
TSUKUBA J. MATH.
Vol. 21 No. 1 (1997), 207-212

A CHARACTERIZATION OF ALMOST-EINSTEIN
REAL HYPERSURFACES OF QUATERNIONIC

PROJECTIVE SPACE

By

Juan de Dios P\’EREZ

Abstract. Almost-Einstein real hypersurfaces of quaternionic
projective space, as defined in [3], can be characterized by a
condition involving their curvature and Ricci tensors.

1. Introduction

Let $M$ be a connected real hypersurface of a quatemionic projective space
$QP^{m},$ $m\geq 3$ , with metric $g$ of constant quatemionic sectional curvature 4. let $\xi$

be the unit local normal vector field on $M$ and $\{J_{1}, J_{2}, J_{3}\}$ a local basis of the
quatemionic structure of $QP^{m},$ $[2]$ . Then $U_{i}=-J_{i}\xi,$ $i=1,2,3$ , are tangent to
$M$. Let us denote by $D^{\perp}=Span\{U_{1}, U_{2}, U_{3}\}$ and by $D$ its orthogonal com-
plement in $TM$ .

Let $A$ be the Weingarten endomorphism of $M$ and $S$ its Ricci tensor. $M$ is
said to be almost-Einstein, [3], if

(1.1) $SX=aX+b\sum_{i=1}^{3}g(AX, U_{i})U_{i}$

for any $X\in TM$, where $a$ and $b$ are constant. In [3] we studied such real
hypersurfaces obtaining

THEOREM A. Let $M$ be an almost-Einstein real hypersurface of $QP^{m},$ $m\geq 2$ .
Then it is an open subset of one of the following:

i) a geodesic hypersphere.
ii) a tube of radius $r$ over $QP^{k}$ , $0<k<m-1$ , $0<r<\pi/2$ and

$\cot^{2}(r)=(4k+2)/(4m-4k-2)$ .
iii) a tube of radius $r$ over $CP^{m},$ $0<r<\pi/4$ and $\cot^{2}(2r)=1/(m-1)$ .
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Among the real hypersurfaces appearing in Theorem $A$ , only the geodesic
hyperspheres of radius $r,$ $0<r<\pi/2$ and $\cot^{2}(r)=1/(2m)$ are Einstein.

Recently, in [4] we studied real hypersurfaces of $QP^{m},$ $m\geq 2$ , such that
$\sigma(R(X, Y)SZ)=0$ , for any $X,$ $Y,$ $Z$ tangent to $M$, where $\sigma$ denotes the cyclic
sum and $R$ the curvature tensor of $M$. Concretely we obtained

THEOREM B. A real hypersurface $M$ of $QP^{m}$ , $m\geq 2$ , satisfies
$\sigma(R(X, Y)SZ)=0$ , for any $X,$ $Y,$ $Z$ tangent to $M$ if and only if it is Einstein.

In the present paper we propose to study a weaker condition than the one
appearing in Theorem B. Concretely we shall consider real hypersurfaces $M$ of
$QP^{m},$ $m\geq 3$ , satisfying

(1.2) $\sigma(R(X, Y)SZ)=0$ for any $X,$ $Y,$ $Z\in D$

It is easy to see, bearing in mind the first identity of Bianchi, that all almost-
Einstein real hypersurfaces of $QP^{m}$ satisfy (1.2). Our purpose is to obtain the
converse. That is, we shall prove the following

THEOREM. A real hypersurface $M$ of $QP^{m},$ $m\geq 3$ , satisfies (1.2) if and only

if it is almost-Einstein.

2. Preliminaries

Let $X$ be a vector field tangent to $M$. We write $ J_{t}X=\Phi_{i}X+f_{i}(X)\xi$ ,
$i=1,2,3$ , where $\Phi_{i}X$ denotes the tangential component of $J_{i}X$ and $f_{i}(X)=$

$g(X, U_{i})$ . From this, [3], we have

(2.1) $g(\Phi_{i}X, Y)+g(X, \Phi_{i}Y)=0$ , $\Phi_{i}U_{i}=0$ , $\Phi_{j}U_{k}=-\Phi_{k}U_{j}=U_{t}$

for any $X,$ $Y$ tangent to $M,$ $i=1,2,3,$ $(j, k, t)$ being a cyclic permutation of
(1, 2, 3). We also obtain

(2.2) $\Phi_{i}\Phi_{j}X=-\Phi_{j}\Phi_{i}X=\Phi_{k}X$

for any $X\in D$, where $(i,j, k)$ is a cyclic permutation of (1, 2, 3).

From the expression of the curvature tensor of $QP^{m},$ $[2]$ , the equation of
Gauss is given by

(2.3) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+\sum_{i=1}^{3}\{g(\Phi_{i}Y, Z)\Phi_{i}X-g(\Phi_{i}X, Z)\Phi_{j}Y$

$+2g(X, \Phi_{i}Y)\Phi_{i}Z\}+g(AY, Z)AX-g(AX, Z)AY$
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for any $X,$ $Y,$ $Z$ tangent to $M$. This implies that the Ricci tensor of $M$ has the
following expression:

(2.4) $SX=(4m+7)X-3\sum_{i=1}^{3}f_{i}(X)U_{i}+HX$

for any $X$ tangent to $M$, where $H=(traceA)A-A^{2}$ .

3. Proof of the Theorem

Along this paragraph $M$ will denote a real hypersurface of $QP^{m},$ $m\geq 3$ ,
satisfying (1.2).

From (2.4) and the first identity of Bianchi, (1.2) is equivalent to have
$\sigma(R(X, Y)HZ)=0$ for any $X,$ $Y,$ $Z\in D$ .

Let $\{E_{1}, \ldots,E_{4m-4}\}$ be a local orthonormal frame of $D$ at any point of $M$.
The following computations are made locally on a neighbourhood of any point
of $M$.

If from (2.3) we develop $\sigma(R(X, Y)HZ)=0$ and take $Z=E_{j},$ $Y=\Phi_{1}E_{j}$ ,
$j=1,$ $\ldots,$

$4m-4$, we have

(3.1) $-(g(E_{j}, HE_{j})+g(\Phi_{1}E_{j}, H\Phi_{1}E_{j}))\Phi_{1}X-(g(\Phi_{3}E_{j}, HE_{j})$

$+g(\Phi_{2}E_{j}, H\Phi_{1}E_{j}))\Phi_{2}X+(g(\Phi_{2}E_{j},HE_{j})-g(\Phi_{3}E_{j}, H\Phi_{1}E_{j}))\Phi_{3}X$

$+2\Phi_{1}HX+(g(\Phi_{1}X, HE_{j})-g(HX, \Phi_{1}E_{j}))E_{j}+(g(HX, E_{j})$

$+g(\Phi_{1}X, H\Phi_{1}E_{j}))\Phi_{1}E_{j}+(2g(HX, \Phi_{3}E_{j})+g(\Phi_{2}X,H\Phi_{1}E_{j})$

$-g(\Phi_{3}X, HE_{j}))\Phi_{2}E_{j}+(g(\Phi_{2}X,HE_{j})+g(\Phi_{3}X, H\Phi_{1}E_{j})$

$-2g(HX, \Phi_{2}E_{j}))\Phi_{3}E_{j}-2g(X, E_{j})\Phi_{1}HE_{j}$

$-2g(X, \Phi_{3}E_{j})\Phi_{2}HE_{j}+2g(X, \Phi_{2}E_{j})\Phi_{3}HE_{j}$

$+2g(\Phi_{1}X, E_{j})\Phi_{1}H\Phi_{1}E_{j}+2g(\Phi_{2}X, E_{j})\Phi_{2}H\Phi_{1}E_{j}$

$+2g(\Phi_{3}X, E_{j})\Phi_{3}H\Phi_{1}E_{j}=0$

for any $X\in D$ .
Now we prepare the following Lemmas

LEMMA 1. $g(HX, \Phi_{i}X)=0$ for any $X\in D,$ $i=1,2,3$ .
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PROOF. We take the scalar product of (3.1) and $X$ and take summation on
$j$ . Then we obtain

(3.2) $(8m-16)g(\Phi_{1}HX, X)=0$

for any $X\in D$ . As $m\geq 3,$ $(3.2)$ implies $g(HX, \Phi_{1}X)=0$ .
If we develop $\sigma(R(X, \Phi_{j}E_{j})HE_{j})=0,$ $i=2,3$ , we also obtain $g(HX,\Phi_{2}X)=$

$g(HX, \Phi_{3}X)=0$ , finishing the proof.
Let us denote by $Q(X)=Span\{X, \Phi_{1}X, \Phi_{2}X, \Phi_{3}X\}$ for any $X\in TM$ .

LEMMA 2. $g(X, HZ)=0$ for any unit $X,$ $Z\in D$ such that $Q(X)\perp Q(Z)$ .

PROOF. Let us consider $X,$ $Y\in D$ . From Lemma 1 and polarization we
have

(3.3) $g(H\Phi_{i}X, Y)=g(\Phi_{j}HX, Y)$ $i=1,2,3$

for any $X,$ $Y\in D$ . Taking in (3.3) $Y=\Phi_{i}Z,$ $i=1,2,3$ we obtain

(3.4) $g(H\Phi_{i}X,\Phi_{j}Z)=g(HX, Z)$ $i=1,2,3$

Take the scalar product of (3.1) and $Z$ and then summation on $j$. We have

(3.5)
$g(H\Phi_{1}X, Z)+(4m-7)g(\Phi_{1}HX, Z)+g(\Phi_{2}X, H\Phi_{3}Z)-g(\Phi_{3}X,H\Phi_{2}Z)=0$

for any unit $X,$ $Z\in D$ such that $Q(X)\perp Q(Z)$ . If in (3.5) we exchange $Z$ by $\Phi_{1}Z$

and apply (3.4) we obtain

(3.6) $(4m-4)g(HX, Z)=0$

Now as $m\geq 3$ the result follows.

LEMMA 3. $g(HX, X)=g(HY, Y)$ for any nonnull $X,$ $Y\in D$ .

PROOF. Let us take a unit $X\in D$ and consider the scalar product of (3.1)
and $\Phi_{1}X$ . After taking summation on $j$ we have

(3.12) $(8m-14)g(HX, X)+2g(H\Phi_{1}X, \Phi_{1}X)+2g(H\Phi_{2}X, \Phi_{2}X)$

$+2g(H\Phi_{3}X, \Phi_{3}X)-\sum_{j}\{g(E_{j}, HE_{j})+g(\Phi_{1}E_{j}, H\Phi_{1}E_{j})\}=0$

If in (3.12) we change $X$ by $\Phi_{1}X$ and substract we have

(3.13) $(8m-16)g(HX, X)=(8m-16)g(H\Phi_{1}X, \Phi_{1}X)$



A characterization of almost-Einstein 211

As $m\geq 3$ , we obtain $g(HX, X)=g(H\Phi_{1}X, \Phi_{1}X)$ . Similarly we can obtain

(3.14) $g(HX, X)=g(H\Phi_{i}X, \Phi_{i}X)$ $i=1,2,3$

Now from (3.12) and (3.14) we get

(3.15) $(4m-4)g(HX, X)=\sum_{j}g(HE_{j}, E_{j})$

and this finishes the proof.

LEMMA 4. $g(HU_{i}, X)=0,$ $i=1,2,3$ , for any $X\in D$ .

PROOF. Let us take the scalar product of (3.1) and $U_{1}$ and sum on $j$. Thus
we have

(3.16) $g(\Phi_{2}X, HU_{2})+g(\Phi_{3}X, HU_{3})=0$

Similarly we can obtain

(3.17) $g(\Phi_{1}X, HU_{1})+g(\Phi_{3}X, HU_{3})=0$

and

(3.18) $g(\Phi_{1}X, HU_{1})+g(\Phi_{2}X, HU_{2})=0$

From (3.16), (3.17) and (3.18) we get

(3.19) $g(\Phi_{i}X, HU_{i})=0$ , $i=1,2,3$

and changing $X$ by $\Phi_{i}X$ we obtain the result.
Now we have that any $X\in D$ is principal for $H$ and has the same

eigenvalue. Moreover $g(HD, D^{\perp})=\{0\}$ . But $HA=AH$ . Thus we can find an
orthonormal basis of $T_{x}M$, for any $x\in M$, such that it diagonalizes simul-
taneously both $H$ and $A$ . But from the above Lemmas we must have
$g(AD,D^{\perp})=\{0\}$ . Thus $M,$ $[1]$ , must be congruent to an open subset of either
a geodesic hypersphere or a tube of radius $r$, $0<r<\pi/2$ , over $QP^{k}$ ,
$k\in\{1, \ldots,m-2\}$ or a tube of radius $r,$ $0<r<\pi/4$ , over $CP^{m}$ .

All geodesic hyperspheres only have a principal curvature on $D,$ $[3]$ . Thus
from the first identity of Bianchi they satisfy (1.2).

A tube of radius $r,$ $0<r<\pi/2$ , over $QP^{k},$ $k\in\{1, \ldots,m-2\}$ , has two
distinct principal curvatures on $D,$ $\cot(r)$ with multiplicity $4(m-k-1)$ and
$-\tan(r)$ with multiplicity $4k$, and a unique principal curvature on $D^{\perp},$ $2\cot(2r)$ ,
[3]. Let us suppose that it satisfies (1.2). Thus from Lemma 3 every vector
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field of $D$ must have the same eigenvalue for $H$. Take $X\in D$ such
that $AX=\cot(r)X$ and $Z\in D$ such that $AZ=-\tan(r)Z$ . Then $HX=$

$((4m-4k-2)\cot^{2}r-(4k+3))X$ and $HZ=((4k+2)\tan^{2}r-(4m-4k-1))Z$ .
This implies that $\cot^{2}(r)=(4k+2)/(4m-4k-2)$ .

A similar argument applied to a tube of radius $r,$ $0<r<\pi/4$, over $CP^{m}$ ,
whose principal curvatures are $\cot(r)$ and $-\tan(r)$ on $D$ both with multiplicity
$2(m-1)$ and 2 $\cot(2r)$ with multiplicity 1 and $-2\tan(2r)$ with multiplicity 2 on
$D^{\perp}$ implies that (1.2) is satisfied only if $\cot^{2}(2r)=1/(m-1)$ .

Thus we have proved that a real hypersurface of $QP^{m},$ $m\geq 3$ , satisfies (1.2)

if and only if it is one appearing in Theorem A. This finishes the proof.
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