
TSUKUBA J. MATH.
Vol. 21 No. 2 (1997), 443-448

REMARKS ON SPACES WITH SPECIAL TYPE OF
$k$-NETWORKS

By

Masami SAKAI

Abstract: We negatively answer the following questions posed by
Y. Ikeda and Y. Tanaka. (1) Does every closed image of a space $X$

with a star-countable k-network have a star-countable k-network, or
a point-countable k-network? (2) Is every spaoe $X$ with a locally
countable k-network a $\sigma$-space, or a space in which every closed
subset is a $G_{\sigma}$-set?

1. Introduction

All spaces we consider here are completely regular Hausdorff and all maps
are continuous and onto. A collection of subsets of a space is said to be
star-countable (resp. point-countable) if each element (resp. single point) meets
only countably many members. Obviously a star-countable collection is point-
countable. A collection $\mathscr{P}$ of subsets of a space $X$ is called a k-network if
whenever $K$ is a compact subset of an open set $U$ , there exists a finite subset $\mathscr{P}^{\prime}$

of $\mathscr{P}$ such that $K\subset\cup \mathscr{P}^{\prime}\subset U$ . If we replace “compact” by “single point”, then
$\mathscr{P}$ is called a network. A space with a $\sigma$-locally finite network is called a $\sigma$-space.

Conceming spaces with special type of k-networks, Y. Ikeda and Y. Tanaka
posed the following questions in [7], see also [10] and [12].

QUESTIONS. (1) Does every closed image of a space $X$ with a star-countable
k-network have a star-countable k-network, or a point-countable k-network?

(2) Is every space $X$ with a locally countable k-network a $\sigma$-space, or a
space in which every closed subset is a $G_{\sigma}$-set?

The question (1) has a positive answer under some conditions.
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THEOREM 1 [10]. Let $f:X\rightarrow Y$ be a closed map such that $X$ has a point-
countable k-network. If one of the following properties holds, then $Y$ has a
point-countable k-network.

(a) $X$ is a k-space,
(b) Each point of $X$ is a $G_{\sigma}$-set,
(c) $X$ is a normal, isocompact space,
(d) For each $y\in Y\partial f^{-1}(y)$ is Lindel\"of, where $\partial f^{-1}(y)$ is the boundary of

$f^{-1}(y)$ .
The question (2) has a positive answer if $X$ is a k-space, in fact a k-space

with a locally countable k-network is the topological sum of $\aleph_{0}$ -spaces, see [7]
(cf. [9]).

In this paper we give counterexamples for the questions and slightly
generalize the case (d) of Theorem 1.

2. Counterexamples

In this paper we endow $\omega \mathfrak{l}$ with the discrete topology. For a subset $A$ of a
discrete space $D$ we put $A^{*}=Cl_{\beta D}A-A$ , where $\beta D$ is the Stone-\v{C}ech com-
pactification of $D$ .

For convenience, we call a space $X$ a CF-space if every compact subset of
$X$ is finite. If $X$ is a CF-space, then the collection $\{\{x\}:x\in X\}$ is obviously a
start-countable k-network of $X$ .

Recall that the one-point compactification of $\omega_{1}$ does not have any point-
countable k-network. In fact, a compact space with a point-countable k-network
is metrizable, see Theorem 3.1 in [3].

Hence the following example shows that the first question has a negative
answer.

EXAMPLE 1. There exists a closed map $f$ from a CF-space $X$ onto the one-
point compactification of $\omega_{1}$ .

PROOF. A point $z$ of a space $Z$ is called a weak P-point if $z\not\in\overline{E}$ for any
countable $E\subset Z-\{z\}$ . It is known that $\omega^{*}$ contains weak P-points [8]. Hence
we can see that the set $P=$ { $p\in\omega_{1}^{*}$ : $p$ is a weak P-point in $\omega_{1}^{*}$ } is dense in $\omega_{1}^{*}$ .

We set $X=\omega_{1}\cup P$, the subspace of $\beta\omega_{1}$ . It is easy to check that $X$ is a CF-
space, because a compact space in which every point is a weak P-point is finite,
and every convergent sequence of $\beta\omega_{1}$ is finite. Let $Y$ be the spaoe obtained by
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collapsing the closed set $P$ to one point, and let $f$ the canonical map from $X$

onto $Y$ . Then $f$ is a closed map, and since the closure of an infinite subset of $\omega_{1}$

intersects with $P,$ $Y$ is the one-point compactification of $\omega_{1}$ . $\square $

A collection $\mathscr{P}$ of subsets of a space $X$ is called a cs-network if whenever $\sigma$

is a sequence converging to a point $x$ such that $\sigma\cup\{x\}\subset U$ with $U$ open in $X$ ,

then there exists a $P\in \mathscr{P}$ such that $x\in P\subset U$ and $\sigma$ is eventually in $P$ .
It is known that every space is the perfect image of an extremally dis-

connected space, see [13], where a space is extremally disconnected if the closure
of an open set is open. Since every convergent sequence of an extremally
disconnected space is finite, every space is the perfect image of a space with a
point-countable cs-network. So, it is natural to ask whether every space is the
closed image of a space with a point-countable k-network.

The author does not know if it is tme. But, at least, the following holds.

PROPOSITION. Every space is the quotient image of a CF-space.

PROOF. Let $Z$ be a space. As noted above, $Z$ is the perfect image of an
extremally disconnected space $Y$ . For each point $y\in Y$ , let $Y_{y}$ be the space
obtained by isolating all points of $Y$ but $y$ . Then $Y$ is canonically the quotient
image of the topological sum $X=\oplus\{Y_{y} : y\in Y\}$ . If $K$ is an infinite compact
subset of $Y_{y}$ , then it contains a non-trivial convergent sequence to $y$ . Hence $Y$

must have a non-trivial convergent sequence. This is a contradiction. Thus $X$ is
a CF-space, and $Z$ is the quotient image of X. $\square $

If $X$ is a locally countable CF-space, then the collection $\{\{x\}:x\in X\}$ is
obviously a locally countable k-network of $X$ .

A space is countab $ly$ metacompact if every countable open cover has a
point-finite open refinement. It is not difficult to check that a space $X$ is
countable metacompact iff whenever $\{C_{n}\}$ is a decreasing sequence of closed
sets of $X$ with empty intersection, there exist open sets $U_{n}\supset C_{n}$ with
$\cap\{U_{n} : n\in\omega\}=\otimes$ .

Recall the diagram below:

$\sigma- space\rightarrow perfect$ (every closed set is a $G_{\sigma}- set$) $\rightarrow countably$ metacompact

Hence the following example shows that the second question is also
negative.
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EXAMPLE 2. There exists a locally countable CF-space $X$ which is not
countably metacompact.

PROOF. Let $D$ be a set of cardinality $2^{\omega}$ . Let $\{P_{\alpha} : \alpha<2^{\omega}\}$ be an almost
disjoint family of countable infinite subsets of $D$ such that for every uncountable
$P\subset D$ there exists some $\alpha$ with $P_{\alpha}\subset P$ . Such a family exists, for example see [1,
Example 4.2]. For each $\alpha$ , let $\{P_{\alpha n} : n\in\omega\}$ be a disjoint family of infinite subsets
of $P_{\alpha}$ . We set $\mathscr{P}=\{P_{\alpha n} : \alpha<2^{\omega}, n\in\omega\}$ . We endow $D$ with the discrete top-
ology. For each $\alpha,n$ , pick a point $p_{\alpha n}\in P_{\alpha n}^{*}$ .

We set $X=D\cup\{p_{\alpha n} : \alpha<2^{\omega}, n\in\omega\}$ , the subspace of $\beta D$ . Since $\mathscr{P}$ is almost
disjoint, $X-D$ is a closed discrete subset of X. $X$ is obviously a locally
countable CF-space.

We see that $X$ is not countably metacompact. For each $ n\in\omega$ , let
$C_{n}=\{p_{\alpha k}:\alpha<2^{\omega}, k\geq n\}$ . Each $C_{n}$ is closed in $X$ and $\cap\{C_{n} : n\in\omega\}=\emptyset$ .
Assume that there exist open sets $U_{n}\supset C_{n}$ with $\cap\{U_{n} : n\in\omega\}=\emptyset$ . Since $D$ is
uncountable, there exists $ n\in\omega$ such that $D-U_{n}$ is uncountable. Then there
exists some $\alpha$ with $P_{\alpha}\subset D-U_{n}$ . Hence the closure of $D-U_{n}$ must contain
$p_{\alpha n}\in C_{n}$ . This is a contradiction. Thus $X$ is not countably metacompact. $\square $

3. A generalization

In this section we slightly generalize the case (d) in Theorem 1.
A subset $S$ of a space $X$ is z-embedded in $X$ if every zero-set of $S$ is the

restriction to $S$ of some zero-set of $X$ . A map $f$ : $X\rightarrow Y$ is compact-covering if
every compact subset of $Y$ is the image of a compact subset of $X$ . For
realcompact spaces, see [5].

LEMMA 1. Let $f:X\rightarrow Y$ be a closed map. Then (1) and (2) below hold.
(1) If $Y$ is realcompact and for each $y\in Yf^{-1}(y)$ is realcompact, z-

embedded in $X$ , then $X$ is realcompact. [2, Theorem 3.9]
(2) If $X$ is realcompact, then $f$ is compact-covering. [4, Theorem 3.4]

COROLLARY. Let $f$ : $X\rightarrow Y$ be a closed map. If for each $y\in Y\partial f^{-1}(y)$ is
realcompact, z-embedded in $X$ , then $f$ is compact-covering.

PROOF. Let $K$ be a compact subset of $Y$ . For each $y\in K$, choose any
$x_{y}\in f^{-1}(y)$ . We set:

$A_{y}=\left\{\begin{array}{l}\partial f^{-1}(y) if\partial f^{-l}(y)\neq\emptyset\\\{x_{y}\} if\partial f^{-1}(y)=\otimes\end{array}\right.$
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Then the set $A=\cup\{A_{y} : y\in K\}$ is closed in $X$ , hence the restricted map
$g=f|A:A\rightarrow K$ is a closed map. By lemma 1 (1), $A$ is realcompact. By Lemma
1 (2), $g$ is compact-covering. So there exists a compact set $K^{\prime}\subset A$ with
$f(K^{\prime})=K$ . $\square $

Let $\mathscr{P}$ be a collection of subsets of a space $X,$ $\mathscr{P}$ is called a $wcs^{*}$ -network of
$X$ if whenever $\{x_{n}\}$ is a sequence converging to a point $x\in X$ and $U$ is an open
set of $X$ with $\{x\}\cup\{x_{n}\}\subset U$ , there exists a $P\in \mathscr{P}$ such that $P\subset U$ and $P$

contains some subsequence of $\{x_{n}\}$ .

LEMMA 2 [11, Proposition $1.2.(1)$]. Let $\mathscr{P}$ be a point-countable cover of $X$ .
Then $\mathscr{P}$ is a k-network of $X$ iff $\mathscr{P}$ is a wcs*-network of $X$ and each compact
subset of $X$ is sequentially compact.

A Lindelof space is realcompact [5, 8.2], and every Lindelof subspace of a
space $X$ is z-embedded in $X[6,5.3]$ . Hence the following theorem generalizes
the case (d) of Theorem 1.

THEOREM 2. Let $f:X\rightarrow Y$ be a closed map such that for each $y\in Y$

$\partial f^{-1}(y)$ is realcompact, z-embedded in $X$ . If $X$ has a point-countable k-network,
then so does $Y$ .

PROOF. The idea of the proof is due to [10].
Let $K$ be a compact subset of $Y$ . By the corollary above, there exists a

compact set $K^{\prime}$ of $X$ with $f(K^{\prime})=K$ . As noted in the second section, a compact
space with a point-countable k-network is metrizable, so $K^{\prime}$ is metrizable.
Therefore $K$ is metrizable, in particular sequentially compact.

By Lemma 2 we have only to construct a point-countable $wcs^{*}$ -network
of $Y$ .

Let $\mathscr{P}$ be a point-countable k-network of $X$ . For each $y\in Y$ choose any
$x_{y}\in f^{-1}(y)$ . We set $A=\{x_{y} : y\in Y\}$ and $\mathscr{P}^{\prime}=\{f(P\cap A) : P\in \mathscr{P}\}$ . Obviously $\mathscr{P}^{\prime}$

is point-countable. We see that $\mathscr{P}^{\prime}$ is a wcs’-network of $Y$ . Let $\{y_{n} : n\in\omega\}$ be a
sequence converging to a point $y\in Y$ , and $U$ be an open set of $Y$ with $K\subset U$ ,
where $K=\{y\}\cup\{y_{n} : n\in\omega\}$ . Since the set $J=\partial f^{-1}(y)\cup\{x_{n} : n\in\omega\}$ , where
$x_{n}=x_{y_{n}}$ , is closed in $X$ , the restricted map $g=f|J:J\rightarrow K$ is a closed map. By
Lemma 1 (1), $J$ is realcompact. By Lemma 1 (2), $g$ is compact-covering. Hence
there exists a compact set $J^{\prime}\subset J$ such that $g(J^{\prime})=K$ . Note that $\{x_{n} : n\in\omega\}\subset$

$J^{\prime}\subset f^{-1}(U)$ . Since $\mathscr{P}$ is a k-network of $X$ , there exists a $P\in \mathscr{P}$ such that



448 Masami SAKAI

$P\subset f^{-1}(U)$ and $P\cap\{x_{n} : n\in\omega\}$ is infinite. The set $f(P\cap A)$ is a desired one.
Thus $\mathscr{P}^{\prime}$ is a $wcs^{*}$ -network of Y. $\square $

Lemma 1 (2) and the same idea as the proof of Theorem 2 lead to the
following theorem.

THEOREM 3. Let $f$ : $X\rightarrow Y$ be a closed map such that $X$ is realcompact. If
$X$ has a point-countable k-network, then so does $Y$ .
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