KRONECKER FUNCTION RINGS OF SEMISTAR-OPERATIONS

By

Akira Okabe and Ryûki Matsuda

1. Introduction

Let D be a commutative integral domain with quotient field K. Let F(D) denote the set of non-zero fractional ideals of D in the sense of [K], i.e., non-zero R-submodules of K and let F'(D) denote the subset of F(D) consisting of all members A of F(D) such that there exists some $0 \neq d \in D$ with $dA \subset D$. Let f(D) be the set of finitely generated members of F(D). Then $f(D) \subset F'(D) \subset F(D)$.

A mapping $A \to A^*$ of F'(D) into F'(D) is called a *star-operation* on D if the following conditions hold for all $a \in K - \{0\}$ and $A, B \in F'(D)$:

- $(1) (a)^* = (a), (aA)^* = aA^*;$
- (2) $A \subset A^*$; if $A \subset B$, then $A^* \subset B^*$; and
- (3) $(A^*)^* = A^*$.

A fractional ideal $A \in F'(D)$ is called a *-ideal if $A = A^*$. We denote the set of all *-ideals of D by $F_*(D)$. A star-operation * on D is said to be of finite character if $A^* = \bigcup \{J^* | J \in f(D) \text{ with } J \subset A\}$ for all $A \in F'(D)$. It is well known that if * is a star-operation on D, then the mapping $A \to A^{*f}$ of F'(D) into F'(D) given by $A^{*f} = \bigcup \{J^* | J \in f(D) \text{ with } J \subset A\}$ is a finite character star-operation on D. Clearly we have $A^* = A^{*f}$ for all $A \in f(D)$ and all star-operations * on D.

The mapping on F'(D) defined by $A \to A_v = (A^{-1})^{-1}$ is a star-operation on D and is called the *v-operation* on D, where $A^{-1} = \{x \in K | xA \subset D\}$. The *t-operation* on D is given by $A \to A_t = \bigcup \{J_v | J \in f(D) \text{ with } J \subset A\}$, that is, $t = v_f$. The reader can refer to [G], Sections 32 and 34 for the basic properties of star-operations and the v-operation.

Received October 24, 1995. Revised January 23, 1996.

Let $A \to A^*$ be a star-operation on D. A *-ideal I is said to be *-finite if $I = A^*$ for some element A of f(D). In $F_*(D)$, we define $A^* \times B^* = (AB)^* = (A^*B^*)^*$ for all $A^*, B^* \in F_*(D)$. A star-operation * on D is said to be arithmetisch brauchbar (abbreviated a.b.) if for all $A^*, B^*, C^* \in F_*(D)$ such that A^* is *-finite, $A^* \times B^* \subset A^* \times C^*$ implies that $B^* \subset C^*$, and is said to be endlich arithmetisch brauchbar (e.a.b.), if for all *-finite $A^*, B^*, C^* \in F_*(D), A^* \times B^* \subset A^* \times C^*$ implies $B^* \subset C^*$.

Let X be an indeterminate over D. For each polynomial $f \in D[X]$, we denote the fractional ideal of D generated by the coefficients of f by c(f). It is well known that if $A \to A^*$ is an e.a.b. star-operation on D, then $D_* = \{0\} \cup \{f/g | f, g \in D[X] - \{0\} \text{ and } c(f)^* \subset c(g)^*\}$ is an integral domain with quotient field K(X) such that $D_* \cap K = D$. Furthermore it is also known that D_* is a Bezout domain and for any finitely generated ideal A of D, we have $AD_* \cap K = A^*$ (cf. [G, Theorem (32.7)]). The integral domain D_* is called the Kronecker function ring of D with respect to the star-operation *.

In [OM] we introduced the notion of a semistar-operation on D. A mapping $A \to A^*$ on F(D) is called a semistar-operation on D if the following conditions hold for all $a \in K - \{0\}$ and $A, B \in F(D)$:

- (1) $(aA)^* = aA^*$;
- (2) $A \subset A^*$; if $A \subset B$, then $A^* \subset B^*$; and
- $(3) (A^*)^* = A^*.$

It is apparent from the definition that semistar-operations may have many properties analogous to those of star-operations.

In section 2, we show that many of results in [G, Section 32] can be extended to the case of semistar-operation and that the condition "integrally closed" on D become unnecessary in our case.

In section 3, we treat semistar-operations in the case of commutative rings with zero-divisors.

2. The integral domain case

Let $A \to A^*$ be a semistar-operation on D. A fractional ideal $A \in F(D)$ is called a *-ideal if $A = A^*$, and the set of *-ideals of D is denoted by $F_*(D)$. In $F_*(D)$, we define the product of A^* and B^* by $A^* \times B^* = (AB)^* = (A^*B^*)^*$. A *-ideal I is called a *-finite ideal if $I = A^*$ for some element $A \in f(D)$. A semistar-operation * on D is said to be endlich arithmetisch brauchbar (e.a.b.) if for all *-finite A^* , B^* , $C^* \in F_*(D)$, $A^* \times B^* \subset A^* \times C^*$ implies $B^* \subset C^*$ and is

said to be arithmetisch brauchbar (a.b.) if for all $A^*, B^*, C^* \in F_*(D)$ such that A^* is *-finite, $A^* \times B^* \subset A^* \times C^*$ implies that $B^* \subset C^*$. For each polynomial $f \in D[X]$, we denote the fractional ideal of D generated by the coefficients of f by c(f). The fractional ideal c(f) is called the *content* of f. We assume that $A \to A^*$ is an e.a.b. semistar-operation on D. Then we have the following results.

LEMMA 1 (cf. [G, Lemma (32.6)]). For all $f, g \in D[X] - \{0\}$, $c(fg)^* = (c(f)c(g))^*$.

PROOF. This follows immediately from [G, Corollary (28.3)].

PROPOSITION 2 (cf. [G, Theorem (32.7)]). Let $D_* = \{0\} \cup \{f/g | f, g \in D[X] - \{0\} \text{ and } c(f)^* \subseteq c(g)^*\}$. Then we have

- (a) D_* is an integral domain with quotient field K(X) such that $D_* \cap K = D^*$.
- (b) D_* is a Bezout domain.
- (c) if A is a finitely generated ideal of D, then $AD_* \cap K = A^*$.

PROOF. (a) Clearly D_* is an integral domain with quotient field K(X). Next, we shall show that $K \cap D_* = \bigcup \{a/b \in K | D \subset (b/a)^*\}$. If $a/b \in K \cap D_*$, then $(a)^* \subset (b)^*$, i.e., $(a) \subset (b)^*$, and so $D \subset 1/a \times (b)^* = (b/a)^*$. Conversely, if $D \subset (b/a)^*$, then $(a/b) \subset D^*$. Moreover, $D \subset (b/a)^*$ if and only if $a/b \in D^*$. Hence our assertion follows. The proofs of (b) and (c) are the same as in those of (b) and (c) of [G, Theorem (32.7)].

COROLLARY 3. If * is an e.a.b. semistar-operation on D, then D^* is integrally closed.

PROOF. Since D_* is a Bezout domain, D_* is integrally closed and then our assertion follows from Proposition 2(a).

EXAMPLE 4. Let V be a valuation overring of D. Then $A \to A^* = AV$ is a semistar-operation on D and is denoted by $*_{(V)}$ in [OM]. In this case, $*_{(V)}$ is an e.a.b. semistar-operation on D and $D^{*_{(V)}} = V$ is a valuation domain and is also integrally closed. Moreover, $D_{*_{(V)}} = \{0\} \cup \{f/g|f,g \in D[X] - \{0\}$ and $c(f)V \subset c(g)V\}$.

REMARK 5. Let S(D) be the set of all semistar-operations on D. For any two $*_1$, $*_2$ in S(D), we define $*_1 \le *_2$ if $A^{*_1} \subset A^{*_2}$ for all $A \in F(D)$. Let $*_1$ and $*_2$ be two e.a.b. semistar-operations on D. If $*_1 \le *_2$, then $D_{*_1} \subset D_{*_2}$. In fact, if $f/g \in D_{*_1}$, then $c(f)^{*_1} \subset c(g)^{*_1}$, and then, by [OM, Lemma 16], we get $c(f)^{*_2} = (c(f)^{*_1})^{*_2} \subset (c(g)^{*_1})^{*_2} = c(g)^{*_2}$, and hence $f/g \in D_{*_2}$.

For any two $*_1, *_2 \in S(D), *_1$ and $*_2$ are said to be equivalent if $A^{*_1} = A^{*_2}$ for each $A \in f(D)$. If $*_1$ and $*_2$ are equivalent, then $*_1$ is e.a.b. iff $*_2$ is e.a.b.. Moreover, for any two e.a.b. semistar-operations $*_1, *_2$, it is easily seen that $*_1$ and $*_2$ are equivalent iff $D_{*_1} = D_{*_2}$.

DEFINITION 6. Let $\{D_{\lambda \in \Lambda}\}$ be a family of overrings of D. Then $A \to A^* = \bigcap_{\lambda} AD_{\lambda}$ is a semistar-operation on D (cf. [OM, Corollary 10]). This is called a semistar-operation of D induced by overrings $\{D_{\lambda}\}$ and is denoted by $*_{\{D_{\lambda}\}}$. If $\{V_{\lambda}\}$ is a family of valuation overrings of D, then a semistar-operation $A \to A^* = \bigcap_{\lambda} AV_{\lambda}$ is called a *w-operation* on D.

PROPOSITION 7 (cf. [G, Theorem (32.5)]). Each w-operation of D is an a.b. semistar-operation on D.

THEOREM 8 [cf. (G, Theorem (32.11)]). Let $\{D_{\lambda \in \Lambda}\}$ be a family of overrings of D. Then $D_{*\{D_{\lambda}\}} = \bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})}$.

PROOF. Let $A^* = \bigcap AD_{\lambda}$ for all $A \in F(D)$. Let f and g be nonzero elements of D[X]. If $f/g \in \bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})}$, then $c(f)D_{\lambda} \subseteq c(g)D_{\lambda}$ for all $\lambda \in \Lambda$. Then $c(f)^* = \bigcap_{\lambda} c(f)D_{\lambda} \subseteq \bigcap_{\lambda} c(g)D_{\lambda} = c(g)^*$ and so $f/g \in D_*$ and therefore $\bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})} \subset D_*$. Conversely, if $f/g \in D_*$ then $c(f)^* \subseteq c(g)^*$ and so $c(f)D_{\lambda} = c(f)^*D_{\lambda} \subseteq c(g)^*D_{\lambda} = c(g)D_{\lambda}$ for each $\lambda \in \Lambda$. Hence $f/g \in \bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})}$ and so $D_* \subseteq \bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})}$. Thus $D_* = \bigcap_{\lambda \in \Lambda} D_{*(D_{\lambda})}$.

Let v be a valuation on K and let V be the valuation overring of D associated with v. For each $a_0 + a_1X + \cdots + a_nX^n \in K(X)$, we define $\bar{v}(a_0 + a_1X + \cdots + a_nX^n) = \inf\{v(a_i)|a_i \neq 0\}$, then \bar{v} is a valuation on K(X). The valuation \bar{v} is called the trivial extension of v to K(X). Let W be the valuation ring associated with \bar{v} . Then, for any two elements f and g in $K[X] - \{0\}$, $f/g \in W$ if and only if $c(f)V \subset c(g)V$.

PROPOSITION 9 (cf. [G, Theorem (32.10)]). Let $A \to A^*$ be an e.a.b. semistar-operation on D and let W be a valuation overring of D_* , then W is the trivial extension of $V = W \cap K$ to K(X).

LEMMA 10. If V is a valuation overring of D, then $D_{*_{(V)}}$ is the trivial extension of V to K(X).

PROOF. Let f and g be non-zero elements of $D[X] - \{0\}$. Then $f/g \in D_{*(\nu)}$ if and only if $c(f)^{*(\nu)} \subset c(g)^{*(\nu)}$, i.e., $c(f)V \subseteq c(g)V$. Hence $f/g \in D_{*(\nu)}$ if and only if $f/g \in W$, the trivial extension of V to K(X).

COROLLARY 11 (cf. [G, Theorem (32.11)]). Let $\{V_{\lambda}\}$ be a family of valuation overrings of D and let $A \to A^* = \bigcap_{\lambda} AV_{\lambda}$ be a semistar-operation on D induced by $\{V_{\lambda}\}$. Then $D_* = \bigcap_{\lambda} W_{\lambda}$, where W_{λ} is the trivial extension of V_{λ} to K(X).

PROOF. This follows from Theorem 8 and Lemma 10.

PROPOSITION 12 (cf. [G, Theorem (32.12)]). Each e.a.b. semistar-operation * on D is equivalent to a w-operation on D.

PROOF. Since D_* is integrally closed, we have $D_* = \bigcap_{\lambda} W_{\lambda}$, where $\{W_{\lambda}\}$ is the family of valuation overrings of D_* . For each λ , we set $V_{\lambda} = W_{\lambda} \cap K$. Then V_{λ} is a valuation overring of D and by Proposition 9, W_{λ} is the trivial extension of V_{λ} to K(X). Hence, if we set $A \to A^w = \bigcap_{\lambda} AV_{\lambda}$, then, by Corollary 11, $D_w = \bigcap_{w} W_{\lambda} = D_*$, and hence by Remark 5 w and * are equivalent.

COROLLARY 13 (cf. [G, Corollary (32.13)]). Each e.a.b. semistar-operation on D is equivalent to an a.b. semistar-operation on D.

If $\{V_{\lambda}\}$ is the family of all valuation overrings of D, then $A \to A_b = \bigcap_{\lambda} A V_{\lambda}$ is an a.b. semistar-operation on D and is called the *b-operation* on D.

COROLLARY 14 (cf. [G, Corollary (32.14)]). Each Kronecker function ring D_* of D contains D_b , the Kronecker function ring of D with respect to the b-operation.

PROOF. If $\{V_{\lambda}\}$ is the family of all valuation overrings of D and W_{λ} is the trivial extension of V_{λ} to K(X), then $D_b = \bigcap_{\lambda \in \Lambda} W_{\lambda}$ by Corollary 11. Next, for each e.a.b. semistar-operation * on D, Proposition 12 shows that $D_* = \bigcap_{\lambda} W_{\lambda}$, where W_{λ} is the trivial extension of a valuation overring V_{λ} of D, and so $D_* \supset D_b$ as desired.

PROPOSITION 15 (cf. [G, Theorem (32.15)]). Let D_b be the Kronecker function right of D with respect to the b-operation on D. Then

- (1) If R is an overring of D and * is a semistar-operation on R, then R_* contains D_h .
 - (2) If R is an overring of D_b , then R is a Kronecker function ring of $R \cap K$.
- PROOF. (1) It is evident that $D_b \subseteq R_b$. Then we have $D_b \subset R_*$, since $R_b \subset R_*$ by Corollary 14.
- (2) Since D_b is a Bezout domain, R is also a Bezout domain by [C, Theorem 1.3], and so R is integrally closed. Then $R = \bigcap_{\lambda} W_{\lambda}$, where $\{W_{\lambda}\}$ is the family of valuation overrings of R. By Proposition 9, each W_{λ} is the trivial extension of $V_{\lambda} = W_{\lambda} \cap K$ to K(X). Moreover, $R \cap K = \bigcap_{\lambda} V_{\lambda}$. Hence if we set $A^* = \bigcap_{\lambda} AV_{\lambda}$, then by Proposition 9, $(R \cap K)_* = \bigcap_{\lambda} W_{\lambda} = R$.

REMARK 16. If W is a valuation overring of D_b , then W is the trivial extension of a valuation overring $V = W \cap K$ of D by Proposition 9. Conversely, if V is a valuation overring of D, then $D_{*(V)}$ is the trivial extension of V to K(X) and $D_{*(V)} \cap K = V$ by Lemma 10. Hence there is a one-to-one correspondence between valuation overrings of D and valuation overrings of D_b . If R is a Bezout domain, then the set of valuation overrings of R is in one-to-one correspondence with the set of proper prime ideals of R (cf. [C, Theorem 1.3 and Proposition 1.5]).

PROPOSITION 17 (cf. [G, Proposition (32.16)]). Let D_b be the Kronecker function ring of D with respect to the b-operation. Then dim $D_b = \dim_v D$, where $\dim_v D$ is the valuative dimension of D.

LEMMA 18 (cf. [G, Lemma (32.17)]). Let $A \to A^*$ be a semistar-operation on D. If A is an invertible fractional ideal of D, then, for each $B \in F(D)$, $(AB)^* = AB^*$.

PROPOSITION 19 (cf. [G, Proposition (32.18)]). D be a Prüfer domain. Then each semistar-operation on D is arithmetisch brauchbar. If $*_1$ and $*_2$ are semistar-operations on D such that $D^{*_1} = D^{*_2}$, then $*_1$ and $*_2$ are equivalent.

PROOF. Let $A, B, C \in F(D)$ with $A \in f(D)$. Suppose $(AB)^* \subseteq (AC)^*$. It follows from Lemma 18 that $AB^* = (AB)^* \subset (AC)^* = AC^*$, since D is Prüfer and A is invertible. Then, $B^* = A^{-1}AB^* \subseteq A^{-1}AC^* = C^*$, which implies that * is arithmetisch brauchbar. Let $*_1$ and $*_2$ be two semistar-operations on D such that $D^{*_1} = D^{*_2}$. Then, by Lemma 18, we have $A^{*_1} = (AD)^{*_1} = AD^{*_1} = AD^{*_2} = (AD)^{*_2} = A^{*_2}$ for all $A \in f(D)$. Hence $*_1$ and $*_2$ are equivalent.

PROPOSITION 20. Let $\{D_{\alpha} | \alpha \in A\}$ and $\{D_{\beta} | \beta \in B\}$ be two families of overrings of a Prüfer domain D such that $\bigcap \{D_{\alpha} | \alpha \in A\} = \bigcap \{D_{\beta} | \beta \in B\}$. Then $\{D_{\alpha}\}$ and $\{D_{\beta}\}$ induce equivalent semistar-operations on D.

PROOF. Set $A^{*_1} = \bigcap AD_{\alpha}$ and $A^{*_2} = \bigcap AD_{\beta}$ for all $A \in F(D)$. Then clearly $D^{*_1} = \bigcap D_{\alpha} = \bigcap D_{\beta} = D^{*_2}$. Next, if $A \in f(D)$, then A is invertible and so, by Lemma 18, we have $A^{*_1} = (AD)^{*_1} = AD^{*_1} = AD^{*_2} = A^{*_2}$. Thus $*_1$ and $*_2$ are equivalent as wanted.

We shall now state our main results of this section.

LEMMA 21. Let T be a Bezout overring of D. Then the semistar-operation $*_{(T)}$ on D is arithmetisch brauchbar.

PROOF. Let A, B and C be in F(D), with A finitely generated. Suppose $(AB)_{*_{(T)}} \subseteq (AC)_{*_{(T)}}$. Then $ATBT = (AB)_{*_{(T)}} \subseteq (AC)_{*_{(T)}} = ATCT$. Since AT is principal, $(AT)(BT) \subseteq (AT)(CT)$ implies $BT \subseteq CT$. Hence $*_{(T)}$ is an a.b. semistar-operation on D.

THEOREM 22. Let T be a Bezout overring of D. Then $D_{*_{(T)}}$ is a Bezout overring of D[X] and $D_{*_{(T)}} \cap K = T$.

PROOF. Since $*_{(T)}$ is e.a.b. by Lemma 21, $D_{*_{(T)}}$ is a Bezout domain and $D_{*_{(T)}} \cap K = D^{*_{(T)}} = T$ by Proposition 2.

PROPOSITION 23 (cf. [G, Proposition (32.19)]). Let D be a Prüfer domain, and let $\{D_{\alpha}\}$ be the set of overrings of D. The mapping $D_{\alpha} \to (D_{\alpha})_b$ is a one-to-one mapping from the set $\{D_{\alpha}\}$ onto the set of overrings of D_b

PROOF. Let R be an overring of D_b . Then $R = \bigcap W_\lambda$, where $\{W_\lambda\}$ is a family of valuation overrings of R. If we set $V_\lambda = W_\lambda \cap K$, then V_λ is a valuation overring of $R \cap K$ and $R \cap K = \bigcap V_\lambda$. Set $A^* = \bigcap AV_\lambda$ for all $A \in F(D)$. Then, by Proposition 20, * is equivalent to the b-operation on $R \cap K$. By Proposition 15(2), we have $R = (R \cap K)_* = (R \cap K)_b$. Thus the mapping $\pi: D_\alpha \to (D_\alpha)_b$ is surjective.

Next, let D_{α} and D_{β} be two overrings of D and assume that $(D_{\alpha})_b = (D_{\beta})_b$. Then, by Proposition 2(a), $D_{\alpha} = (D_{\alpha})_b = (D_{\alpha})_b \cap K = (D_{\beta})_b \cap K = (D_{\beta})_b = D_{\beta}$, because, by [G, Theorem (23.4)], D_{α} and D_{β} are both integrally closed. Thus π is also injective and our proof is complete.

PROPOSITION 24 (cf. [G, Exercise 12, p. 409]). Let V be a rank one valuation ring of the form K(X) + M, where M is the maximal ideal of V. If J = K + M, then J admits a unique S-representation and J has a unique K-representation ring, but J is not a Prüfer domain.

PROOF. First, by [G2, Theorem A i), p. 561], J is not a Prüfer domain. Next, by [BG, Theorem 3.1], each overring of J is of the form either $D_{\lambda} + M$ or V, where $\{D_{\lambda}\}$ is the family of subrings of K(X) containing K. Moreover, by [G2, Theorem A h)], $D_{\lambda} + M$ is a valuation ring of V if and only if D_{λ} is a valuation ring on K(X). Now, by [G, Exercise 4, p. 249], the family of nontrivial valuation rings on K(X) containing K is $\{K[X^{-1}]_{(X^{-1})}\} \cup \{K[X]_{(P(X))}|P(x)$ is prime in $K[X]\}$. In above, $K[X^{-1}]_{(X^{-1})}$ is the valuation ring of the valuation v_{∞} , where $v_{\infty}(0) = \infty$ and $v_{\infty}(f(X)) = -deg f(X)$ for each $f(X) \neq 0$ in K[X], and $K[X]_{(P(X))}$ is the valuation ring of the P(X)-adic valuation on K(X). Then $\{K[X^{-1}]_{(X^{-1})} + M\} \cup \{K[X]_{(P(X))} + M|P(X)$ is prime in $K[X]\}$ gives a unique S-representation of J = K + M, and our assertion follows.

PROPOSITION 25. Let $\{V_{\alpha}|\alpha\in A\}$ be a family of valuation overrings of D and let $\{W_{\beta}|\beta\in B\}$ be the family of all valuation rings W on L such that $W\cap K$ is in $\{V_{\alpha}\}$. Assume that L is an algebraic extension field of K and denote by J the integral closure of D_* in L, where $D_* = \bigcap \{V_{\alpha}|\alpha\in A\}$. Then

- $(1) J = \bigcap \{ W_{\beta} | \beta \in B \}.$
- (2) Let *' and * be semistar-operations on J and D induced by $\{W_{\beta}\}$ and $\{V_{\alpha}\}$ respectively. Then $J_{*'}$ is the integral closure of D_{*} in L(X).

PROOF. (1) follows from [G, Exercise 14, p. 409].

(2) Let \overline{V}_{α} and \overline{W}_{β} be the trivial extension of V_{α} and W_{β} to K(X) and L(X) respectively. Then, by Corollary 11, $D_* = \bigcap \{ \overline{V}_{\alpha} | \alpha \in A \}$ and $J_{*'} = \bigcap \{ \overline{W}_{\beta} | \beta \in B \}$. It is easily seen that if $\overline{W}_{\beta} \cap K = V_{\alpha}$, then $\overline{W}_{\beta} \cap K(X) = \overline{V}_{\alpha}$. Next, let W be a valuation ring on L(X) such that $W \cap K(X) \in \{ \overline{V}_{\alpha} | \alpha \in A \}$. Then by [G, Theorem (19.16)], W and $W \cap K(X)$ have the same rank, since L(X)/K(X) is algebraic. Moreover, $W \cap L \in \{W_{\beta} | \beta \in B \}$, because $W \cap K \in \{V_{\alpha} | \alpha \in A \}$. Let \overline{W} be the trivial extension of $W \cap L$ to L(X) and let M be the maximal ideal of $W \cap L$. Then, by [BJ, Theorem 3.6.20], $\overline{W} = (W \cap L)[X]_{M[X]}$. By [K, Theorems]

39 and 68], we have height $(M) = \operatorname{height}(M[X])$, and so \overline{W} and $W \cap L$ have the same rank. On the other hand, W and $W \cap L$ also have the same rank. Then, since $W \supset \overline{W}$, we have $W = \overline{W}$. Hence our assertion also follows from [G, Exercise 14, p. 409].

DEFINITION 26. Let $\{M_{\beta}|\beta \in B\}$ be the set of maximal ideals of D and set $S = D[X] - \bigcup \{M_{\beta}[X]|\beta \in B\}$, where X is an indeterminate over D. Then we denote by D(X) the quotient ring $D[X]_S$. Then $\{M_{\beta}D(X)|\beta \in B\}$ is the set of maximal ideals of D(X).

PROPOSITION 27 (cf. [G. Theorem (33.3)]). If D' is the integral closure of D, then D(X) is contained in J, the Kronecker function ring of D' with respect to the b-operation.

PROOF. Let $\{V_{\alpha}|\alpha\in A\}$ be the set of valuation overrings of D. Then $D'=\bigcap\{V_{\alpha}|\alpha\in A\}$. Here, by [G, Corollary (19.7)(2)], we may assume that each V_{α} is centered on a maximal ideal of D. By Corollary 11, $J=(D')_b=\bigcap\{W_{\alpha}|\alpha\in A\}$, where W_{α} is the trivial extension of V_{α} to K(X) and, by [BJ, Theorem 3.6.20], $W_{\alpha}=V_{\alpha}[X]_{P_{\alpha}[X]}=V_{\alpha}(X)$, where P_{α} is the maximal ideal of V_{α} . Now, let $\{M_{\beta}|\beta\in B\}$ be the set of maximal ideals of D. Then, by [G, Theorem (33.3)], $D(X)=\bigcap\{D[X]_{M_{\beta}[X]}|\beta\in B\}=\bigcap\{D_{M_{\beta}}(X)|\beta\in B\}$. If $P_{\alpha}\cap D=M_{\beta}$, then $D_{M_{\beta}}(X)\subset V_{\alpha}(X)$, and so each $W_{\alpha}=V_{\alpha}(X)$ contains some $D_{M_{\beta}}(X)$. Hence $D(X)\subset J=(D')_b$ as wanted.

Let * be an e.a.b. semistar-operation on a domain D. We set $U^* = \{g \in D^*[X] | c(g)^* = D^*\}$. Then U^* is a multiplicative system of $D^*[X]$.

PROPOSITION 28 (cf. [G, Theorem (33.4)]). Let D be a domain with quotient field L, let X be an indeterminate over D, and let D_b be the Kronecker function ring of D with respect to the b-operation. The following conditions are equivalent:

- (1) D^b is a Prüfer domain.
- $(2) \ D^b[X]_{U^b} = D_b.$
- (3) $D^b[X]_{U^b}$ is a Prüfer domain.
- (4) D_b is a quotient ring of $D^b[X]_{U^b}$.

PROPOSITION 29 (cf. [G, Theorem (34.11)]. Let D be a Prüfer v-multiplication ring with quotient field L. Then D is a v-domain, and if H is the group of divisor classes of D of finite type, the H is order isomorphic to the group of divisibility of D_v .

PROPOSITION 30 (cf. [G, Exercise 6, p. 430]). Assume that D is a v-domain, that X is a set of indeterminates over D. Then the following conditions are equivalent:

- (1) D is a Prüfer v-multiplication ring.
- (2) D_v is a quotient ring of D[X].

PROPOSITION 31 (cf. [G, Proposition (36.7)]). Let D be a domain which is not a field. The following conditions are equivalent:

- (1) D^b is almost Dedekind.
- (2) $D^b[X]_{IIb}$ is almost Dedekind.
- (3) D_b is almost Dedekind.

PROPOSITION 32 (cf. [G, Proposition (38.7)]). In an integral domain D the following conditions are equivalent:

- (a) D^b is a Dedekind domain.
- (b) $D^b[X]_{U^b}$ is Dedekind.
- (c) D_b is Dedekind.
- (d) D_b is Noetherian.
- (e) D_b is a PID.

PROPOSITION 33 (cf. [G, Corollary (44.12)]). If D a Krull domain with quotient field K, then D_v is a PID.

PROPOSITION 34 (cf. [G, Exercise 21, p. 558]). Assume that D admits a Kronecker function ring D_* which is a PID. Then D^* is a Krull domain.

3. The case of commutative rings with zero-divisors

Let R be a commutative ring with zero-divisors. A non-zero-divisor of R is called a *regular element* of R and an ideal I of R is said to be *regular* if it contains a regular element of R.

DEFINITION 35. A commutative ring R is called a *Marot ring* if each regular ideal of R is generated by regular elements. Let f(X) be a regular element of a polynomial ring R[X]. The ideal of R generated by the coefficients of f(X) is called the *content* of f(X) and is denoted by c(f).

DEFINITION 36. A commutative ring R is said to have the *Property A* if for any regular element f(X) of R[X], the content ideal c(f) is a regular ideal of R.

Hereafter, a commutative ring R will denote a Marot ring with the property A and the total quotient ring of R will be denoted by K. Let F(R) be the set of nonzero R-submodules of K and let F'(R) be the subset of F(R) consisting of all members I of F(R) such that there exists a regular element d of R with $dI \subseteq R$. Let f(R) be the subset of finitely generated members of F(R).

A mapping $A \to A^*$ of F(R) into F(R) is called a semistar-operation on R if the following conditions hold for all regular elements $a \in K$ and $I, J \in F(R)$:

- (1) $(aI)^* = aI^*$;
- (2) $I \subset I^*$; if $I \subset J$, then $I^* \subset J^*$; and
- (3) $(I^*)^* = I^*$.

R is called a *Bezout ring* if every finitely generated regular ideal of R is a principal ideal.

LEMMA 37. Let T be a Bezout overring of R, then $A \to A^{*(T)} = AT$ is an a.b. semistar-operation of R.

PROOF. The proof is the same of that in Lemma 20.

Let $R_* = \{0\} \cup \{f/g | f, g \in R[X], g \text{ is regular and } c(f)^* \subseteq c(g)^*\}$. Then we have the following.

THEOREM 38. Let T be a Bezout overring of R. Then $R_{*(T)}$ is a Bezout overring of R[X] and $R_{*(T)} \cap K = T$.

References

- [BJ] S. Balcerzyk and T. Józefiak, Commutative Noetherian and Krull Rings, Ellis Horwood Limited and PWN-Polish Scientific Publishers, 1989.
- [BG] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M, Michigan Math. J. 20 (1973), 79-95.
- [C] P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Philos. Soc., 64 (1968), 251-264.
- [G] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
- [G2] R. Gilmer, Multiplicative ideal theory, Queen's Series in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1968.
- [H] J. A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York and Basel, 1988.
- [K] I. Kaplansky, Coummutative rings, revised ed., Univ. of Chicago Press, Chicago, 1974.
- [OM] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Toyama J. Math., 17 (1994), 1-21.

Department of Mathematics, Oyama National College of Technology, Nakakuki, Oyama, Tochigi 323, JAPAN

Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310, JAPAN