A) = 1.

3.3. The following fact was proved in [6].

LEMMA. Let I be such a two-sided ideal in a self-injective finite-dimensional
K-algebra A that I* =0 and A/I is triangular. If I is injective as a right A/I-
module, then for any isomorphism ¢ : I — D(A/I) of right A/I-modules there is a
A/I-bimodule isomorphism ¢’ : I — D(A/I).



On a class of self-injective locally 107

3.4. The following proposition in a weaker form was shown in [7] We
repeat the modified version of its proof for the convenience of the reader.

PROPOSITION. Let R;, R, be triangular connected self-injective locally
bounded K-categories whose quotient categories Ri/(vg,), Ra/(vr,) are finite-
dimensional K-algebras. If Ri/(vr,) = Ry>/(vg,) then R; = Rs.

Proor. Under the assumptions of the proposition fix some representatives
{Py},c x of the isomorphism classes of indecomposable projective R;-modules
and some representatives {Q,}, . y of the isomorphism classes of indecomposable
projective Rz-m[gdules. Then  R; = Endg, (P, .y P)* and R, =
Endpg, (@er Qy) . Let F;, : mod(R;) — mod(R;/(vg,)), t = 1,2, be the push-
down functors induced by the actions of (vg,) on R; (see [3, 2]). It is well-known
that indecomposable projective R,/(vg,)-modules and their radicals are contained
in the image of F,, t=1,2. Moreover, F,;, preserves projectives and their
radicals.

Fix some xoe X. Let LF,(Py,) = F;2(0Q),) for a fixed yoe Y, where
L : mod(R;/(vg,)) — mod(Rz/(vg,)) is the equivalence induced by a fixed iso-
morphism from R;/(vg,) onto R/(vg,). Let R;; be the subcategory of R;
formed by P,, and the P,, P,, such that the following conditions are satisfied:

(a) there is a nonzero morphism f;: Py — Py, in mod(R;) of the form
fx =f*fy, where f]:P,— rad(P,,) satisfies 7y, f, # 0 for the canonical epi-
morphism 7, : rad(Py,) — top(rad(Py,)), and f* : rad(Py,) — Py, is the identity
monomorphism;

(b) there is a nonzero morphism h, : Py, — Py of the form h, = h.H,,
where A, : Py, — rad(Py) satisfies 7y k), #0 for the canonical epimorphism
ny : rad(Py) — top(rad(Py)), and K, :rad(Py) — Py is the identity mono-
morphism.

If P, P are objects of R;; then Homg  (P,P') is the subspace of
Hompg, (P, P') generated by the isomorphisms between P and P’ and the mor-
phisms of the form a = aja,, where a; = h,» for some x’ and a; is an auto-
morphism of P,,, or a; = f, for some x and a; is an automorphism of P, , or else
a) = hy for some x’ and a, = f, for some x. Since R; is locally bounded K-
category, Rp; is finite.

Let R, be the subcategory of R, formed by Q,, and the Q,, O, such that
the following conditions are satisfied:

(a) there is a nonzero morphism r, : Q) — 0y, of the form r, = r*r,, where
r,: Oy — rad(Q,,) satisfies k7, #0 for the canonical epimorphism
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Ky, : rad(Q,,) — top(rad(Q,,)), and r*:rad(Q,,) — Qy, is the identity mono-
morphism;

(b) there is a nonzero morphism sy : Q, — Q) of the form s, =s)’,’,s)’,,,
where s}, : Q), — rad(Q)/) satisfies k,.s, #0 for the canonical epimorphism
Ky : rad(Q)) — top(rad(Q))), and s, :rad(Qy — Q) is the identity mono-
morphism.

If Q, @ are objects of R,; then Homg, (Q,Q’) is the subspace of
Homg,(Q, Q') generated by the isomorphisms between Q and Q' and the
morphisms of the form w = w;w;, where w; =s,, for some y’ and w, is an
automorphism of Qy, or wy, = r, for some y and w; is an automorphism of Q,,,
or else w; = s/ for some y’ and w; = r,, for some y. Since R; is locally bounded
K-category, R, is finite.

Observe that if P, € R;,; and Homg, ,(Px,, Px,) # 0 then there is a uniquely
determined Q,, € Ry with Homg, (Q),,0),) #0 and LF,;(Px) = F;2(Q),).
Indeed, if there are Q,,,Q,, € Ry with Homg, (Q),,0),) #0, /=1,2, and
LF, (Py,) = F;2(Q,,), then there is z € Z such that Vf‘z(le) = Q,,. Furthermore,
there are 0 #r), : Q), — Oy, [ =1,2, such that r, factorize through rad(Q,,)
by the definition of R;;. Hence top(Qy,), /=1,2, are direct summands in
top(rad(Q,,)). Then in case z > 0 we get that there is a sequence @,...,Q, of
indecomposable projective R;-modules such that soc(Q,,) = top(Q,,_,), m=
2,...,z, and top(Q),,) = soc(Q)), top(Q,) = soc(Q,,). But top(Q),) is contained
in the support of Q] hence R, is not triangular which contradicts our assumption.
Similarly we obtain a contradiction if z < 0. Thus z=0 and Q,, = Q,,. Dually
one proves that if P, € Ry and Homg,,(Px, Px/) #0 then there exists the
uniquely determined Oy € Ry, with Homg, , (Q,,, Qy{) # 0 and LF,U(PX;) ~
F2(0y).

Now we define a functor Fj: R;; — Ry putting Fi(Py,) = Q),, and for
all possible x;, x; we put Fi(Py)=Q,,, Fi(Px)= Q. If P, P e Ry, then
Homp, , (P, P') either consists of isomorphisms (if P = P’) or is generated by the
above a. If P= P' then Homg, ,(P,P) = K -idp = K -idy, (p) as K-spaces and
Homg,, (Fi(P), Fi(P)) = K -idr,(p) = K - idf, ,(,(p))- Then, since L induces a K-
space isomorphism, X -idg, ,(p) = K - idf, ,(r,(p)), for every f € Homg, ,(P, P) there
is exactly one r € Homg,, (F1(P), F1(P)) such that LF;;(f) = F;2(r). Thus we
put Fi(f)=r. If P# P then we define F; for the morphisms of the form
a =d"ad', where a' : P — rad(P') satisfies na’ # 0 for the canonical epimorphism
n : rad(P') — top(rad(P’)) and 4" : rad(P’) — P’ is the inclusion monomorphism.
If a:P— P is such a morphism then there is the uniquely determined
r: Fi (P) — F (P') in HomRz,,(Fl(P),Fl(P’)) such that LF“(a) = F;',z(r). Indeed,
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if ry, r, satisfy LF;;(a) = F,(r1) = F)2(r2) then there are rj, r;: Fi(P) —
rad(F1(P')) such that n'r{, 7'r} # 0 for the canonical projection 7’ : rad(F1(P')) —
top(rad(F;(P'))). Furthermore, for the inclusion r” :rad(Fi(P')) — Fi(P') we
have ry =r"r], rn=r"rs. But if rj, r, are different then F;(r}) # F32(r3),
because R, is triangular and F,, is induced by the action of (vg,). Thus
Fy2(r1) # F;2(r2) for r; # ry. Consequently, ry = ry if F; 5(r1) = F;2(r2). Then we
put Fi(a) =r. If a=aja, is a composition of either an isomorphism and a
morphism of the above form or two morphisms of the above form then we put
F\(a) = Fi(a))Fi(az). Finally we extend F; linearly to a K-functor. It is clear by
the above considerations that we obtained a functor Fi : Ry — Ry which is
dense and fully faithful. Thus F; yields an equivalence of categories.

Assume now that we defined a subcategory R;, in R; such that for every
pair P, P’ of objects from R; , it holds either P = P’ and Homg, ,(P, P) consists
only of automorphisms or P # P’ and Homg,,(P,P') is generated by the
morphisms of the form a = a;---aya; such that:

(i) a;: Py — Py, for some objects Py,...,Psq of Ry, where P; =P,
Ps+1 = P’;

(i) @y =dfa), 1=1,...,s, a}: Py — rad(Py) satisfies m;1a; #0 for the
canonical epimorphism 7, : rad(P;y1) — top(rad(Pry1));

(ili) af : rad(Pi41) — P41 is the inclusion for I=1,...,s.

Moreover, assume that we have defined a subcategory R,, of R; satisfying the
above conditions for morphisms, and a functor F,: Ry, — Ry, which is a K-
linear equivalence such that it maps the generators of Homg, ,(P,P’) onto the
generators of Homg,,(Fu(P), Fn(P')).

Define a subcategory R; ,+1 of R; in the following way. The objects of R »41
are those of R;, and the objects P of R; such that either there is a nonzero
morphism a: P — P’ with P’ € Ry, and a = a"d’, where d’ : P — rad(P') satisfies
n'd #0 for the canonical projection 7' :rad(P’)— top(rad(P’)) and
a’ : rad(P') — P’ is the inclusion, or there is a nonzero morphism 4 : P’ — P with
P eR;, and h=h'H, where /' : P — rad(P) satisfies nh’ # 0 for the canonical
epimorphism 7z : rad(P) — top(rad(P)) and 4" : rad(P) — P is the inclusion. For
every two objects P, P’ from R,y the morphism space Homg, . (P,P") is
generated by the isomorphisms between P and P” and the compositions
a = ag - - - apa; which satisfy conditions (i)—(iii) above. In the same way we define
a subcategory R;,+1 of Ry. Then repeating the arguments used for R;; and Ry
we get that for every P € Ry »41 such that there is a nonzero morphism a : P — P/
with P’ € R, , there is the uniquely determined object Q € R; »41 such that there
is a nonzero morphism r:Q — F,(P') in Ry,y1 and LF,(P) = F;>(Q).



110 Zygmunt POGORZALY

Furthermore, for every object P € R ,4+1 such that there is a nonzero morphism
h:P — P in Ry, with P e Ry, there is the uniquely determined object
Q € Ry py1 such that there is a nonzero morphism r: F,(P) — Q in Ry ,4; and
LF,(P) = F;>(Q). Moreover, we have also the same uniqueness for generating
morphisms a : P — P” with P, P € Ry ,11. Thus we define F,\; : Ry ny1 — Rppt1
in the following way. For every P € Ry ,+1\R:, we put F,.(P) = Q, where Q is
a uniquely determined object of R;,41 as above. For every P’ € R;, we put
Fui1(P') = F,(P'). For every pair P, P' € Ry 41; if a: P — P" is a generator of
Hompg, . (P, P") then we put F,.i(a) =r, where r is a uniquely determined
generator of Homg,,,, (Fut1(P), Far1(P")). It is clear that for a generating
morphism a : P — P" with P, P" € R, it holds F,1(a) = F,(a). If a: P — P" is
an isomorphism then we put F,,i(a) =r, where LF)(a) = F;>(r). Finally we
extend F,;; for the compositions of generating morphisms and isomorphisms
a = a;---ay by putting F,(a) = Fpy1(a;) - - Fpy1(a1). Then we extend Fyy to a
K-linear functor. In this way we obtain a functor Fy1; : Ry 441 — R n4+1 Which is
dense and fully faithful. Thus F,,; yields an equivalence of categories.

Consequently, we construct inductively a functor F : R; — R, which is dense
and fully faithful since R;, R, are connected locally bounded K-categories. Thus
the proposition follows.

PrROOF OF THEOREM. We prove that R =~ A4, where 4 ~ KS /I for a vg-section
(S,I) of (Qr,Ir). Since D(A) = I as right 4-modules by Lemma 3.2, where I is
the two-sided ideal in R/(vg) chosen in Proposition 3.1, we get by Lemma 3.3
that the structures of A-bimodules on D(A4) and on I coincide. Since A4 is
triangular, the second Hochschild cohomology group vanishes (see [4, 10]). Thus
R/(vg) = T(A). Then applying Proposition 3.4 we obtain that R =~ 4.
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