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1. Introduction

For a space $X$, let $C(X)$ be the linear space of all real-valued continuous
functions on $X$, and let $C_{0}(X)$ (resp. $C_{p}(X)$ ) denote the linear topological space
$C(X)$ with the compact-open (resp. pointwise convergence) topology. We say that
spaces $X$ and $Y$ are $l_{0}$ -equivalent (resp. $l_{p}$ -equivalent) if $C_{0}(X)$ and $C_{0}(Y)$ (resp.
$C_{p}(X)$ and $C_{p}(Y))$ are linearly homeomorphic. For an ordinal number $\alpha$ , let $X^{(\alpha)}$

be the $\alpha$-th derived set of a space $X$, where $X^{(0)}=X$ . Recall from [3] that an
ordinal $\alpha$ is prime if it satisfies the following condition: If $\alpha=\beta+\gamma$, then $\gamma=0$ or
$\gamma=\alpha$ . Note that $0$ and 1 are only finite prime ordinals. For $\alpha\geq\omega,$ $\alpha$ is prime if
and only if there is an ordinal $\mu\geq 1$ such that $\alpha=\omega^{\mu}$ (cf. [3, Theorem 2.1.21]).
Thus, $\omega,$

$\omega^{2},$ $\omega^{3},$

$\ldots$ and the first uncountable ordinal $\omega_{1}$ are prime. The purpose
of this paper is to improve some theorems in Baars and de Groot [3] by proving
the following theorem:

THEOREM 1. Let $X$ and $Y$ be $l_{0}$-equivalent metric spaces. For each prime
ordinal $\alpha\leq\omega_{1}$ , we have:

(a) $ X^{(\alpha)}=\emptyset$ if and only if $ Y^{(\alpha)}=\emptyset$ ,
(b) $X^{(\alpha)}$ is compact if and only if $Y^{(\alpha)}$ is compact,
(c) $X^{(\alpha)}$ is locally compact if and only if $Y^{(\alpha)}$ is locally compact.

Baars and de Groot proved (a), (b) and (c) in Theorem 1 for $\alpha=0,1$ under
the additional assumption that $X$ and $Y$ are O-dimensional and separable ([3,

Theorems 4.5.2 and 4.5.3]). For $l_{p}$ -equivalent metric spaces $X$ and $Y$, they proved
(a) for each prime $\alpha\leq\omega_{1}$ ( $[3$ , Theorems 4.1.15 and 4.1.17]), and proved (b) and
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(c) for each prime $\alpha<\omega_{1}$ assuming that $X$ and $Y$ are O-dimensional and sep-
arable in addition ([3, Corollary 4.1.14]). $Arhange1\prime ski_{\check{1}}$ proved in [1, Corollary 5]

that $l_{p}$ -equivalent paracompact spaces are $l_{0}$ -equivalent (cf. also [3, Corollary
1.2.21]). Thus, we have the following corollary from Theorem 1.

COROLLARY 1. Let $X$ and $Y$ be $l_{p}$ -equivalent metric spaces. Then the
statements (a), (b) and (c) in Theorem 1 hold for each prime ordinal $\alpha\leq\omega_{1}$ .

A space $X$ is called scattered if there is an ordinal $\alpha$ such that $ X^{(\alpha)}=\emptyset$ .
Baars and de Groot proved in [3, Corollary 4.1.16] that for $l_{p}$-equivalent sep-
arable metric spaces $X$ and $Y$, if $X$ is scattered, then so is $Y$. It is well known that
$ X^{(\omega_{1})}=\emptyset$ for every scattered, locally separable, metric space $X$. Thus, we have:

COROLLARY 2. Let $X$ and $Y$ be $l_{0^{-}}$ or $l_{p}$ -equivalent, locally separable, metric
spaces. If $X$ is scattered, then so is $Y$.

In Section 2, we consider a support of a linear map $\varphi$ : $C_{0}(X)\rightarrow C_{0}(Y)$ and
give some lemmas. In Section 3, we prove Theorem 1 and, answering [3, Question
3, p. 37], we give an example of $l_{p}$-and $l_{0}$ -equivalent, first countable spaces $X$ and
$Y$ such that $X$ is locally compact, but $Y$ is not.

The terminology and notation will be used as in [3]. In particular, for
$f\in C(X),$ $S\subseteq X$ and $\epsilon>0$ , we write $\langle f, S,\epsilon\rangle=\{g\in C(X):|f(x)-g(x)|<\epsilon$

for each $x\in S$}. The family { $\langle f,$ $K,$ $\epsilon\rangle$ : $f\in C(X),$ $K\in \mathscr{K}(X)$ and $\epsilon>0$ } is a base
for $C_{0}(X)$ , where X(X) is the family of all compact sets of $X$. The constant
function on $X$ taking value $0$ is denoted simply by the same symbol $0$ . As usual,
we identify an ordinal number and the space of all smaller ordinal numbers with
the order topology. By a space we mean a completely regular $T_{1}$ -space.

2. Supports of a linear map

Throughout this section, let $\varphi$ : $C(X)\rightarrow C(Y)$ be a linear map and let $y\in Y$

be fixed. $Arhange1\prime ski_{\check{1}}[1]$ defined the support of $y$ with respect to $\varphi$ to be the set,
denoted by $supp(y)$ , of all $x\in X$ such that for every neighborhood $U$ of $x$ , there
is $f\in C(X)$ such that $f|_{X\backslash U}=0$ and $\varphi(f)(y)\neq 0$ . The supports played an
important mle in [1] and [3]. However, some authors use the term support of $y$ to
call a set $S\subseteq X$ such that

(1) $(\forall f\in C(X))(f|_{S}=0\Rightarrow\varphi(f)(y)=0)$ ,
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and some other authors also use it for a set $S\subseteq X$ such that

(2) $(\forall f\in C(X))(S\subseteq int_{X}Z(f)\Rightarrow\varphi(f)(y)=0)$ ,

where $Z(f)=\{x:f(x)=0\}$ . We first clarify the relation between $supp(y)$ and
sets satisfying the conditions (1) and (2), and then prove some lemmas which will
be used in the proof of Theorem 1. Let $\mathscr{S}(y)$ be the family of all closed sets in $X$

satisfying (1). Since $X\in \mathscr{S}(y),$ $\mathscr{S}(y)\neq\emptyset$ . By the definition of $supp(y)$ , we have:

LEMMA 1. supp $(y)=\cap\{S:S\in \mathscr{S}(y)\}$ .

REMARK 1. The set $\mathscr{S}(y)$ need not be a closed filter on $X$. For example,
consider a space $X$ which has disjoint closed sets $F_{1}$ and $F_{2}$ such that $c1_{vX}F_{1}\cap$

$c1_{vX}F_{2}\neq\emptyset$ , where $vX$ is the Hewitt real compactification of $X$ (e.g., the
Tychonoff Plank $T$ and its top edge and right edge [4, 8.20]). Pick a point $y$ from
the intersection and let $\varphi$ : $C(X)\rightarrow C(vX)$ be the linear map which carnies $f$ to
the continuous extension. Then, sinoe $F_{1},$ $F_{2}\in \mathscr{S}(y),$ $\mathscr{S}(y)$ fails to have the finite
intersection property.

Let $\mathscr{Z}(X)$ be the family of all zero-sets in $X$ and put $\mathscr{Z}(y)=\mathscr{S}(y)\cap \mathscr{Z}(X)$ .
A z-filter on $X$ is the intersection of a filter on $X$ and $\mathscr{Z}(X)$ (cf. [4]).

LEMMA 2. Assume that there is $f_{0}\in C(X)$ such that $\varphi(f_{0})(y)\neq 0$ . Then,
$\mathscr{Z}(y)$ is a z-filter on $X$.

PROOF. Since $f_{0}|_{\emptyset}=0$ and $\varphi(f_{0})(y)\neq 0,$ $\emptyset\not\in \mathscr{Z}(y)$ . Clearly, if $Z_{1}\in \mathscr{Z}(y)$

and $Z_{1}\subseteq Z_{2}\in \mathscr{Z}(X)$ , then $Z_{2}\in \mathscr{Z}(y)$ . Suppose that $Z_{1}\cap Z_{2}\not\in \mathscr{Z}(y)$ for some
$Z_{1},$ $Z_{2}\in \mathscr{Z}(y)$ . Then, there is $g\in C(X)$ such that $g|_{Z_{1}\cap Z_{2}}=0$ and $\varphi(g)(y)\neq 0$ .
Since $Z_{1},$ $Z_{2}\in \mathscr{Z}(X)$ , we can write $Z_{1}=Z(f_{1})$ and $Z_{2}=Z(f_{2})$ . Define a function
$h$ by $h(x)=g(x)|f_{1}(x)|/(|f_{1}(x)|+|f_{2}(x)|)$ for $x\in X\backslash (Z_{1}\cap Z_{2})$ and $h(x)=0$ for
$x\in Z_{1}\cap Z_{2}$ . Since $|h|\leq|g|$ and $h|_{Z_{1}\cap Z_{2}}=0,$ $h\in C(X)$ . Since $h|_{Z_{1}}=0,$ $\varphi(h)(y)=0$ .
On the other hand, since $h|_{Z_{2}}=g|_{Z_{2}},$ $\varphi(h)(y)=\varphi(g)(y)\neq 0$ . This contradiction
completes the proof. $\square $

By Lemma 2, $\cap\{c1_{\beta X}Z:Z\in \mathscr{Z}(y)\}\neq\emptyset$ , where $\beta X$ is the \v{C}ech-Stone
compactification of $X$. Since $\mathscr{Z}(\beta X)$ is a base for the closed sets in $\beta X$ ,

(3) $\cap\{c1_{\beta X}S:S\in \mathscr{S}(y)\}=\cap\{c1_{\beta X}Z:Z\in \mathscr{Z}(y)\}$ .

Thus, we have the following lemma:
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LEMMA 3. Assume that there is $f_{0}\in C(X)$ such that $\varphi(f_{0})(y)\neq 0$ . Then,
$\cap\{c1_{\beta X}S:S\in \mathscr{S}(y)\}\neq\emptyset$ .

REMARK 2. In view of Remark 1, the reader might ask if $\cap\{c1_{vX}S$ :
$ S\in \mathscr{S}(y)\}\neq\emptyset$ or not. We show that the intersection can be empty. Let $N$ be
the discrete space of positive integers. For each $m,$ $n\in N$ , define $e_{n}(m)=1$ if
$m=n,$ $e_{n}(m)=0$ otherwise, and let $e_{0}\in C(N)$ be the constant function taking
value 1. Since $A=\{e_{n} : n\in N\cup\{0\}\}$ is linearly independent, there is a Hamel
base $B$ for $C(N)$ with $A\subseteq B$ . For each $f\in C(N)$ , there is a unique function
$\alpha_{f}$ : $B\rightarrow R$ such that $f=\sum_{b\in B}\alpha_{f}(b)b$ . Define $\varphi(f)=\alpha_{f}(e_{0})$ for $f\in C(N)$ .
Then, $\varphi$ : $C(N)\rightarrow R(=C(\{y\}))$ is a linear map and $\varphi(e_{0})=1$ . If $f|_{N\backslash \{n\}}=0$ for
some $n\in N$ , then $\varphi(f)=0$ , because $f$ is expressed as a scalar multiple of $e_{n}$ .
Hence, $N\backslash \{n\}\in \mathscr{S}(y)$ for each $n\in N$ . Since $vN=N$, this implies that
$\cap\{c1_{vN}S:S\in \mathscr{S}(y)\}=\emptyset$ .

LEMMA 4. Assume that there is $f_{0}\in C(X)$ such that $\varphi(f_{0})(y)\neq 0$ and that
$\mathscr{S}(y)$ contains a compact set K. Then, $supp(y)$ is nonempty compact and satisfies
the condition (2).

PROOF. By Lemma 1 and (3),

$supp(y)=\cap\{S\cap K:S\in \mathscr{S}(y)\}$

(4) $=\cap\{c1_{\beta X}S:S\in \mathscr{S}(y)\}$

(5) $=\cap\{c1_{\beta X}Z:Z\in \mathscr{Z}(y)\}$ .

By (4) and Lemma 3, $supp(y)$ is nonempty compact. Next, suppose that
$supp(y)\subseteq int_{X}Z(f)$ . Then, there is an open set $U$ in $\beta X$ with $U\cap X=$

$int_{X}Z(f)$ . By (5) and Lemma 2, there is $Z\in \mathscr{Z}(y)$ such that $c1_{\beta X}Z\subseteq U$ , and
hence, $Z\subseteq Z(f)$ . Since $Z$ satisfies (1), $\varphi(f)(y)=0$ . Thus, $supp(y)$ satisfies (2).

$\square $

Let $\pi_{y}$ : $C(Y)\rightarrow R$ be the y-th projection, i.e., $\pi_{y}(f)=f(y)$ for each
$f\in C(Y)$ .

LEMMA 5. Assume that $\pi_{y}\circ\varphi$ : $C(X)\rightarrow R$ is continuous with respect to the

uniform convergence topology on $C(X)$ . Then, every subset of $X$ satisfying the
condition (2) satisfies (1).
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PROOF. Let $S$ be a subset of $X$ satisfying (2). Suppose that $f\in C(X)$ and
$f|_{S}=0$ . For each $n\in N$ , define $f_{n}(x)=\max\{f(x)-n^{-1},0\}+\min\{f(x)+n^{-1},0\}$

for $x\in X$ . Then, $f_{n}\in C(X)$ and $S\subseteq\{x:|f(x)|<1/n\}\subseteq Z(f_{n})$ . Since $S$ satisfies
(2), $(\pi_{y}\circ\varphi)(f_{n})=\varphi(f_{n})(y)=0$ for each $n\in N$ . Since $\{f_{n}\}$ converges to $f$ with
respect to the uniform convergence topology, it follows from our assumption that
$\varphi(f)(y)=(\pi_{y}\circ\varphi)(y)=\lim_{n\rightarrow\infty}(\pi_{y}\circ\varphi)(f_{n})=0$ . Hence, $S$ satisfies (1). $\square $

LEMMA 6. Assume that $\pi_{y}\circ\varphi$ : $C_{0}(X)\rightarrow R$ is continuous. Then, $supp(y)$ is
compact and satisfies (1), and moreover, if there is $f_{0}\in C(X)$ such that
$\varphi(f_{0})(y)\neq 0$ , then $supp(y)\neq\emptyset$ .

PROOF. If $\varphi(f)(y)=0$ for each $f\in C(X)$ , then $supp(y)=\emptyset$ and it
obviously satisfies (1). Now, assume that $\varphi(f)(y)\neq 0$ for some $f\in C(X)$ . By our
assumption, $\pi_{y}\circ\varphi$ is continuous with respect to the uniform convergence top-
ology. By Lemmas 4 and 5, it suffices to show that $\mathscr{S}(y)$ contains a compact set.
Since $\varphi$ is continuous, there is $K\in \mathscr{K}(X)$ such that $\varphi[\langle 0, K, \epsilon\rangle]\subseteq\langle 0, \{y\}, 1\rangle$ . If
$g\in C(X)$ and $g|_{K}=0$ , then by the linearity of $\varphi,$ $n|\varphi(g)(y)|=|\varphi(ng)(y)|<1$ for
each $n\in N$ , which implies that $\varphi(g)(y)=0$ . Hence, $K\in \mathscr{S}(y)$ . $\square $

In the preceding corollary, that $supp(y)$ is compact and satisfies (2) was
proved in [3], but it was not stated that $supp(y)$ satisfies (1). Lemma 6 and the
following lemmas are used in the next section. For $B\subseteq Y$ , the support of $B$ with
respect to $\varphi$ is the set $suppB=\cup\{supp(y):y\in B\}$ . When $\varphi$ is a bijection, the
support of $A\subseteq X$ with respect to $\varphi^{-1}$ is also denoted by the same symbol $suppA$ .
The next lemma was proved in [3].

LEMMA 7 ([3, Lemma 1.5.6]). If $\varphi$ : $C_{0}(X)\rightarrow C_{0}(Y)$ is continuous and $B$ is a
compact set in $Y$, then $c1_{X}(suppB)$ is compact.

LEMMA 8. If $\varphi$ : $C_{0}(X)\rightarrow C_{0}(Y)$ is a homeomorphism, then $x\in c1_{X}$ (suppsupp(x))

for each $x\in X$ .

PROOF. Suppose that $x\not\in c1_{X}(suppsupp(x))$ for some $x\in X$ . Then, there
is $f\in C(X)$ such that $f(x)=1$ and $f[suppsupp(x)]=\{0\}$ . By Lemma 6,
$\varphi(f)|_{\sup p(x)}=0$ and hence $f(x)=0$ , which is a contradiction. $\square $

3. Proof of Theorem 1

We need some more lemmas to prove Theorem 1. The following one was
proved by Baars and de Groot [3].



44 Hamto $0HTA$ and Kohzo YAMADA

LEMMA 9 ([3, Lemma 1.2.10]). Let $X$ and $Y$ be normal spaces, $K$ a non-empty
compact set in $Y,$ $\{U_{n} : n\in N\}$ a decreasing neighborhood base of $K$ in $Y$, and
$\{A_{s} : s\in S\}$ a locally finite family of subsets of X. Suppose that there is a linear
continuous map $\varphi:C_{0}(X)\rightarrow C_{0}(Y)$ . Then, there are $m\in N$ and $s_{1},$

$\ldots,$
$s_{m}\in S$ such

that $(suppU_{m})\cap\bigcup_{s\not\in\{s_{1},\ldots,s_{m}\}}A_{s}=\emptyset$ .

The following Lemmas 10 and 12 sharpen Baars and de Groot’s idea
frequently used in [3]. Lemma 11 is well known.

LEMMA 10. Let $X$ and $Y$ be metric spaces and $\varphi:C_{0}(X)\rightarrow C_{0}(Y)$ a linear
homeomorphism. Let $A$ be a closed set in $Y$ and $B=c1_{X}(suppA)$ . Let $U$ be an
open set in $X$ such that $ A\cap c1_{Y}(suppU)=\emptyset$ . Then, $C_{0}(A)$ is linearly homeo-
morphic to a subspace of $C_{0}(B\backslash U)$ .

PROOF. Let $S=B\cup c1_{X}U$ and $T=\{f\in C_{0}(S):f|_{c1U}=0\}$ . Then, the
subspace $T$ of $C_{0}(S)$ is linearly homeomorphic to the subspace {$f\in C_{0}(B\backslash U)$ :
$f|_{B\cap(c1U\backslash U)}=0\}$ of $C_{0}(B\backslash U)$ . Thus, it suffices to show that there is a linear
embedding $\lambda$ : $C_{0}(A)\rightarrow T$ . Define $r_{S}(f)=f|_{S}$ for each $f\in C_{0}(X)$ and
$r_{\Lambda}(f)=f|_{A}$ for each $f\in C_{0}(Y)$ . By the Dugundji extension theorem (cf. [3,

Theorem 2.3.1]), there is a linear continuous map $e_{S}$ : $C_{0}(S)\rightarrow C_{0}(X)$ such that
$r_{S}\circ e_{S}=id_{C(S)}$ . Since $ A\cap c1_{Y}(suppU)=\emptyset$ , using the Dugundji theorem again,
we can define a linear continuous map $e_{A}$ : $C_{0}(A)\rightarrow C_{0}(Y)$ such that $r_{\Lambda}\circ e_{A}=$

$id_{C(\Lambda)}$ and $e_{\Lambda}(f)|_{\sup pU}=0$ for each $f\in C_{0}(A)$ (cf. [3, Lemma 4.1.11]). Define
$\lambda=r_{S}\circ\varphi^{-1}\circ e_{A}$ and $\mu=r_{\Lambda}\circ\varphi\circ e_{S}$ . Then, $\lambda$ : $C_{0}(A)\rightarrow C_{0}(S)$ and $\mu:C_{0}(S)\rightarrow$

$C_{0}(A)$ are linear continuous maps. For each $f\in C_{0}(A)$ , since $e_{A}(f)|_{\sup pU}=0$ , it
follows from Lemma 6 that $\varphi^{-1}(e_{A}(f))|_{U}=0$ , which implies that $\lambda(f)\in T$ .
Hence, $\lambda[C_{0}(A)]\subseteq T$ . It remains to show that $\mu\circ\lambda=id_{C(A)}$ . Let $g\in C_{0}(A)$ . Since
$r_{S}\circ e_{S}=id_{C(S)}$ and $\lambda=r_{S}\circ\varphi^{-1}\circ e_{A}$ ,

(6) $e_{S}(\lambda(g))|_{S}=\lambda(g)=\varphi^{-1}(e_{A}(g))|_{S}$ .

Since $suppA\subseteq S$, it follows from Lemma 6 that $\varphi(e_{S}(\lambda(g))|_{A}=e_{A}(g)|_{A}$ . Since
$\mu=e_{A}\circ\varphi\circ e_{S}$ and $r_{A}oe_{A}=id_{C(\Lambda)},$ $(\mu\circ\lambda)(g)=g$ . Hence, $\mu\circ\lambda=id_{C(A)}$ . $\square $

LEMMA 11 (cf. [3, Proposition 2.2.4]). Let $A$ be a subspace of a space $X$ and
$\alpha$ an ordinal. Then, $A^{(\alpha)}\subseteq A\cap X^{(\alpha)}$ , and if $A$ is an open set, then $A^{(\alpha)}=A\cap X^{(\alpha)}$ .

For a scattered space $X$, let $\kappa(X)$ denote the smallest ordinal $\alpha$ such that
$ X^{(\alpha)}=\emptyset$ . For a non-scattered space $X$, we write $\kappa(X)>\alpha$ for each ordinal $\alpha$ .
For spaces $X$ and $Y,$ $X\approx Y$ means that $X$ is homeomorphic to Y.
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LEMMA 12. Under the same assumption as in Lemma 8, assume further that
$\kappa(A)>\alpha$ for a prime ordinal $\alpha\leq\omega_{1}$ . Then, $\kappa(B\backslash U)>\alpha$ .

PROOF. If $B\backslash U$ is not scattered, then there is nothing to prove. So, we
assume that $B\backslash U$ is scattered. We distinguish three cases:

Case 1. $\alpha=0$ . Since $\kappa(A)>0,$ $ A\neq\emptyset$ . Then, $ B\backslash U\neq\emptyset$ by Lemma 10, and
hence, $\kappa(B\backslash U)>0$ .

Case 2. $0<\alpha<\omega_{1}$ . Since $\kappa(A)>\alpha,$ $ A^{(\alpha)}\neq\emptyset$ . By [3, Lemma 4.1.8], there is
a compact set $K\subseteq A$ such that $K\approx\omega^{\alpha}+1$ . Put $L=c1_{X}(suppK)$ ; then $L\subseteq B$ . By
Lemma 10, $C_{0}(K)$ is linearly homeomorphic to a subspace of $C_{0}(L\backslash U)$ . Thus,
$ L\backslash U\neq\emptyset$ , and it is compact by Lemma 7. Moreover, since $B\backslash U$ is scattered, so
is $L\backslash U$ . Hence, $\kappa(L\backslash U)=\beta+1$ for some $\beta<\omega_{1}$ and $(L\backslash U)^{(\beta)}$ consists of
finitely many points, say $x_{1},$

$\ldots,$
$x_{k}$ . By Sierpi\’{n}ski-Mazurkiewicz’s theorem [3,

Theorem 2.2.8], $L\backslash U\approx(\omega^{\beta}\cdot k)+1$ . Hence, $C_{0}(\omega^{\alpha}+1)$ is linearly embedded in
$C_{0}((\omega^{\beta}\cdot k)+1)$ . If $\alpha=1$ , then $\beta\geq 1$ , because $C(\omega+1)$ cannot be linearly
embedded in a finitely dimensional space. Hence, $\kappa(B\backslash U)\geq\kappa(L\backslash U)=\beta+1>1$ .
If $\alpha>1$ , since $\alpha$ is prime, it follows from [3, Lemma 2.6.7 (a)(ii)] that $\alpha\leq\beta+1$ .
Since $\alpha$ is a limit, $\alpha<\beta+1=\kappa(L\backslash U)\leq\kappa(B\backslash U)$ .

Case 3. $\alpha=\omega_{1}$ . Suppose on the contrary that $\kappa(B\backslash U)\leq\omega_{1}$ . Then, since
$(B\backslash U)^{(\omega_{1})}=\emptyset$ , there is a locally finite cover $\{C_{\gamma} : \gamma<\omega_{1}\}$ of $X$ by closed sets
such that $ C_{\gamma}\cap(B\backslash U)^{(\gamma)}=\emptyset$ for each $\gamma<\omega_{1}$ . On the other hand, since $\kappa(A)>$

$\omega_{1}$ , there is $y\in A^{(\omega_{1})}$ . Let $\{V_{n} : n\in\omega\}$ be a decreasing neighborhood base of $y$ in
$Y$. By Lemma 9, there are $ m<\omega$ and a finite set $F\subseteq\omega_{1}$ such that $suppV_{m}\subseteq$

$\bigcup_{\gamma\in F}C_{\gamma}$ . Put $\delta=\max F$ . Then

(7) $c1_{X}suppV_{m}\cap(B\backslash U)^{(\delta)}=\emptyset$ .

Choose a prime ordinal $\rho$ with $\delta\leq\rho<\omega_{1}$ . Since $V_{m}$ is open, it follows from
Lemma 11 that $(V_{m}\cap A)^{(p)}=V_{m}\cap A^{(\rho)}\supseteq V_{m}\cap A^{(\omega_{1})}\neq\emptyset$ . Hence, there is $ K^{\prime}\subseteq$

$V_{m}\cap A$ with $K^{\prime}\approx\omega^{p}+1$ by [3, Lemma 4.1.8]. Put $L^{\prime}=c1_{X}(suppK^{\prime})$ . Then,
$L^{\prime}\subseteq c1_{X}suppV_{m}$ . By (7) this combined with Lemma 11 implies that $(L^{\prime}\backslash U)^{(\delta)}\subseteq$

$ L^{\prime}\cap(B\backslash U)^{(\delta)}=\emptyset$ . Hence, $\kappa(L^{\prime}\backslash U)\leq\delta<\rho$ . Since $\kappa(K^{\prime})>\rho$ , this contradicts
Case 2 we have proved above. $\square $

We are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. Since $X$ and $Y$ are $l_{0}$ -equivalent, there is a linear
homeomorphism $\varphi:C_{0}(X)\rightarrow C_{0}(Y)$ .
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(a) Suppose that $X^{(\alpha)}=\emptyset\neq Y^{(\alpha)}$ for a prime ordinal $\alpha\leq\omega_{1}$ . Then, $\kappa(Y)>$

$\alpha$ . Since $X^{(\alpha)}=\emptyset,$ $\kappa(c1_{X}(suppY))\leq\kappa(X)\leq\alpha$ . This contradicts Lemma 12.
(b) Suppose that there is a prime ordinal $\alpha\leq\omega_{1}$ such that $X^{(\alpha)}$ is compact

but $Y^{(\alpha)}$ is not. Then, there is a decreasing neighborhood base $\{U_{n} : n<\omega\}$ of $X^{(\alpha)}$

in $X$ and a discrete family $\{V_{n} : n<\omega\}$ of open sets in $Y$ such that $ V_{n}\cap Y^{(\alpha)}\neq\emptyset$

for each $ n<\omega$ . By Lemma 9, there is $ m<\omega$ such that $(suppU_{m})\cap V_{m}=\emptyset$ . Let
$A$ be a closed set in $Y$ such that $A\subseteq V_{m}$ and $int_{Y}A\cap Y^{(\alpha)}\neq\emptyset$ . Then, $\kappa(A)>\alpha$

by Lemma 11. Put $B=c1_{X}(suppA)$ . Then, by Lemma 11, $(B\backslash U_{m})^{(\alpha)}\subseteq(B\backslash U_{m})\cap$

$ X^{(\alpha)}=\emptyset$ . Hence, $\kappa(B\backslash U_{m})\leq\alpha$ , which contradicts Lemma 12.
(c) Suppose that $X^{(\alpha)}$ is locally compact for a prime ordinal $\alpha\leq\omega_{1}$ . Then,

there is a locally finite cover $\{C_{s} : s\in S\}$ of $X$ by closed sets such that $C_{s}\cap X^{(\alpha)}$ is
compact for each $s\in S$ . Let $y\in Y^{(\alpha)}$ and $\{U_{n} : n<\omega\}$ be a decreasing neigh-
borhood base of $y$ in $Y$. Then, by Lemma 9, there is $ k<\omega$ and a finite set $F\subseteq S$

such that $suppU_{k}\subseteq\bigcup_{s\in F}C_{s}$ . It suffices to show that $c1_{Y}U_{k}\cap Y^{(\alpha)}$ is compact.
Suppose not; then there is a discrete family $\{V_{n} : n<\omega\}$ of open sets in $Y$ such
that $V_{n}\subseteq U_{k}$ and $ U_{n}\cap Y^{(\alpha)}\neq\emptyset$ for each $ n<\omega$ . Put $C=\bigcup_{s\in F}C_{S}$ . Since
$C^{(\alpha)}\subseteq C\cap X^{(\alpha)}$ by Lemma 11, $C^{(\alpha)}$ is compact. Hence, there is a decreasing
neighborhood base $\{W_{n} : n<\omega\}$ of $C^{(\alpha)}$ in $X$. By Lemma 9 again, $(suppW_{m})\cap$

$ V_{m}=\emptyset$ for some $ m<\omega$ . Let $A$ be a closed set in $Y$ such that $A\subseteq V_{m}$ and
int $YV_{m}\cap Y^{(\alpha)}\neq\emptyset$ . Then, $\kappa(A)>\alpha$ by Lemma 11. Put $B=c1_{X}(suppA)$ . Since
$B\subseteq c1_{X}(suppU_{k})\subseteq C$ ,

(8) $(B\backslash W_{m})^{(\alpha)}\subseteq(B\backslash W_{m})\cap C^{(\alpha)}$

by Lemma 11. Since $C^{(\alpha)}\subseteq W_{m},$ (8) implies that $(B\backslash W_{m})^{(\alpha)}=\emptyset$ , and hence,
$\kappa(B\backslash W_{m})\leq\alpha$ . Since $c1_{Y}(suppW_{m})\cap A=\emptyset$ , this contradicts Lemma 12. $\square $

REMARK 3. For each ordinal $\alpha<\omega_{1}$ which is not prime, there are $l_{0^{-}}$

equivalent spaces $X$ and $Y$ such that $X^{(\alpha)}$ is compact but $Y(\alpha)$ is not locally
compact. To show this, let $\alpha<\omega_{1}$ be an ordinal which is not prime. Then, by
[3, Corollary 2.1.18], there is the largest prime ordinal $\beta$ less than $\alpha$ . Let $S=$

$\omega^{\beta}+1$ and $T=\omega^{\alpha}+1$ . Since $\beta\omega$ is prime, $\beta<\alpha<\beta\omega$ . Hence, it follows from
Bessaga-Pelczy\’{n}ski’s theorem [3, Theorem 2.4.1] that $S$ and $T$ are $l_{0}$ -equivalent.
Observe that $ S^{(\alpha)}=\emptyset$ and $T^{(\alpha)}=\{\omega^{\alpha}\}$ (cf. [3, Proposition 2.2.5]). Define $X=$

$(S\times(\omega\times\omega))\cup\{\infty\}$ and $Y=(T\times(\omega\times\omega))\cup\{\infty\}$ , where the subspace $ S\times$

$(\omega\times\omega)$ of $X$ has the usual product topology, a basic neighborhood of $\infty\in X$ is a
set of the form $(S\times((\omega\backslash n)\times\omega))\cup\{\infty\}$ for $ n<\omega$ , and the topology of $Y$ is
analogously defined. Then, it is easily checked that $X$ and $Y$ are $l_{0}$ -equivalent and
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$Y^{(\alpha)}$ is not locally compact. If $\beta+1<\alpha,$ $ X^{(\alpha)}=\emptyset$ and if $\beta+1=\alpha$ , then $X^{(\alpha)}=$

$\{\infty\}$ . In each case, $X^{(\alpha)}$ is compact. The authors do not know if the statements
(a), (b) and (c) in Theorem 1 hold for a prime ordinal greater than $\omega_{1}$ (cf. [3,

Question, p. 149]).

Gul’ko-Okunev [5] and McCoy-Ntantu [6] independently proved that for a
first countable, paracompact space $X,$ $C_{0}(X)$ is a Baire space if and only if $X$ is
locally compact. Since $l_{p}$ -equivalent paracompact spaces are $l_{0}$ -equivalent by [1,

Corollary 5], we have: For $l_{p}$ -equivalent, first countable, paracompact spaces $X$ and
$Y$, if $X$ is locally compact, then so is $Y$ (cf. also [3, Theorem 1.5.10]). $\ln[3$ ,
Question 3, p. 37], Baars and de Groot asked if the paracompactness is essential
in this statement. The following example answers their question positively.

EXAMPLE. There exist first countable, $l_{p}$-and $l_{0}$-equivalent spaces $X$ and $Y$

such that $X$ is locally compact, but $Y$ is not.

PROOF. Let $X=\omega_{1}\times(\omega+1),$ $A=\omega_{1}\times\{\omega\}\subseteq X$ , $Y=(X/A)\oplus A$ , and
$p:X\rightarrow X/A$ the quotient map. Since $A$ is a retract of $X$, it is routinely proved
that $C_{p}(X)$ is linearly homeomorphic to $C_{p}(Y)$ (cf. [2, Proposition 1]). Moreover,
since $c1_{X}p^{-1}[K\backslash p[A]]$ is compact for every compact set $K\subseteq Y$ , it is also proved
that $C_{0}(X)$ is linearly homeomorphic to $C_{0}(Y)$ . Thus, $X$ and $Y$ are $l_{p^{-}}$ and $l_{0^{-}}$

equivalent. The space $X$ is first countable and locally compact, but $Y$ is not
locally compact. Since every open set in $X$ including $A$ includes a set of the form
$\omega_{1}\times((\omega+1)\backslash n),$ $Y$ is also first countable. $\square $
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