A CHARACTERIZATION OF ALMOST-EINSTEIN REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE

By
Juan de Dios Pérez

Abstract

Almost-Einstein real hypersurfaces of quaternionic projective space, as defined in [3], can be characterized by a condition involving their curvature and Ricci tensors.

1. Introduction

Let M be a connected real hypersurface of a quaternionic projective space $Q P^{m}, m \geq 3$, with metric g of constant quaternionic sectional curvature 4. let ξ be the unit local normal vector field on M and $\left\{J_{1}, J_{2}, J_{3}\right\}$ a local basis of the quaternionic structure of $Q P^{m}$, [2]. Then $U_{i}=-J_{i} \xi, i=1,2,3$, are tangent to M. Let us denote by $D^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ and by D its orthogonal complement in $T M$.

Let A be the Weingarten endomorphism of M and S its Ricci tensor. M is said to be almost-Einstein, [3], if

$$
\begin{equation*}
S X=a X+b \sum_{i=1}^{3} g\left(A X, U_{i}\right) U_{i} \tag{1.1}
\end{equation*}
$$

for any $X \in T M$, where a and b are constant. In [3] we studied such real hypersurfaces obtaining

Theorem A. Let M be an almost-Einstein real hypersurface of $Q P^{m}, m \geq 2$. Then it is an open subset of one of the following:
i) a geodesic hypersphere.
ii) a tube of radius r over $Q P^{k}, \quad 0<k<m-1, \quad 0<r<\pi / 2$ and $\cot ^{2}(r)=(4 k+2) /(4 m-4 k-2)$.
iii) a tube of radius r over $C P^{m}, 0<r<\pi / 4$ and $\cot ^{2}(2 r)=1 /(m-1)$.

Among the real hypersurfaces appearing in Theorem A, only the geodesic hyperspheres of radius $r, 0<r<\pi / 2$ and $\cot ^{2}(r)=1 /(2 m)$ are Einstein.

Recently, in [4] we studied real hypersurfaces of $Q P^{m}, m \geq 2$, such that $\sigma(R(X, Y) S Z)=0$, for any X, Y, Z tangent to M, where σ denotes the cyclic sum and R the curvature tensor of M. Concretely we obtained

Theorem B. A real hypersurface M of $Q P^{m}, m \geq 2$, satisfies $\sigma(R(X, Y) S Z)=0$, for any X, Y, Z tangent to M if and only if it is Einstein.

In the present paper we propose to study a weaker condition than the one appearing in Theorem B. Concretely we shall consider real hypersurfaces M of $Q P^{m}, m \geq 3$, satisfying

$$
\begin{equation*}
\sigma(R(X, Y) S Z)=0 \quad \text { for any } X, Y, Z \in D \tag{1.2}
\end{equation*}
$$

It is easy to see, bearing in mind the first identity of Bianchi, that all almostEinstein real hypersurfaces of $Q P^{m}$ satisfy (1.2). Our purpose is to obtain the converse. That is, we shall prove the following

ThEOREM. A real hypersurface M of $Q P^{m}, m \geq 3$, satisfies (1.2) if and only if it is almost-Einstein.

2. Preliminaries

Let X be a vector field tangent to M. We write $J_{i} X=\Phi_{i} X+f_{i}(X) \xi$, $i=1,2,3$, where $\Phi_{i} X$ denotes the tangential component of $J_{i} X$ and $f_{i}(X)=$ $g\left(X, U_{i}\right)$. From this, [3], we have

$$
\begin{equation*}
g\left(\Phi_{i} X, Y\right)+g\left(X, \Phi_{i} Y\right)=0, \quad \Phi_{i} U_{i}=0, \quad \Phi_{j} U_{k}=-\Phi_{k} U_{j}=U_{t} \tag{2.1}
\end{equation*}
$$

for any X, Y tangent to $M, i=1,2,3,(j, k, t)$ being a cyclic permutation of (1, 2, 3). We also obtain

$$
\begin{equation*}
\Phi_{i} \Phi_{j} X=-\Phi_{j} \Phi_{i} X=\Phi_{k} X \tag{2.2}
\end{equation*}
$$

for any $X \in D$, where (i, j, k) is a cyclic permutation of $(1,2,3)$.
From the expression of the curvature tensor of $Q P^{m},[2]$, the equation of Gauss is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+\sum_{i=1}^{3}\left\{g\left(\Phi_{i} Y, Z\right) \Phi_{i} X-g\left(\Phi_{i} X, Z\right) \Phi_{i} Y\right. \tag{2.3}\\
& \left.+2 g\left(X, \Phi_{i} Y\right) \Phi_{i} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

for any X, Y, Z tangent to M. This implies that the Ricci tensor of M has the following expression:

$$
\begin{equation*}
S X=(4 m+7) X-3 \sum_{i=1}^{3} f_{i}(X) U_{i}+H X \tag{2.4}
\end{equation*}
$$

for any X tangent to M, where $H=(\operatorname{trace} A) A-A^{2}$.

3. Proof of the Theorem

Along this paragraph M will denote a real hypersurface of $Q P^{m}, m \geq 3$, satisfying (1.2).

From (2.4) and the first identity of Bianchi, (1.2) is equivalent to have $\sigma(R(X, Y) H Z)=0$ for any $X, Y, Z \in D$.

Let $\left\{E_{1}, \ldots, E_{4 m-4}\right\}$ be a local orthonormal frame of \boldsymbol{D} at any point of M. The following computations are made locally on a neighbourhood of any point of M.

If from (2.3) we develop $\sigma(R(X, Y) H Z)=0$ and take $Z=E_{j}, \quad Y=\Phi_{1} E_{j}$, $j=1, \ldots, 4 m-4$, we have

$$
\begin{align*}
- & \left(g\left(E_{j}, H E_{j}\right)+g\left(\Phi_{1} E_{j}, H \Phi_{1} E_{j}\right)\right) \Phi_{1} X-\left(g\left(\Phi_{3} E_{j}, H E_{j}\right)\right. \tag{3.1}\\
& \left.+g\left(\Phi_{2} E_{j}, H \Phi_{1} E_{j}\right)\right) \Phi_{2} X+\left(g\left(\Phi_{2} E_{j}, H E_{j}\right)-g\left(\Phi_{3} E_{j}, H \Phi_{1} E_{j}\right)\right) \Phi_{3} X \\
& +2 \Phi_{1} H X+\left(g\left(\Phi_{1} X, H E_{j}\right)-g\left(H X, \Phi_{1} E_{j}\right)\right) E_{j}+\left(g\left(H X, E_{j}\right)\right. \\
& \left.+g\left(\Phi_{1} X, H \Phi_{1} E_{j}\right)\right) \Phi_{1} E_{j}+\left(2 g\left(H X, \Phi_{3} E_{j}\right)+g\left(\Phi_{2} X, H \Phi_{1} E_{j}\right)\right. \\
& \left.-g\left(\Phi_{3} X, H E_{j}\right)\right) \Phi_{2} E_{j}+\left(g\left(\Phi_{2} X, H E_{j}\right)+g\left(\Phi_{3} X, H \Phi_{1} E_{j}\right)\right. \\
& \left.-2 g\left(H X, \Phi_{2} E_{j}\right)\right) \Phi_{3} E_{j}-2 g\left(X, E_{j}\right) \Phi_{1} H E_{j} \\
& -2 g\left(X, \Phi_{3} E_{j}\right) \Phi_{2} H E_{j}+2 g\left(X, \Phi_{2} E_{j}\right) \Phi_{3} H E_{j} \\
& +2 g\left(\Phi_{1} X, E_{j}\right) \Phi_{1} H \Phi_{1} E_{j}+2 g\left(\Phi_{2} X, E_{j}\right) \Phi_{2} H \Phi_{1} E_{j} \\
& +2 g\left(\Phi_{3} X, E_{j}\right) \Phi_{3} H \Phi_{1} E_{j}=0
\end{align*}
$$

for any $X \in \boldsymbol{D}$.
Now we prepare the following Lemmas

Lemma 1. $g\left(H X, \Phi_{i} X\right)=0$ for any $X \in D, i=1,2,3$.

Proof. We take the scalar product of (3.1) and X and take summation on j. Then we obtain

$$
\begin{equation*}
(8 m-16) g\left(\Phi_{1} H X, X\right)=0 \tag{3.2}
\end{equation*}
$$

for any $X \in D$. As $m \geq 3$, (3.2) implies $g\left(H X, \Phi_{1} X\right)=0$.
If we develop $\sigma\left(R\left(X, \Phi_{i} E_{j}\right) H E_{j}\right)=0, i=2,3$, we also obtain $g\left(H X, \Phi_{2} X\right)=$ $g\left(H X, \Phi_{3} X\right)=0$, finishing the proof.

Let us denote by $Q(X)=\operatorname{Span}\left\{X, \Phi_{1} X, \Phi_{2} X, \Phi_{3} X\right\}$ for any $X \in T M$.
Lemma 2. $g(X, H Z)=0$ for any unit $X, Z \in D$ such that $Q(X) \perp Q(Z)$.
Proof. Let us consider $X, Y \in \boldsymbol{D}$. From Lemma 1 and polarization we have

$$
\begin{equation*}
g\left(H \Phi_{i} X, Y\right)=g\left(\Phi_{i} H X, Y\right) \quad i=1,2,3 \tag{3.3}
\end{equation*}
$$

for any $X, Y \in D$. Taking in (3.3) $Y=\Phi_{i} Z, i=1,2,3$ we obtain

$$
\begin{equation*}
g\left(H \Phi_{i} X, \Phi_{i} Z\right)=g(H X, Z) \quad i=1,2,3 \tag{3.4}
\end{equation*}
$$

Take the scalar product of (3.1) and Z and then summation on j. We have

$$
\begin{equation*}
g\left(H \Phi_{1} X, Z\right)+(4 m-7) g\left(\Phi_{1} H X, Z\right)+g\left(\Phi_{2} X, H \Phi_{3} Z\right)-g\left(\Phi_{3} X, H \Phi_{2} Z\right)=0 \tag{3.5}
\end{equation*}
$$

for any unit $X, Z \in D$ such that $Q(X) \perp Q(Z)$. If in (3.5) we exchange Z by $\Phi_{1} Z$ and apply (3.4) we obtain

$$
\begin{equation*}
(4 m-4) g(H X, Z)=0 \tag{3.6}
\end{equation*}
$$

Now as $m \geq 3$ the result follows.
Lemma 3. $g(H X, X)=g(H Y, Y)$ for any nonnull $X, Y \in D$.
Proof. Let us take a unit $X \in D$ and consider the scalar product of (3.1) and $\Phi_{1} X$. After taking summation on j we have

$$
\begin{align*}
& (8 m-14) g(H X, X)+2 g\left(H \Phi_{1} X, \Phi_{1} X\right)+2 g\left(H \Phi_{2} X, \Phi_{2} X\right) \tag{3.12}\\
& \quad+2 g\left(H \Phi_{3} X, \Phi_{3} X\right)-\sum_{j}\left\{g\left(E_{j}, H E_{j}\right)+g\left(\Phi_{1} E_{j}, H \Phi_{1} E_{j}\right)\right\}=0
\end{align*}
$$

If in (3.12) we change X by $\Phi_{1} X$ and substract we have

$$
\begin{equation*}
(8 m-16) g(H X, X)=(8 m-16) g\left(H \Phi_{1} X, \Phi_{1} X\right) \tag{3.13}
\end{equation*}
$$

As $m \geq 3$, we obtain $g(H X, X)=g\left(H \Phi_{1} X, \Phi_{1} X\right)$. Similarly we can obtain

$$
\begin{equation*}
g(H X, X)=g\left(H \Phi_{i} X, \Phi_{i} X\right) \quad i=1,2,3 \tag{3.14}
\end{equation*}
$$

Now from (3.12) and (3.14) we get

$$
\begin{equation*}
(4 m-4) g(H X, X)=\sum_{j} g\left(H E_{j}, E_{j}\right) \tag{3.15}
\end{equation*}
$$

and this finishes the proof.

Lemma 4. $g\left(H U_{i}, X\right)=0, i=1,2,3$, for any $X \in D$.

Proof. Let us take the scalar product of (3.1) and U_{1} and sum on j. Thus we have

$$
\begin{equation*}
g\left(\Phi_{2} X, H U_{2}\right)+g\left(\Phi_{3} X, H U_{3}\right)=0 \tag{3.16}
\end{equation*}
$$

Similarly we can obtain

$$
\begin{equation*}
g\left(\Phi_{1} X, H U_{1}\right)+g\left(\Phi_{3} X, H U_{3}\right)=0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\Phi_{1} X, H U_{1}\right)+g\left(\Phi_{2} X, H U_{2}\right)=0 \tag{3.18}
\end{equation*}
$$

From (3.16), (3.17) and (3.18) we get

$$
\begin{equation*}
g\left(\Phi_{i} X, H U_{i}\right)=0, \quad i=1,2,3 \tag{3.19}
\end{equation*}
$$

and changing X by $\Phi_{i} X$ we obtain the result.
Now we have that any $X \in D$ is principal for H and has the same eigenvalue. Moreover $g\left(H D, D^{\perp}\right)=\{0\}$. But $H A=A H$. Thus we can find an orthonormal basis of $T_{x} M$, for any $x \in M$, such that it diagonalizes simultaneously both H and A. But from the above Lemmas we must have $g\left(A D, D^{\perp}\right)=\{0\}$. Thus $M,[1]$, must be congruent to an open subset of either a geodesic hypersphere or a tube of radius $r, 0<r<\pi / 2$, over $Q P^{k}$, $k \in\{1, \ldots, m-2\}$ or a tube of radius $r, 0<r<\pi / 4$, over $C P^{m}$.

All geodesic hyperspheres only have a principal curvature on \boldsymbol{D}, [3]. Thus from the first identity of Bianchi they satisfy (1.2).

A tube of radius $r, 0<r<\pi / 2$, over $Q P^{k}, k \in\{1, \ldots, m-2\}$, has two distinct principal curvatures on $D, \cot (r)$ with multiplicity $4(m-k-1)$ and $-\tan (r)$ with multiplicity $4 k$, and a unique principal curvature on $D^{\perp}, 2 \cot (2 r)$, [3]. Let us suppose that it satisfies (1.2). Thus from Lemma 3 every vector
field of D must have the same eigenvalue for H. Take $X \in D$ such that $A X=\cot (r) X$ and $Z \in D$ such that $A Z=-\tan (r) Z$. Then $H X=$ $\left((4 m-4 k-2) \cot ^{2} r-(4 k+3)\right) X$ and $H Z=\left((4 k+2) \tan ^{2} r-(4 m-4 k-1)\right) Z$. This implies that $\cot ^{2}(r)=(4 k+2) /(4 m-4 k-2)$.

A similar argument applied to a tube of radius $r, 0<r<\pi / 4$, over $C P^{m}$, whose principal curvatures are $\cot (r)$ and $-\tan (r)$ on D both with multiplicity $2(m-1)$ and $2 \cot (2 r)$ with multiplicity 1 and $-2 \tan (2 r)$ with multiplicity 2 on D^{\perp} implies that (1.2) is satisfied only if $\cot ^{2}(2 r)=1 /(m-1)$.

Thus we have proved that a real hypersurface of $Q P^{m}, m \geq 3$, satisfies (1.2) if and only if it is one appearing in Theorem A. This finishes the proof.

References

[1] J. Berndt, "Real hypersurfaces in quaternion space forms", J. reine angew. Math., 419 (1991), 9-26.
[2] S. Ishihara, "Quaternion Kählerian manifolds", J. Diff. Geom., 9 (1974), 483-500.
[3] A. Martinez and J. D. Perez, "Real hypersurfaces in quaternionic projective space", Ann. di Mat., 145 (1986), 355-384.
[4] J. D. Perez, "On certain real hypersurfaces of quaternionic projective space II", Alg. Groups and Geom., 10 (1993), 13-24.

> Departamento de Geometría y Topología
> Facultad de Ciencias
> Universidad de Granada
> 18071-Granada
> SPAIN

