
TSUKUBA J. MATH.
Vol. 21 No. 1 (1997), 239-250

INDUCED MAPPINGS ON HYPERSPACES

By

Hiroshi HOSOKAWA

Abstract. Let $f$ : $X\rightarrow Y$ be a mapping between continua. Then $f$

induces two mappings $C(f):C(X)\rightarrow C(Y)$ and $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ in the
natural way. In this paper, we shall study about the following
question: Dose the correspondences $f\rightarrow C(f)$ and $f\rightarrow 2^{f}$ preserve
or reverse what classes of mappings? When $Y$ is locally connected,
many classes of mappings are preserved by these correspondences.
We shall consider the classes of monotone, open, OM, confluent,
quasi-monotone and weakly monotone mappings.

1. Introduction

In this paper, continua are compact connected metric spaces, mappings are
continuous functions. Throughout this paper, the letters $X$ and $Y$ will always
denote nondegenerate continua and a mapping $f:X\rightarrow Y$ is always onto. We
shall use the letter $d$ for the metric function for both spaces $X$ and $Y$. The
hyperspaces of $X$ are the metric spaces $2^{X}=\{K\subset X:K$ is nonempty and
compact} and $C(X)=$ {$K\in 2^{x}$ : $K$ is connected} with the Hausdorff metric $H_{d}$

(see [8] for the definition of the Hausdorff metric and basic properties of
hyperspaces). A mapping $f$ : $X\rightarrow Y$ induces mappings $C(f):C(X)\rightarrow C(Y)$

and $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ naturally. If $g:Y\rightarrow Z$ is an another mapping, then
$C(g\circ f)=C(g)\circ C(f)$ and $2^{g\circ f}=2^{g}\circ 2^{f}$ hold. Clearly $2^{f}$ is onto (since we
always assume that $f:X\rightarrow Y$ is onto) but $C(f)$ is onto if and only if $f$ is
weakly confluent.

The following three statements for a mapping $f$ : $X\rightarrow Y$ are equivalent:
(1) $f$ is a homeomorphism;
(2) $C(f)$ is a homeomorphism;
(3) $2^{f}$ is a homeomorphism.
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mapping, OM-mapping, confluent mapping, quasi-monotone mapping, weakly monotone mapping,
locally connected continuum.
AMS subject classifications (1980): $54B20,54C05$ .
Received April 26, 1995



240 Hiroshi HOSOKAWA

We shall study in the sections below the relations about the above type
between the mappings $f,$ $C(f)$ and $2^{f}$ .

Some of the results are improvement of those partially appeared in [2] and
[3]. But for completeness, we shall describe their proofs.

2. Definitions and Notations

We shall give the list of definitions for mappings treated hereafter. A
mapping $f:X\rightarrow Y$ is said to be

(1) monotone if for each $y\in Y,$ $f^{-1}(y)$ is connected; equivalently, if for each
subcontinuum $L$ of $Y,$ $f^{-1}(L)$ is connected;

(2) open if $f$ maps every open set in $X$ onto an open set in $Y$;
(3) an OM-mapping (resp. an MO-mapping) if there are mappings $g$ and $h$ ,

where $g$ is open and $h$ is monotone, such that $f=g\circ h$ (resp. $f=h\circ g$);
(4) confluent if for each subcontinuum $L$ of $Y$, each component of $f^{-1}(L)$ is

mapped by $f$ onto $L$ ;
(5) quasi-monotone if for each subcontinuum $L$ of $Y$ with a nonempty

interior, the set $f^{-1}(L)$ has a finite number of components and $f$ maps each of
them onto $L$ ;

(6) weakly monotone if for each subcontinuum $L$ of $Y$ with a nonempty
interior, each component of the set $f^{-1}(L)$ is mapped by $f$ onto $L$ .

For the implications between these classes of mappings, see p28 in [7].
Let $\mathscr{H}$ denote either $C(X)$ or $2^{X}$ . A Whitney map $\mu:\mathscr{H}\rightarrow[0,1]$ is a

mapping such that $\mu(\{x\})=0$ for each $x\in X,$ $\mu(X)=1$ and if $A,$ $B\in \mathscr{H}$ with
$A\subset B\neq A$ , then $\mu(A)<\mu(B)$ . Such a mapping always exists ([9] or [8]). Let
$A_{0},$ $A_{1}\in \mathscr{H}$ . A mapping $\sigma$ : $[0,1]\rightarrow \mathscr{H}$ is said to be a segment with respect to the
Whitney map $\mu$ from $A_{0}$ to $A_{1}$ provided that $\sigma(0)=A_{0}$ , $\sigma(1)=A_{1}$ ,
$\mu[\sigma(t)]=(1-t)\mu(A_{0})+t\mu(A_{1})$ for each $t\in[0,1]$ and if $0\leq t_{1}\leq t_{2}\leq 1$ , then
$\sigma(t_{1})\subset\sigma(t_{2})$ . When we use a segment, we will consider it with respect to some
fixed Whitney map. A condition of the existence of a segment is as follows:

LEMMA 2.1 ([4] or [8]). Let $A_{0},$ $A_{1}\in \mathscr{H}$ , where $\mathscr{H}$ denotes either $C(X)$ or
$2^{X}$ . Then there exists a segment from $A_{0}$ to $A_{1}$ if and only $lf$

(2.1.1) $A_{0}\subset A_{1}$ if $\mathscr{K}=C(X)$ ,
(2.1.2) $A_{0}\subset A_{1}$ and each component of $A_{1}$ intersects $A_{0}$ if $\mathscr{H}=2^{X}$ .

Let $A_{1},$ $A_{2},$
$\ldots$ be a sequence of nonempty subsets of $X$. Then $\lim\inf A_{n}$ and

$\lim\sup A_{n}$ are defined by $\lim\inf A_{n}=\{x\in X$ : if $U$ is a neighborhood of $x$ in $X$,
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then $ U\cap A_{n}\neq\phi$ for allmost all $n$ }, $\lim\sup A_{n}=\{x\in X$ : if $U$ is a neighborhood
of $x$ in $X$, then $ U\cap A_{n}\neq\phi$ for infinitely many $n$ }. If $\lim\inf A_{n}=\lim\sup A_{n}=A$ ,

then we say that $\{A_{n}\}_{n=1}^{\infty}$ converges to $A$ and wright it by $\lim A_{n}=A$ . Following
is known:

LEMMA 2.2 [8]. Let $A_{1},$ $A_{2},$
$\ldots$ be a sequence in $2^{X}$ (resp. $C(X)$ ). Then

$\lim A_{n}=A$ in the sense above $lf$ and only $lf$ it converges to $A$ with respect to the

Hausdorff metric for $2^{X}$ (resp. $C(X)$ ).

When we say a sequence $\{\Lambda_{n}\}_{n=1}^{\infty}$ converges in $2^{X}$ or $C(X)$ , we will mean in
a convenient sense of one of the two senses. We shall wright $\overline{A}$, int $A$ for the
closure of $A$ , the interior of $A$ respectively. If $\mathscr{A}$ is a subset of a hyperspace $\mathscr{H}$ ,
then we shall wright $Int\mathscr{A}$ for the interior of $\mathscr{A}$ in $\mathscr{H}$ .

For a subset $A$ of a space, we say that $A=A_{1}\cup A_{2}$ is a separation of $A$ if
$A_{1}\neq\phi\neq A_{2}$ and $\overline{A}_{1}\cap A_{2}=A_{1}\cap\overline{A}_{2}=\phi$ .

LEMMA 2.3 [10]. If $A$ and $B$ are nonempty disjoint closed subsets of a
compact set $K$ such that no component of $K$ intersects both $A$ and $B$, then there
exists a separation $K=K_{a}\cup K_{b}$ of $K$ such that $A\subset K_{a}$ and $B\subset K_{b}$ .

Furthere we shall use the following notation. For any collection $\mathscr{A}$ of
subsets of a space, $\mathscr{A}^{*}$ denotes the union of all members contained in $\mathscr{A}$ .

3. Monotone Mappings

If X is a subcontinuum of $2^{X}$ and $\ovalbox{\tt\small REJECT}^{r}\cap C(X)\neq\phi$ , then $\ovalbox{\tt\small REJECT}^{r*}$ is connected [8].

This is generalized as follows:

LEMMA 3.1. Let $\mathscr{K}$ be a subcontinuum of $2^{X}$ and $K\in \mathscr{K}$ . Then each
component of $\mathscr{M}^{r*}$ intersects $K$.

PROOF. On the contrary, suppose there is a component $C$ of $\mathscr{K}^{*}$ such that
$ C\cap K=\phi$ . Then by lemma 2.3, there is a separation $ff^{*}=A\cup B$ of $\ovalbox{\tt\small REJECT}^{r*}$ such
that $K\subset A$ and $C\subset B$ . Put $\mathscr{M}_{0}^{\prime}=\{L\in \mathscr{K} : L\subset A\}$ and $ff_{1}=\{L\in ff$ ;

$L\cap B\neq\phi\}$ . Then we have a separation $\mathscr{K}=\mathscr{K}_{0}\cup \mathscr{K}_{1}$ of $\mathscr{K}$ . This contradicts to
the connectedness of X.

THEOREM 3.2. Let $f$ : $X\rightarrow Y$ be a mapping. Then, the following three
statements are equivalent:
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(3.2.1) $f$ is a monotone mapping;
(3.2.2) $C(f)$ is a monotone mapping;
(3.2.3) $2^{f}$ is a monotone mapping.

PROOF. $(3.2.1)\Rightarrow(3.2.2)$ : Suppose that $f$ is monotone and let $L$ be an
arbitrary element of $C(Y)$ . Put $M=f^{-1}(L)$ and let $K$ be an arbitrary element of
$[C(f)]^{-1}(L)$ . Then, since $f$ is monotone, $M$ is a subcontinuum of $X$ and contains
$K$. Therefore, by lemma 2.1, there is a segment $\sigma$ from $K$ to $M$ in $C(X)$ . It is
evident that the image of $\sigma$ is contained in $[C(f)]^{-1}(L)$ . Thus, in particular,
$[C(f)]^{-1}(L)$ is arcwise connected.

$(3.2.2)\Rightarrow(3.2.3)$ : Suppose that $C(f)$ is monotone and let $B$ be an arbitrary
element of 2. Put $A=f^{-1}(B)$ . Then $A\in[2^{f}]^{-1}(B)$ . Let $K$ be a component of
$A$ considered as a subset of $X$. Since $C(f)$ is monotone, $[C(f)]^{-1}(f(K))^{*}$ is
connected and contained in $f^{-1}(f(K))$ and hence is equal to $K$. Therefore every
component of $A$ intersects each element of $[2^{f}]^{-1}(B)$ . It follows by lemma 2.1
that $[2^{f}]^{-1}(B)$ is arcwise connected.

$(3.2.3)\Rightarrow(3.2.1)$ : Suppose that $2^{f}$ is monotone and let $y\in Y$ . Then by
lemma 3.1, $[2^{f}]^{-1}(\{y\})^{*}=f^{-1}(y)$ is connected.

REMARK. If $f$ is monotone and $\mathscr{B}$ is an arcwise connected subcontinuum of
2 (resp. $C(Y)$ ), then $[2^{f}]^{-1}(\mathscr{B})$ (resp. $[C(f)]^{-1}(\mathscr{B})$ ) is arcwise connected.

4. Open Mappings

The following lemma is a characterization of open mappings. The equiv-
alence $(4.1.1.)\Leftrightarrow(4.1.2)$ is appeared in [7], p.14 without proof (see also [5],
pp. 67-68).

LEMMA 4.1. Let $f:X\rightarrow Y$ be a mapping. Then the following three
statements are equivalent:

(4.1.1) $f$ is an open mapping;
(4.1.2) for each sequence $\{y_{n}\}_{n=1}^{\infty}$ in $Y$ such that $\lim y_{n}=y$ ,

$\lim supf^{-1}(y_{n})=f^{-1}(y)$ ;
(4.1.3) for each sequence $\{y_{n}\}_{n=1}^{\infty}$ in $Y$ such that $\lim y_{n}=y,$ $\{f^{-1}(y_{n})\}_{n=1}^{\infty}$

converges to $f^{-1}(y)$ .

PROOF. The implication $(4.1.3)\Rightarrow(4.1.2)$ is evident.
$(4.1.1)\Rightarrow(4.1.3)$ : Suppose $f$ is open and let $\{y_{n}\}_{n=1}^{\infty}$ be a sequence in $Y$ such

that $\lim y_{n}=y$ . Since the continuity of $f$ implies $\lim supf^{-1}(y_{n})\subset f^{-1}(y)$ , it is
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sufficient to show that $f^{-1}(y)\subset\lim inff^{-1}(y_{n})$ . Let $x\in f^{-1}(y)$ and $U$ an open
neighborhood of $x$ in $X$. Since $f(U)$ is a neighborhood of $y$ , there is an integer
$n_{0}$ such that $y_{n}\in f(U)$ and hence $ f^{-1}(y_{n})\cap U\neq\phi$ for each $n\geq n_{0}$ . Therefore
$x\in\lim inff^{-1}(y_{n})$ and hence we have $f^{-1}(y)\subset\lim inff^{-1}(y_{n})$ .

For any collection $U_{1},$ $U_{2},$
$\ldots,$

$U_{n}$ of open sets in $X$, let $\langle U_{1}, U_{2}, \ldots, U_{n}\rangle=$

{ $A\in 2^{X}$ : $A\subset\bigcup_{i=1}^{n}U_{i}$ and $ A\cap U_{i}\neq\emptyset$ for each $i=1,2,$
$\ldots,$

$n$ }. It is known
that:

LEMMA 4.2 [8]. The collection of all subsets of $2^{X}$ of the form
$\langle U_{1}, U_{2}, \ldots, U_{n}\rangle$ is a base for the Hausdorff metric topology for $2^{X}$ .

THEOREM 4.3. Let $f:X\rightarrow Y$ be a mapping. Consider the following three
statements:

(4.3.1) $f$ is an open mapping;
(4.3.2) $C(f)$ is an open mapping;
(4.3.3) $2^{f}$ is an open mapping.

Then (4.3.1) and (4.3.3) are equivalent and (4.3.2) implies (4.3.1).

PROOF. $(4.3.1)\Rightarrow(4.3.3)$ : Suppose $f$ is open and let $\{B_{n}\}_{n=1}^{\infty}$ be a sequence
in 2 such that $\lim B_{n}=B$ . Since $2^{f}$ is continuous, $\lim\sup[2^{f}]^{-1}(B_{n})$ is con-
tained in $[2^{f}]^{-1}(B)$ . Let $A$ be an arbitrary element of $[2^{f}]^{-1}(B)$ and let
$U_{1},$ $U_{2},$

$\ldots,$
$U_{r}$ be open sets in $X$ such that $ A\in\langle U_{1}, U_{2}, \ldots, U_{r}\rangle$ . Since $A$ is

compact, there are open sets $V_{1},$ $V_{2},$
$\ldots,$

$V_{r}$ of $X$ such that $\overline{V}_{j}\subset U_{i}$ for each
$i=1,2,$

$\ldots,$
$r$ and $ A\in\langle V_{1}, V_{2}, \ldots, V_{r}\rangle$ . Since $f$ is open, $\langle f(V_{1}),$ $f(V_{2})$ ,

. . . , $ f(V_{r})\rangle$ is an open neighborhood of $f(A)=B$ in $2^{Y}$ . Therefore there is an
integer $n_{0}$ such that $ B_{n}\in\langle f(V_{1}), f(V_{2}), \ldots, f(V_{r})\rangle$ for each $n\geq n_{0}$ . Put
$A_{n}=f^{-1}(B_{n})\cap[\bigcup_{i=1}^{r}\overline{V}_{i}]$ . Then it is easy to see that $ A_{n}\in[2^{f}]^{-1}(B_{n})\cap$

$[\langle U_{1}, U_{2}, \ldots, U_{r}\rangle]$ and hence by lemma 4.2, we have $A\in\lim\inf[2^{f}]^{-1}(B_{n})$ . It
follows from lemma 4.1, that $2^{f}$ is an open mapping.

$(4.3.3)\Rightarrow(4.3.1)$ : Suppose $2^{f}$ is an open mapping. Let $U$ be an open
set in $X$ and let $x\in U$ . Since $\langle U\rangle$ is an open neighborhood of
$\{x\}\in 2^{X},$ $ 2^{f}(\langle U\rangle)=\langle f(U)\rangle$ is an open neighborhood of $\{f(x)\}\in 2^{Y}$ . There-
fore $f(U)$ is a neighborhood of $f(x)$ . Since $x$ is an arbitrary element of $U,$ $f(U)$

is open in $Y$.
The proof of the implication $(4.3.2)\Rightarrow(4.3.1)$ is similar.
Note that in general, $C(f)([\langle U_{1}, U_{2}, \ldots, U_{n}\rangle]\cap C(X))$ is not equal to

$[\langle f(U_{1}), f(U_{2}), \ldots, f(U_{n})\rangle]\cap C(Y)$ even though $n=1$ . Following is an example
where $f$ is open, $X$ and $Y$ are locally connected but $C(f)$ is not open.
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EXAMPLE Let $X,$ $Y$ be plane continua defined by

$Y=$ { $(x,y)$ : $0\leq x\leq 1$ and $0\leq y\leq 1$ },

$X=\{(x,y) : (x,y)\in Yor(-x, -y)\in Y\}$ .

Define $f:X\rightarrow Y$ by

$f(x,y)=\left\{\begin{array}{l}(x,y) if(x,y)\in Y\\(-x,-y) if(x,y)\not\in Y.\end{array}\right.$

for each $(x,y)\in X$ . Let $K=$ { $(x,y)\in X$ : $x=0$ or $y=0$}. Then $f$ is open but
$C(f)$ is not open at $K\in C(X)$ .

5. OM-mappings

In [6], A. Lelek and D. R. Read had given a characterization of OM-
mappings as follows:

LEMMA 5.1 [6]. A mapping $f$ : $X\rightarrow Y$ is an OM-mapping $lf$ and only $lf$

for each $y\in Y$ and each sequence $\{y_{n}\}_{n=1}^{\infty}$ in $Y,$ $\lim y_{n}=y$ implies that
$\lim\sup f^{-1}(y_{n})$ meets each component of $f^{-1}(y)$ .

We always saw that the correspondence $f\rightarrow C(f)$ does not preserve the
class of open mappings. Nevertheless it preserves the class of OM-mappings.

THEOREM 5.2. For a mapping $f:X\rightarrow Y$ , the following three statements are
equivalent:

(5.2.1) $f$ is an OM-mapping;
(5.2.2) $C(f)$ is an OM-mapping;
(5.2.3) $2^{f}$ is an OM-mapping.

PROOF. The implication $(5.2.1)\Rightarrow(5.2.3)$ follows from Theorems 3.2 and
4.3.

$(5.2.1)\Rightarrow(5.2.2)$ : Suppose $f$ is an OM-mapping and $\{L_{n}\}_{n=1}^{\infty}$ is a sequence in
$C(Y)$ which converges to $L\in C(Y)$ . Let ff be a component of $[C(f)]^{-1}(L)$ . We
must show that $\lim\sup[C(f)]^{-1}(L_{n})\cap \mathscr{K}\neq\phi$ . Choose a point $x\in \mathscr{K}^{*}$ and put
$y=f(x)$ . There is a point $y_{n}\in L_{n}$ for each $n=1,2,$ $\ldots$ such that $\lim y_{n}=y$ . Let
$C$ be the component of $f^{-1}(y)$ containing $x$ . Since $f$ is an OM-mapping, there is
a point $x_{n}\in f^{-1}(y_{n})$ such that some subsequence of $\{x_{n}\}_{n=1}^{\infty}$ converges to some
point of $C$. We may assume $\lim x_{n}=x_{0}\in C$ . Let $K_{n}$ be the component of



Induced mappings on hyperspaces 245

$f^{-1}(L_{n})$ containing $x_{n}$ for each $n=1,2,$ $\ldots$ . Since OM-mappings are confluent,
we have $K_{n}\in[C(f)]^{-1}(L_{n})$ . We may assume that $\{K_{n}\}_{n=1}^{\infty}$ converges to $K_{0}$ for
some $K_{0}\in C(X)$ . It is easy to see that $K_{0}$ and $K_{0}\cup C$ are elements of $C(X)$

contained in the same component of $[C(f)]^{-1}(L)$ . Let $K$ be an element of $\mathscr{K}$

such that $x\in K$ . Then $K$ and $K_{0}\cup C$ are in the same component of $[C(f)]^{-1}(L)$ .
Thus $K_{0}\in\ovalbox{\tt\small REJECT}^{r}$ and hence we have $\lim\sup[C(f)]^{-1}(L_{n})\cap\ovalbox{\tt\small REJECT}^{\prime}\neq\phi$ . Therefore by
lemma 5.1, $C(f)$ is an OM-mapping.

$(5.2.2)\Rightarrow(5.2.1)$ : Suppose $C(f)$ is an OM-mapping and $\{y_{n}\}_{n=1}^{\infty}$ is a
sequence in $Y$ which converges to $y\in Y$ . Clearly the sequence $\{\{y_{n}\}\}_{n=1}^{\infty}$

considered as a sequence in $C(Y)$ , converges to $\{y\}\in C(Y)$ . Let $K$ be a
component of $f^{-1}(y)$ . Then $C(K)$ , considered as a subset of $C(X)$ , is a
component of $[C(f)]^{-1}(\{y\})$ . By the assumption and lemma 5.1, there is
$K_{n}\in[C(f)]^{-1}(\{y_{n}\})$ for each $n$ such that some subsequence of $\{K_{n}\}_{n=1}^{\infty}$ con-
verges to an element of $C(K)$ . Since $K_{n}\subset f^{-1}(y_{n})$ , this implies that
$\lim supf^{-1}(y_{n})\cap K\neq\phi$ . Therefore applying lemma 5.1 again, we have that $f$ is
an OM-mapping.

The implication $(5.2.3)\Rightarrow(5.2.1)$ is similarly proved.

THEOREM 5.3. If $f:X\rightarrow Y$ is an MO-mapping, then $2^{f}$ is also an MO-
mapping.

This follows directly from Theorems 3.2 and 4.3.

6. Confluent mappings

First we prove a special case.

LEMMA 6.1. Let $f:X\rightarrow Y$ be a confluent mapping.
(6.1.1) If $\mathscr{L}$ is an arc in $C(Y)$ , then each component of $[C(f)]^{-1}(\mathscr{L})$ is

mapped by $C(f)$ onto $\mathscr{L}$ .
(6.1.2) If $\mathscr{L}$ is an arc in $2^{Y}$ , then each component of $[2^{f}]^{-1}(g)$ is mapped by

$2^{f}$ onto $\mathscr{L}$ .

PROOF. We only prove (6.1.2) since (6.1.1) is more simple. Let $\mathscr{L}$ be an arc
in $2^{Y}$ and $\alpha$ : $[0,1]\rightarrow \mathscr{L}$ a homeomorphism. Let ff be a component of
$[2^{f}]^{-1}(\mathscr{L})$ . Without loss of generality, we may assume $\alpha(0)\in 2^{f}(\ovalbox{\tt\small REJECT}^{\prime})$ . It is
sufficient to show that $\alpha(1)\in 2^{f}(ff)$ . On the contrary, suppose that
$\alpha(1)\not\in 2^{f}(\mathscr{K})$ . Then by lemma 2.3, there is a separation $[2^{f}]^{-1}(\mathscr{L})=ff_{0}\cup ff_{1}$
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such that $ff\subset \mathscr{M}_{0}^{\prime}$ and $[2^{f}]^{-1}(\alpha(1))\subset \mathscr{K}_{1}$ . Put $t_{0}=\sup\{t:\alpha(t)\in 2^{f}(\mathscr{K}_{0})\}$ . Then
by compactness of $\ovalbox{\tt\small REJECT}_{0}^{\prime},$ $t_{0}<1$ and there is $K\in \mathscr{K}_{0}$ such that $2^{f}(K)=\alpha(t_{0})$ . Let
$M$ be the union of all components $C$ of $f^{-1}(\alpha(t_{0}))$ such that $ C\cap K\neq\phi$ . Note
that $M\in ff_{0}$ since $K$ and $M$ are joind by a segment in $[2^{f}]^{-1}(\alpha(t_{0}))$ . Let $M_{t}$ be
the union of all components of $f^{-1}(\alpha([t_{0}, t])^{*})$ intersecting $M$ for each $t\in[t_{0},1]$ .
Choose a sequence $t_{1},$ $t_{2},$

$\ldots$ in $[t_{0},1]$ such that $ 1>t_{1}>t_{2}>\cdots$ , and $\lim t_{n}=t_{0}$ .
For each $n=1,2,$ $\ldots$ , put $K_{n}=f^{-1}(\alpha(t_{n}))\cap M_{t_{n}}$ . Since $f$ is confluent, each
component of $M_{t}$. is mapped by $f$ onto a component of $\alpha([t_{0}, t_{n}])^{*}$ . Therefore,
by lemma 3.1, it is not so difficult to see that $K_{n}\in[2^{f}]^{-1}(\alpha(t_{n}))$ and each
component of $M_{t_{n}}$ intersects $K_{n}$ . We may assume that $\lim K_{n}=K_{0}$ for some
$K_{0}\in 2^{X}$ . Then $K_{0}\subset\bigcap_{n=1}^{\infty}M_{l_{\hslash}}=M$ and each component of $M$ intersects $K_{0}$ .
Therefore by lemma 2.1, there is a segment from $K_{0}$ to $M$ whose image is
clearly contained in $[2^{f}]^{-1}(\alpha(t_{0}))$ . Therefore $K_{0}\in \mathscr{K}_{0}$ . On the other hand,
$K_{n}\in ff_{1}$ for each $n=1,2,$ $\ldots$ Hence we have a contradiction since
$H_{d}(ff_{0}ff_{1})>0$ .

COROLLARY 6.2. Let $f:X\rightarrow Y$ be a confluent mapping.
(6.2.1) If $\mathscr{L}$ is an arcwise connected subcontinuum of $C(Y)$ , then each

component of $[C(f)]^{-1}(\mathscr{L})$ is mapped by $C(f)$ onto $\mathscr{L}$ .
(6.2.2) If $\mathscr{L}$ is an arcwise connected subcontinuum of $2^{Y}$ , then each com-

ponent of $[2^{f}]^{-1}(\mathscr{L})$ is mapped by $2^{f}$ onto $\mathscr{L}$ .

PROOF. Let $\mathscr{L}$ be an arcwise connected subcontinuum of $C(Y)$ and let ff
be a component of $[C(f)]^{-1}(\mathscr{L})$ . Choose an element $K\in \mathscr{K}$ . Then for any
$L\in \mathscr{L}-\{f(K)\}$ , there is an arc $\mathscr{B}$ in $\mathscr{L}$ with the end points $f(K)$ and $L$ . Let $\mathscr{A}$

be the component of $[C(f)]^{-1}(\mathscr{R})$ containing $K$. Then clearly $\mathscr{A}\subset \mathscr{K}$ , lemma
6.1 implies $L\in C(f)(\mathscr{K})$ . $(6.2.2)$ is similarly proved.

THEOREM 6.3. Let $f:X\rightarrow Y$ be a mapping. Consider the following three
statements:

(6.3.1) $f$ is a confluent mapping;
(6.3.2) $C(f)$ is a confluent mapping;
(6.3.3) $2^{f}$ is a confluent mapping.

Then the implications $(6.3.2)\Rightarrow(6.3.1)$ and $(6.3.3)\Rightarrow(6.3.1)$ hold. If $Y$ is locally
connected, then they are equivalent.

PROOF. $(6.3.3)\Rightarrow(6.3.1)$ : Let $L$ be a subcontinuum of $Y$ and $K$ a com-
ponent of $f^{-1}(L)$ . Let $\mathscr{L}$ and $\mathscr{K}$ be subcontinua of 2 and $2^{X}$ respectively
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defined by $\mathscr{L}=\{\{y\}:y\in L\},$ $\mathscr{M}^{r}=\{\{x\}:x\in K\}$ . Let $\mathscr{M}$ be a component of
$[2^{f}]^{-1}(\mathscr{L})$ such that $\ovalbox{\tt\small REJECT}^{r}\cap \mathscr{M}\neq\phi$ . Then it is clear that $\mathscr{M}^{*}=K$ . Since
$2^{f}(\mathscr{M})=\mathscr{L}$ , we have $f(K)=L$ .

The implication $(6.3.2)\Rightarrow(6.3.1)$ is similarly proved.
Now suppose that $f$ is confluent and $Y$ is locally connected. We shall only

prove that $2^{f}$ is confluent and omit the proof for $C(f)$ to be confluent. Let $\mathscr{L}$

be a subcontinuum of $2^{x}$ and $\ovalbox{\tt\small REJECT}^{\prime}$ a component of $[2^{f}]^{-1}(\mathscr{L})$ . Since 2 is locally
connected ([1] or [8]), there are locally connected subcontinua $\mathscr{L}_{1},$ $\mathscr{L}_{2},$

$\ldots$ of $2^{Y}$

such that $\mathscr{L}_{1}\supset \mathscr{L}_{2}\supset\cdots$ and $\bigcap_{n=1}^{\infty}\mathscr{L}_{n}=\mathscr{L}$ (see [5], p.260). Let $ff_{n}$ be the
component of $[2^{f}]^{-1}(\mathscr{L}_{n})$ containing ff for each $n=1,2,$ $\ldots$ . It follows evi-
dently that $\ovalbox{\tt\small REJECT}_{1}^{r}\supset ff_{2}\supset\cdots$ and $\bigcap_{n=1}^{\infty}\mathscr{M}_{n}^{\sim}=ff$ . Since by corollary 6.2 and
continuity of $2^{f},$ $2^{f}(ff)=2^{f}(\bigcap_{n=1}^{\infty}ff_{n})=\bigcap_{n=1}^{\infty}2^{f}(\ovalbox{\tt\small REJECT}_{n}^{r})=\bigcap_{n=1}^{\infty}\mathscr{L}_{n}=\mathscr{L}$ .

The following example shows that there is a confluent mapping $f$ such that
neither $C(f)$ nor $2^{f}$ is weakly confluent.

EXAMPLE. In the Euclidean plane with polar coordinates $(r, \theta)$ , let $S$ be the
unite circle $S=$ { $(r,$ $\theta)$ : $r=1$ and $ 0\leq\theta<2\pi$} and let $A_{1},$ $A_{2},$ $B_{1},$ $B_{2}$ be spaces
each homeomorphic to the half open interval $[0,1$ ), defined by

$A_{1}=\{(r, \theta)$ : $\theta=\frac{\pi}{2}\sin\frac{1}{1-r},$ $1<r\leq 2\}$ ,

$A_{2}=\{(r, \theta)$ : $\theta=\frac{\pi}{2}(2+\sin\frac{1}{1-r}),\frac{1}{2}\leq r<1\}$ ,

$B_{1}=\{(r, \theta)$ : $\theta=\pi\sin\frac{1}{1-r},$ $1<r\leq 2\}$ ,

$B_{2}=\{(r, \theta)$ : $\theta=\pi(2+\sin\frac{1}{1-r}),\frac{1}{2}\leq r<1\}$ .

Define $X,$ $Y$ and $f:X\rightarrow Y$ by $X=S\cup A_{1}\cup A_{2}$ , $Y=S\cup B_{1}\cup B_{2}$ and
$f(r, \theta)=(r, 2\theta)$ for all $(r, \theta)\in X$ . Then $f$ is cofluent and weakly monotone.
Let $K_{l}=$ { $(r,$ $\theta):r=1$ and $(\pi/2)(t-1)\leq\theta\leq(\pi/2)(2t-1)$ } for $t\in[0,1]$ and
$L_{t}=$ { $(r,$ $\theta):r=1$ and $(\pi/2)(t+1)\leq\theta\leq(\pi/2)(2t+1)$ } for $t\in[0,1]$ The sets
$ff=\{K_{t} : t\in[0,1]\}$ and $\mathscr{L}=\{L_{t} : t\in[0,1]\}$ are disjoint arcs in $C(X)$ such that
$C(f)(ff)=C(f)(\mathscr{L})$ . There exist subsets $\mathscr{M},$ $\mathscr{N}$ of $C(X)$ such that $\mathscr{M}$ and $\mathscr{N}$

are both homeomorphic to the half open interval, each element of $\mathscr{M}$ (resp. $\mathscr{N}$ ) is
contained in $A_{1}$ (resp. $A_{2}$ ), $\overline{\mathscr{M}}-\mathscr{M}=ff$ and $\overline{\mathscr{N}}-\mathscr{N}=\mathscr{L}$ . To see this, let
$g:S\cup A_{1}\rightarrow S$ be the retraction defined by $g(r, \theta)=(1, \theta)$ for each $(r, \theta)\in S\cup A_{1}$ .
We consider $C(X)$ and $C(S\cup A_{1})$ as subsets of $C(X)$ . Put $\mathscr{M}_{0}=[C(g)]^{-1}(\mathscr{K})$ .
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Note that $[C(g)]^{-1}(K_{1})-\{K_{1}\}$ is a disjoint union of countably many arcs in
$C(S\cup A_{1})$ and $[C(g)]^{-1}(K_{l})$ is a countable set with one limits element $K_{t}$ for
$0\leq t<1$ . Define $\mathscr{M}=\mathscr{M}_{0}-\ovalbox{\tt\small REJECT}^{r}$ . Similarly we can fined a described set $\mathscr{N}$ . Put
$\mathscr{A}_{1}=\mathscr{M}\cup ff$ $\mathscr{A}_{2}=\mathscr{N}\cup \mathscr{L}$ and $\mathscr{B}=C(f)(\mathscr{A}_{1}\cup \mathscr{A}_{2})$ . Then $\mathscr{B}$ is a sub-
continuum of $C(Y)$ and [ $C(f)^{-1}(\mathscr{B})$ has just two components $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ . But
neither of them is mapped by $C(f)$ onto $\mathscr{B}$ .

7. Quasi-monotone and Weakly monotone mappings

LEMMA 7.1. If $f:X\rightarrow Y$ is weakly monotone and $Y$ is locally connected,
then $f$ is confluent.

PROOF. Let $L$ be a subcontinuum of $Y$ and $K$ a component of $f^{-1}(L)$ .
Since $Y$ is locally connected, there are subcontinua $L_{n}(n=1,2, \ldots)$ of $Y$ such
that $L_{1}\supset L_{2}\supset L_{3}\supset\ldots,$ $\bigcap_{n=1}^{\infty}L_{n}=L$ and int $ L_{n}\neq\phi$ for each $n=1,2,$ $\ldots$ (see [5]
or [10]). Let $K_{n}$ be a component of $f^{-1}(L_{n})$ containing $K$ for each $n=1,2,$ $\ldots$ .
Then clearly $K=\bigcap_{n=1}^{\infty}K_{n}$ and hence $f(K)=\bigcap_{n=1}^{\infty}f(K_{n})=\bigcap_{n=1}^{\infty}L_{n}=L$ .

By Theorem 6.3, we have:

COROLLARY 7.2. If $f:X\rightarrow Y$ is weakly monotone and $Y$ is locally con-
nected, then both of the mappings $C(f)$ and $2^{f}$ are confluent.

THEOREM 7.3. Let $f:X\rightarrow Y$ be a mapping. Consider the following three
statements:

(7.3.1) $f$ is a quasi-monotone (resp. a weakly monotone) mapping;
(7.3.2) $C(f)$ is a quasi-monotone (resp. a weakly monotone) mapping;
(7.3.3) $2^{f}$ is a quasi-monotone (resp. a weakly monotone) mapping.

Then one of (7.3.2) and (7.3.3) implies (7.3.1). If $Y$ is locally connected, then they
are equivalent.

PROOF. We shall only prove for the class of quasi-monotone mappings.
The proof of the implication that (7.3.2) or (7.3.3) implies (7.3.1) is similar as
the proof of Theorem 4.3.

Now suppose $f$ is quasi-monotone and $Y$ is locally connected. Let $\mathscr{L}$ be a
subcontinuum of $C(Y)$ such that $Int\mathscr{L}\neq\phi$ . Choose $L_{0}\in Int\mathscr{L}$ and $y\in L_{0}$ .
Since $L_{0}\in Int\mathscr{L}$ and $Y$ is locally connected, there is a small closed connected
neighborhood $V$ of $y$ in $Y$ such that $L=V\cup L_{0}\in \mathscr{L}$ . Since $f$ is quasi-monotone
and int $L\neq\phi,$ $f^{-1}(L)$ has a finite number of components, say $K_{1},$ $K_{2},$

$\ldots,$
$K_{r}$ ,
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each of them is mapped by $f$ onto $L$ . Since quasi-monotone mappings are
weakly monotone, corollary 7.2 implies that $C(f)$ is confluent. Let $ff_{0}$ be a
component of $[C(f)]^{-1}(\mathscr{L})$ . Then $C(f)(ff_{0})=\mathscr{L}$ . Thus there is $K\in \mathscr{K}_{0}$ such
that $C(f)(K)=L$ . Therefore $K\subset K_{i}$ for some $i\in\{1,2, \ldots, r\}$ . Then by lemma
2.1, it is easy to see that $K_{i}\in ff_{0}$ . Therefore the number of components of
$[C(f)]^{-1}(\mathscr{L})$ is at most $r$ . This and corollary 7.2 implies that $C(f)$ is quasi-
monotone.

Next, suppose that $f$ : $X\rightarrow Y$ is quasi-monotone and $Y$ is locally connected
(the case for weakly monotone mappings are follows from corollary 7.2). By
Theorem 6.3, $2^{f}$ is confluent. Let $\mathscr{B}$ be a subcontinuum of $2^{Y}$ with a nonempty
interior and $B\in Int\mathscr{B}$ . There is a positive number $\epsilon$ such that if $L\in 2^{Y}$ and
$ H_{d}(B, L)<\epsilon$ , then $L\in \mathscr{B}$ . Since $Y$ is uniformly locally connected, there are
$\delta>0$ and $M\in 2^{Y}$ such that $V_{\delta}(B)\subset M\subset V_{\epsilon}(B)$ and each component of $M$

intersects $B$, where $V_{\gamma}(B)$ is the $\gamma$-neighborhood of $B$ in $Y$ for each $\gamma>0$ (see

[10], pp. 20-22). The number of components of $M$ is finite because let
$\{M_{\alpha} : \alpha\in\Omega\}$ be the set of components of $M$, choose a point $y_{\alpha}\in M_{\alpha}\cap B$ for
each $\alpha\in\Omega$ , then the set $\{y_{\alpha} : \alpha\in\omega\}$ is discrete and hence a finite set. Let
$M_{1},$ $M_{2},$

$\ldots,$
$M_{r}$ be the components of $M$. Since $f$ is quasi-monotone and

int $M_{j}\neq\phi,$ . $f^{-1}(M_{i})$ has finitely many, say $n(i)$ , components for each $i=$

$1,2,$
$\ldots$ , $r$ . Then, as the proof of $(7.3.1)\Rightarrow(7.3.2)$ , the number of components of

$[2^{f}]^{-1}(\mathscr{B})$ is at most $n(1)\cdot n(2)\ldots n(r)$ .

8. Problems

There is an open mapping $f$ such that $C(f)$ is not open (the example in
section 4).

1. Is there an open mapping $f$ : $X\rightarrow Y$ such that $C(f)$ is open but $C(C(f))$

is not open?
2. Does the correspondence $f\rightarrow C(f)$ preserve or reverse the class of MO-

mappings? If $f$ is open, then is $C(f)$ an MO-mapping? If $2^{f}$ is an MO-mapping,
then is $f$ an MO-mapping?

3. For a cofluent mapping $f$ : $X\rightarrow Y$ , is it tme that if $2^{f}$ is confluent, then
$C(f)$ is confluent?

A continuum $X$ is said to have property [K] if for any $\epsilon>0$ , there exists
$\delta=\delta(\epsilon)>0$ such that if $a,$ $b\in X,$ $ d(a, b)<\delta$ and $a\in A\in C(X)$ , then there exists
$B\in C(X)$ such that $b\in B$ and $ H_{d}(A, B)<\epsilon$ .

It is easy to see that if $\mathscr{A}$ is a subcontinuum of $2^{X}$ and $Int\mathscr{A}\neq\phi$ , then
$int\mathscr{A}^{*}\neq\phi$ . If $X$ has property [K], then for a subcontinuum $\ovalbox{\tt\small REJECT}^{r}$ of $C(X)$ ,
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Int $ ff\neq\phi$ implies int $\mathscr{M}^{\prime*}\neq\phi$ . But if $X$ does not have property [K], int $ff^{*}$ may
be empty.

EXAMPLE. In the Euclidean plan, let us denote $xy$ the straight line segment
with the end points $x,y$ . Let $p=(1,0),$ $q=(-1,0)$ and $a_{n}=(0,1/n)$ for each
$n=1,2,$ $\ldots$ . Let $A_{n}=a_{2n}p$ , $B_{n}=a_{2n+1}q$ for $n=1,2,$ $\ldots$ and $C=pq$ . Let
$X=C\cup[\bigcup_{n=1}^{\infty}A_{n}]\cup[\bigcup_{n=1}^{\infty}B_{n}]$ and $ff=$ {$p_{s}p_{t}$ ; $s-t=1$ and $1/3\leq t\leq 2/3$ },
where $p_{s}=(s, O)\in X$ , then ff is a subcontinuum of $C(X)$ such that Int $ ff\neq\phi$

but $int\mathscr{K}^{*}=\phi$ .
4. In Theorem 6.3, can the condition “

$Y$ is locally connected” be weakend?
Added in proof H. Kato announced me that by adding countably many

disjoint half open lines on the continua of the example in section 6 of this
paper, it is possible to construct continua having property [K] and a confluent
mapping between them whose induced mappings are not weakly confluent.

Recently A. Illames answered Problem 1 affirmatively. He showed that if
$C(C(f))$ is open, then $f$ is a homeomorphism.
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