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RAYS AND THE FIXED POINT PROPERTY IN
NONCOMPACT SPACES

By

Tadeusz DOBROWOLSKI and Witold MARCISZEWSKI*

Abstract. We are concemed with the question of whether a
noncompact space with a nice local structure contains a ray, i.e., a
closed homeomorph of $[0,1$ ). We construct rays in incomplete
locally path connected spaces, and also, in noncompact metrizable
convex sets; as a consequence these spaces lack the fixed point
property. On the other hand, we give an example of a noncompact
(nonmetrizable) convex subset $C$ of a locally convex topological
vector space $E$ which has the fixed point property.

1. Introduction

The classical Schauder-Tichonoff theorem states that, for a convex subset $C$

of a locally convex topological vector space, the compactness of $C$ implies the
fixed point property of $C$. In [K], V. Klee observed that this implication can be
reversed for a large class of topological vector spaces (including Banach spaces).

His approach was very elementary; namely, he showed that every convex
noncompact subset of a respective topological vector space contains a closed
homeomorphic copy of $[0,1$ ), called a (topological) ray. By (a little addition to)

the Tietze theorem, a ray $R$ in a normal topological space $X$ is a retract of $X$;
and since $[0,1$ ) lacks the fixed point property, so does the space X. (Let us point
out that, in a nonmetric case, even if one constructs a ray in a convex set $C$,

then $C$ may not be normal and one cannot conclude that $C$ lacks the fixed point
property.) Klee has asked a question of whether an arbitrary noncompact
convex subset $C$ of a topological vector space $E$ contains a ray (or lacks the
fixed point property). He specified that the case of metrizable $E$ is of some
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interest. In such a case, we obviously can assume that $E$ is a complete metric
linear space. Then, either $C$ is not closed in $E$ or $C$ is completely metrizable. If
$C$ is not closed in $E$ then, it is easy to constmct a ray “through” a sequence
$\{x_{n}\}\subset C$ that converges to a point $x_{\infty}\in E\backslash C$ . If $C$ is completely metrizable,
then either $C$ is locally compact or nonlocally compact; the locally compact case
has been solved by Klee (see 2.1). The case of infinite-dimensional, completely
metrizable, nonlocally compact $C$ is treated in Proposition 3.1; we invoke
therein a certain general statement conceming approximation of maps into $C$, a
particular case of which yields the existence of a ray in $C$.

We also provide an answer to Klee’s question in case of a nonmetric space
$E$. In Example 4.1 we constmct a convex, noncompact subset $W$ (of a compact
convex set) in a locally convex topological vector space $E$ such that $W$ has the
fixed point property (and does not contain a ray). On the other hand, we
observe that every convex subset $C$ (in an arbitrary topological vector space)
which is not totally bounded must both contain a ray and lack the fixed point
property.

It is reasonable to ask a more general question of whether a noncompact
metrizable space with a nice local stmcture contains a ray. In particular, of
whether a noncompact absolute retract contains a ray. In general, this is not the
case, as classical examples of the “broken comb” and the “hedgehog” spaces
show, see [C]. A special case of our Theorem 2.5 states that every absolute
retract space $X$ which is either locally compact or not completely metrizable
contains a ray. For $X$ which is not completely metrizable, the absolute retract
property can be relaxed to the $LC^{0}$-property. It is reasonable to ask the
following

1.1. QUESTION. Let $X$ be a completely metrizable absolute retract without
the fixed point property. Does $X$ contain a ray?

As far as we know, this question was tackled previously by S. Reich and
Y. Stemfeld in [RS] who obtained an affirmative answer for some “hedgehog”-
like spaces. More recently, V. Okhezin $[0]$ has obtained some partial answer to
this question as well.

Our approach to constmct a ray in a noncompact $X$ is very elementary. We
simply find a completion $\hat{X}$ of (X, $d$), where $d$ is some incomplete admissible
metric on $X$ (observe that every noncompact space $X$ admits an incomplete
metric $d$, see $[E, 4.3.E(d)])$ . Having done this, we then construct a Peano
continuum $Y\cup\{x_{\infty}\}$ , where $Y$ is a nonempty subset of $X$ and $x_{\infty}\in\hat{X}\backslash X$ . Next,
there exists an arc $a:[0,1]\rightarrow Y\cup\{x_{\infty}\}$ joining an element $y\in Y$ with $x_{\infty}$ . The
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restriction of $a$ to $[0,1$ ) gives us a required closed embedding of $[0,1$ ) into $X$.
Observe that such an embedding will be uniformly continuous with respect to
the natural metrics on $[0,1$ ) and $d$. This however does not bear any restriction
because given any closed embedding $p:[0,1$ ) $\rightarrow X$ , we can apply the Hausdorff
metric extension theorem (see [E. p. 369]) to find a metric $d$ on $X$, so that $p$ will
be an isometric embedding. It is clear now that $p$ will extend to an embedding
of $[0,1]$ into $\hat{X}$ . Summarizing, a noncompact metrizable space $X$ contains a ray if
and only if $X$ admits an admissible incomplete metric $d$ and a path $p:[0,1]\rightarrow\hat{X}$

such that $p(t)\in X$ for every $0\leq t<1$ and $p(1)\in\hat{X}\backslash X$ .
Here is how one can obtain such a path $p$ for an $LC^{0}$-space $X$ which is not

completely metrizable. We find a completely metrizable enlargement $\tilde{X}$ of $X$

so that every path in $\tilde{X}$ can be instantly homotopied to a path in $X$. Such an
enlargement $\tilde{X}$ can be found for every $LC^{n}$ (or, locally contractible) space $X$

which is not completely metrizable; we additionally can require that $\tilde{X}$ is $LC^{n}$

(locally contractible) and that $\tilde{X}\backslash X$ is locally n-negligible in $\tilde{X}$ (see Proposition
2.8). A corresponding result for absolute neighborhood retract spaces $X$ was
previously obtained by Toru\’{n}czyk in [Tor2].

2. $LC^{0}$-spaces containing a ray

Let us start with the following observation due to Klee [K] which can be
also found in [C].

2.1. PROPOSITION. Every noncompact, connected, locally connected, locally
compact metrizable space contains a ray (and consequently, lacks the fixed point
property). $\square $

The above fact admits the following reformulation.

2.2. PROPOSITION. Let $X$ be a noncompact metrizable space. Then $X$

contains a ray if and only if $X$ admits a completion $\hat{X}$ such that for some
$x_{\infty}\in\hat{X}\backslash X$ , and connected, locally connected, completely metrizable subspace $Y$ of
$X$, the space $Y\cup\{x_{\infty}\}$ is locafly connected

PROOF. Assume that $X$ contains a ray $R$ . Let $d$ be a metric on the one-
point compactification of $R$ . By the Hausdorff theorem on extending metrics
[$E$ , p. 369], there exists an admissible metric on $X$ whose restriction to $R$ is $d$.
Now, clearly our condition is satisfied with $Y=R$ .
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To show the converse statement observe that $Y\cup\{x_{\infty}\}$ is completely
metrizable, locally connected and connected. This yields that $Y\cup\{x_{\infty}\}$ is path
connected; hence an argument from the Introduction works. $\square $

The following abstraction of [Torl, Proposition 2.1] has been suggested to
us by H. Toru\’{n}czyk.

2.3. PROPOSITION. Let $X$ be a metrizable (resp., completely metrizable)

space and $\mathscr{T}$ be a set ofpairs $(U, V)$ of open subsets of $X$ satisfying the following
properties:

(a) $V\subseteq U$ for every $(U, V)\in \mathscr{T}$

(b) for every $x\in X$ and every open neighborhood $U$ of $x$ there exists an open
neighborhood $V\subseteq U$ of $x$ such that $(U, V)\in \mathscr{T}$ ,

(c) for every $(U, V)\in \mathscr{T}$ and every open sets $U^{\prime},$ $V^{\prime}\subseteq X$ if $U\subseteq U^{\prime}$ and
$V^{\prime}\subseteq V$ then $(U^{\prime}, V^{\prime})\in \mathscr{T}$ .

Then there exists an admissible metric (resp., complete metric) $d$ on $X$ such that for
every $x\in X$ and $r\in(O, 1)$ the pair of open balls $(B_{d}(x, r),$ $B_{d}(x, r/8))$ belongs to $\mathscr{T}$ .

PROOF. By induction we will constmct a sequence of admissible metrics $d_{n}$

on $X$ such that for every $ n\in\omega$ and open set $V$ such that $diam_{d_{n+1}}V<1$ there
exists an open $U$ such that $(U, V)\in \mathscr{T}$ and $diam_{d_{i}}U<(n+1)^{-1}2^{-(n+1)}$ for
$i=0,$

$\ldots,$
$n$ .

Let $d_{0}$ be any admissible metric (resp., complete metric) on $X$ and suppose
that metrics $d_{0},$

$\ldots,$
$d_{n}$ have been defined. Let

$\mathscr{U}=\{U_{x}=\bigcap_{i=0}^{n}B_{d_{i}}(x, (n+1)^{-1}2^{-(n+2)})|x\in X\}$ .

By (b), for every $x\in X$ we can find an open neighborhood $V_{x}$ of $x$ such that
$(U_{x}, V_{x})\in/^{\Gamma}$ . From a result of Michael [Mi, p. 165] it follows that there exists an
admissible metric $d_{n+1}$ on $X$ such that every set of $d_{n+1}$ -diameter less than 1 is
contained in some set $V_{x}$ . Obviously, conditions (c) guarantees that $d_{n+1}$ has the
required property.

We define the metric $d$ by the formula

$d(x,y)=\sum_{n=0}^{\infty}\min(d_{n}(x,y),$
$2^{-(n+1)}$ ) for $x,y\in X$ .

If our initial metric $d_{0}$ is complete then from the inequality $ d(x,y)\geq$

$\min(d_{0}(x,y),$ $2^{-1}$ ) it follows that $d$ is also complete. Fix $x\in X$ and $r\in(O, 1)$ .
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Let $ n\in\omega$ be such that $2^{-(n+1)}\leq r<2^{-n}$ . Since $r/8<2^{-(n+3)}$ we have
$B_{d}(x, r/8)\subseteq B_{d_{n+2}}(x, r/8)$ and therefore $diam_{d_{n+2}}B_{d}(x, r/8)<2^{-(n+2)}<1$ . By the
property of $d_{n+2}$ we can find an open set $U$ such that $(U, B_{d}(x, r/8))\in \mathscr{T}$ and
$diam_{d_{i}}U<(n+2)^{-1}2^{-(n+2)}$ for $i=0,$ $\ldots$ , $n+1$ . Hence

$diam_{d}U<(n+2)(n+2)^{-1}2^{-(n+2)}+\sum_{i=n+2}^{\infty}2^{-(i+1)}=2^{-(n+1)}\leq r$ .

The above inequality shows that $U\subseteq B_{d}(x, r)$ and by (c) we conclude that the
pair $(B_{d}(x, r),B_{d}(x, r/8))$ belongs to $\mathscr{T}$ . $\square $

2.4. COROLLARY. Let $X$ be a metrizable $LC^{n}$-space, $ n\in\omega$ . Then there exists
an admissible metric $d$ on $X$ such that for every $x\in X$ and $r\in(O, 1)$ each
continuous map $f:\partial I^{k+1}\rightarrow B_{d}(x, r/8)$ can be extended to a continuous map
$F$ : $I^{k+1}\rightarrow B_{d}(x, r),$ $0\leq k\leq n$ .

PROOF. Apply 2.3 for the set $\mathscr{T}=\{(U, V)|U$ and $V$ are open subsets of $X$

such that every continuous map $f$ : $\partial I^{k+1}\rightarrow V$ can be extended to a continuous
map $F:I^{k+1}\rightarrow U,$ $0\leq k\leq n$ }. $\square $

2.5. THEOREM. Let $X$ be a metrizable $LC^{0}$-space. If either $X$ is noncompact,
connected and locally compact or $X$ is not completely metrizable then $X$ contains
a ray.

PROOF. The locally compact case was settled in Proposition 2.1.
Assume that $X$ is not completely metrizable. Then the metric $d$ given by

Cor. 2.4 is not complete. Let $(x_{n})_{n\in\omega}$ be a Cauchy sequence in (X, $d$) which
is not convergent. For every $ n\in\omega$ we can find a path $p_{n}$ : $[0,1]\rightarrow X$ such
that $p_{n}(0)=x_{n},p_{n}(1)=x_{n+1}$ and $diam_{d}p_{n}([0,1])<20d(x_{n}, x_{n+1})$ . One can easily
check that the set $Y=\bigcup_{n\in\omega}p_{n}([0,1])$ is closed in $X$, noncompact, connected,
locally connected and locally compact. By 2.1, $Y$ contains a ray which is also a
closed subset of X. $\square $

We see that a key ingredient in proving Theorem 2.5 was Proposition 2.3
which itself is an abstraction of [Torl, Proposition 2.1]. The latter fact has been
used by Toru\’{n}czyk (see [Torl, Proposition 2.2]) to show that every absolute
retract space $X$ admits a so-called regular metric $d$. The last means that
whenever (X, $d$) is isometrically (or more generally, uniformly) embedded onto
a closed subset of a metric space $(Y, \rho)$ , then there exists a retraction
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$r:(Y, \rho)\rightarrow(X, d)$ which is regular, i.e., for every $\epsilon>0$ there exists $\delta>0$ such
that whenever $dist_{\rho}(x, X)<\delta$ , then $ d(r(x), x)<\epsilon$ . This fact provides an
altemative proof of Theorem 2.5 for the case of noncompletely metrizable,
absolute retract space $X$ as follows. Embed isometrically (X, $d$) as a closed
subset of a normed space $(E, \Vert\cdot\Vert)$ (see [BP, p. 49]), and let $r:(E, \Vert\cdot\Vert)\rightarrow(X, d)$

be a regular retraction. Since $X$ is not completely metrizable, we can find a
piecewise linear map $\phi$ : $[0,1$ ) $\rightarrow E$ with the nodes (i.e., the points of the set
{ $\phi(t)|\phi$ is not affine at $t$} $\cup\{\phi(0)\})$ lying in $X$ and with $\lim_{t\rightarrow 1}\phi(t)\in\overline{X}\backslash X$ , where
$\overline{X}$ is the closure of $X$ in the completion $\hat{E}$ of $E$. Using the regularity of $r$, we can
constmct $\phi$ in such a way that $\lim_{t\rightarrow 1}r(\phi(t))=\lim_{t\rightarrow 1}\phi(t)$ . This easily yields the
existence of a ray in $r(\phi([0,1)))\subseteq X$ (see the Introduction).

Observe that in the above argument we rather used the fact that (X, $d$) was
not complete, than $X$ is not completely metrizable. Consequently, if $X$ has the
fixed point property then any regular metric on $X$ must be complete (otherwise,
$X$ would contain a ray, contradicting the fixed point property). Since, for
completely metrizable $X$, the constmction of [Torl] yields a complete regular
metric on $X$, it suggests that every regular metric on $X$ must be complete. Here
is a simple counterexample.

2.6. EXAMPLE. The standard Euclidean metric on $(0,1$ ] is regular. (Let
$(0,1]$ be a closed subset of a metric spaoe $(X, \rho)$ , let $U_{n}=$

$\cup\{B(t, (1/n)-t)|0<t<(1/n)\}$ (here $B(x,\epsilon)$ denotes the open ball at $x$ and
radius $\epsilon$), and define inductively a retraction $r:X\rightarrow(O, 1$ ] as follows:
$r(X\backslash U_{1})=\{1\},$ $r$ transforms the boundaries of $U_{1}$ and of $U_{2}$ onto {1} and
{1/2}, respectively, and the set $U_{1}\backslash U_{2}$ onto [1/2, 1], and so on.) $\square $

Having in mind Question 1.1, it is reasonable to ask

2.7. QUESTION. Let $X$ be a completely metrizable absolute retract space
without the fixed point property. Does $X$ admit an incomplete regular metric?

We now discuss a way of obtaining $LC^{0}$-spaces which are not completely
metrizable by employing the following notion of local n-homotopy negligibmty
due to Tom\’{n}czyk [Tor2]. A subset $A$ of a metrizable space $Y$ is locally n-
negligible, $ 0\leq n\leq\infty$ , if for every $y\in Y$ and for every neighborhood $U$ of $y$ ,
there exists a neighborhood $V$ of $y,$

$V\subseteq U$ , such that each map $ f(I^{k}, \partial I^{k})\rightarrow$

(V, $V\backslash A$ ) can be homotopied, via a homotopy $(h_{t}):(I^{k}, \partial I^{k})\rightarrow(U, U\backslash A)$ ,
$0\leq t\leq 1$ , to $h_{1}$ so that $h_{1}(I^{k})\subset U\backslash A,$ $0\leq k<n+1$ , see [Tor2]. Here by $I^{0}$ we
mean a fixed one-point set, and $\partial I^{0}=\emptyset;k<n+1$ means $0\leq k\leq n$ if $ n\neq\infty$
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and $ k\in\omega$ if $ n=\infty$ . Locally $\infty$ -negligible sets are simply called locally negligible
sets. It can easily be shown (see [Tor2, Remark 2.5]) that whenever $Y$ is an $LC^{0_{-}}$

space and $A$ a locally l-negligible subset of $Y$, then $X=Y\backslash A$ is an $LC^{0}$ -space.
If additionally $Y$ is completely metrizable and $A$ is not an $F_{\sigma}$-subset of $Y$, then
$X$ is an $LC^{0}$-space which additionally is not completely metrizable.

Our Proposition 2.3 enables us to derive the following result on enlarging
incomplete $LC^{n}$-spaces to complete ones.

2.8. PROPOSITION. Let $Y$ be a metrizable space and let $X$ be an $LC^{n}$-space
(resp., $X$ is an absolute neighborhood retract space) such that $ X\subset$ Y. Then $X$ can
be enlarged to $\tilde{X}\subseteq Y$ such that

(i) $\tilde{X}$ is a $G_{\delta}$ -subset of $Y$,
(ii) $\tilde{X}$ is an $LC^{n}$-space (resp., $\tilde{X}$ is an absolute neighborhood retract space),
(iii) $\tilde{X}\backslash X$ is locally n-negligible (resp., locally homotopy negligible) in $\tilde{X}$ .

In addition, given a finite-dimensional $po$lyhedron $K,$ $\dim(K)<n+1$ , and a map
$f:K\rightarrow\tilde{X}$ , there exists a homotopy $(h_{t}):K\rightarrow\tilde{X}$ such that $h_{0}=f$ and $h_{t}(K)\subset X$

for $t>0$ .

The proof of the absolute neighborhood retract case of 2.8 has been
provided in [Tor2, Proposition 4.1]. Since then the fact has become very useful.
We hope that the cases of finite $n$ or locally contractible $X$ (treated in
Proposition 2.9 below) will also find their applications.

Here is how the case of $n=0$ can be applied to obtain a proof of 2.5 for
an $LC^{0}$-space which is not completely metrizable. Embed $X$ in a completely
metrizable space $Y$, and let $\tilde{X}$ be an enlargement from 2.8. Then, by 2.8(i), $\tilde{X}$ is
also completely metrizable and therefore $\tilde{X}\backslash X\neq\emptyset$ . By the ‘addition’ part of
2.8, one can find a path $h:[0,1]\rightarrow\tilde{X}$ such that $p((O, 1$ ]) $\subset X$ and $p(0)\in\tilde{X}\backslash X$ .
Hence, $X$ contains a ray.

PROOF OF 2.8. Let us first provide an argument for the case where $X$ is an
absolute neighborhood retract space (more direct than that of [Tor2, Propo-
sition 4.1]). Embed $Y$ as a closed linearly independent subset of a normed space
$E$ (see [BP, p. 49]). Then $X$ is a closed subset of $E_{0}=span(X)$ . Write $r$ for a
retraction of an open subset $U_{0}$ in $E_{0}$ onto $X$. Let $U$ be an open set in $E$ such
that $U\cap E_{0}=U_{0}$ . By the theorem of Lavrentiev, $r$ can be extended to a map
$\tilde{r}:\tilde{U}_{0}\rightarrow\overline{E}_{0}$ , where $U_{0}\subset\tilde{U}_{0}\subset U\cap\overline{E}_{0},\overline{E}_{0}$ is the closure of $E_{0}$ in the completion
of $E$ and $\tilde{U}_{0}$ is a $G_{\delta}$ -subset of $U\cap\overline{E}_{0}$ . Let $\tilde{X}=\{y\in Y\cap\tilde{U}_{0}|\tilde{r}(y)=y\}$ . Let
$U_{0}^{\prime}=\tilde{r}^{-1}(\tilde{X})$ . We see that $U_{0}\subset E_{0}^{\prime}\subset U\cap\overline{E}_{0}$ . Since $E_{0}$ is a linear subspace of
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$\overline{E}_{0},\overline{E}_{0}\backslash E_{0}$ is locally homotopy negligible in $\overline{E}_{0}$ . It follows that $U\cap\overline{E}_{0}\backslash U$ (and

hence $U\cap\overline{E}_{0}\backslash \tilde{U}$ ) is locally homotopy negligible in $U\cap\overline{E}_{0}$ . Since $U\cap\overline{E}_{0}$ is an
absolute neighborhood retract, by [Tor2, Theorem 3.1], $\tilde{X}$ is also an absolute
neighborhood retract. It is easy to see that (iii) holds.

Assume that $X$ is an $LC^{n}$ -space. Denote by $\hat{Y}$ a completion of $Y$. Let $d$ be
a metric on $X$ satisfying the assertion of 2.4. By the Lavrientiev theorem, the
metric $d$ can be extended to a $G_{\delta}$ -subset $\tilde{Y}$ of the closure of $X$ in $\hat{Y}$ . Now, it is
easy to see, that given $\tilde{y}\in\tilde{Y}$ , every map $f$ : $\partial I^{k}\rightarrow B(\tilde{y}, \epsilon)\cap X$ extends to a map

$\overline{f}:I^{k}\rightarrow B(\tilde{y}, 16\epsilon)\cap X$ for $0\leq k<n+2$ . According to Eilenberg–Wilder ter-
minology (and used in [Tor2]), the set $X$ is $LC^{n}$ rel. $\tilde{Y}$ at each point $\tilde{y}\in\tilde{Y}$ . We
can now apply [Tor2, Theorem 2.8] to conclude that $\tilde{Y}\backslash X$ is locally n-
homotopy negligible, and that the ‘addition’ part of 2.8 holds with $\tilde{X}$ being
replaced by $\tilde{Y}$ .

Set $\tilde{X}=\tilde{Y}\cap Y$ . We easily check that (i), (iii) and the ’addition’ part of 2.8
hold for such $\tilde{X}$ . It remains to show that $\tilde{X}$ is an $LC^{n}$ -space. Pick $\tilde{x}\in\tilde{X}$ , a map

$f:\partial I^{k}\rightarrow B(\tilde{x}, \epsilon),$ $0\leq k<n+2$ . By the ’addition’ part, $f$ can be homotopied
within $B(\tilde{x}, \epsilon)$ to a map $f_{1}$ : $\partial I^{k}\rightarrow B(\tilde{x}, \epsilon)\cap X$ . By the above property of $d,$ $f_{1}$ can
be extended to a map $I^{k}\rightarrow B(\tilde{x}, 16\epsilon)\cap X$ . This shows that $f$ can be extended to
a map $I^{k}\rightarrow B(\tilde{x}, 16\epsilon)$ , hence $\tilde{x}$ is an $LC^{n}$ -space. $\square $

2.9. PROPOSITION. Let $X$ be a metrizable locally contractible space. Then $X$

can be enlarged to a completely metrizable space $\tilde{X}$ such that
(i) $\tilde{X}$ is locally contractible,
(ii) $\tilde{X}\backslash X$ is locally homotopy negligible in $\tilde{X}$ .

In addition, given a finite-dimensional polyhedron $K$ and a map $f$ : $K\rightarrow\tilde{X}$ , there
exists a homotopy $(h_{t}):K\rightarrow\tilde{X}$ such that $h_{0}=f$ and $h_{t}(K)\subset X$ for $t>0$ .

PROOF. We use a similar constmction as in the proof of 2.3. We will
construct an admissible metric $d$ in $X$ such for every $x\in X$ and $r\in(O, 1)$ the ball
$B_{d}(x, r/8)$ can be contracted within the ball $B_{d}(x, r)$ by a homotopy which can
be extended to a homotopy contracting the corresponding ball in the completion
$\tilde{X}$ of $X$ with respect to $d$.

By induction we will constmct sequences of admissible metrics $d_{n}$ on $X$,
locally finite open covers $\mathscr{U}_{n}$ of $X$ and families of homotopies $\mathscr{H}_{n}=$

$\{h_{U} : U\times[0,1]\rightarrow X|U\in \mathscr{U}_{n}\}$ satisfying the following conditions for every $ n\in\omega$ :
(a) $\forall(U\in \mathscr{U}_{n})h_{U}\in \mathscr{H}_{n}$ is a contraction of $U$ in $X$,
(b) $\forall(U\in \mathscr{U}_{n})\forall(i\leq n)diam_{d_{i}}h_{U}(U\times[0,1])<(n+1)^{-1}2^{-(n+1)}$ ,
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(c) $\forall(U\in \mathscr{U}_{n})\forall(j<n)\forall(V\in \mathscr{U}_{j})\forall(x,y\in U\cap V)\forall(t\in[0,1])\forall(i\leq n)$

$d_{i}(h_{V}(x, t),$ $h_{V}(y, t))<(n+1)^{-1}2^{-(n+1)}$ ,
(d) every set of $d_{n+1}$ -diameter less than 1 is contained in some set $U\in \mathscr{U}_{n}$ .
We start the construction with any admissible metric $d_{0}$ on $X$. Using the

local contractibility of $X$ we find $\mathscr{U}_{0}$ and $\mathscr{H}_{0}$ in order to satisfy (a) and (b).

Suppose that metrics $d_{0},$
$\ldots,$

$d_{n}$ , covers $\mathscr{U}_{0},$

$\ldots,$
$\mathscr{U}_{n-1}$ and families $\mathscr{H}_{0},$

$\ldots,$
$\mathscr{H}_{n-1}$

have been constmcted for $n\geq 1$ . Again using the local contractibility of $X$ one
can easily find a locally finite open cover $\mathscr{U}_{n}$ and a family of homotopies $\mathscr{H}_{n}$

satisfying (a) and (b). Since the covers $\mathscr{U}_{0},$

$\ldots,$
$\mathscr{U}_{n-1}$ are locally finite, we can

additionally assure (c). Finally, a metric $d_{n+1}$ can be obtained from the result of
Michael [Mi, p. 165].

We define a metric $d$ by the formula

$d(x,y)=\sum_{n=0}^{\infty}\min(d_{n}(x,y),$
$2^{-(n+1)}$ ) for $x,y\in X$ .

Let $\tilde{X}$ be the completion of $X$ with respect to the metric $d$. Fix $x\in\tilde{X}$ and
$r\in(O, 1)$ . We will show that the ball $B_{d}(x, r/8)$ can be contracted within the ball
$B_{d}(x, r)$ . Let $ n\in\omega$ be such that $2^{-(n+1)}\leq r<2^{-n}$ . We take $x^{\prime}\in X$ and $s<2^{-(n+3)}$

such that $B_{d}(x, r/8)\subseteq B_{d}(x^{\prime},s)$ . Since $s<2^{-(n+3)}$ we have $ B_{d}(x^{\prime},s)\cap X\subseteq$

$B_{d_{n+2}}(x^{\prime}, s)\cap X$ and therefore $diam_{d_{n+2}}B_{d}(x^{\prime}, s)\cap X<2^{-(n+2)}<1$ . By the property
(d) of $d_{n+2}$ , we can find an open set $U\in \mathscr{U}_{n+1}$ such that $B_{d}(x^{\prime}, s)\cap X\subseteq U$ . Let
$C([0,1],\tilde{X})$ denotes the space of continuous maps from $[0,1]$ into $\tilde{X}$ equipped
with the standard (complete) supremum metric. We will check that the map
$g:U\rightarrow C([0,1],\tilde{X})$ defined by

$g(u)(t)=h_{U}(u, t)$ for $u\in U$ and $t\in[0,1]$

is uniformly continuous (in fact, Lipschitz). Let $y,$ $z\in U$ be such that
$d(y,z)<2^{-(k+2)}$ , for $k>n+1$ . Then $d_{k+1}(y, z)<1$ and (d) implies that $y,z\in V$

for some $V\in U_{k}$ . From (c) it follows that $d_{i}(h_{U}(y, t),$ $h_{U}(z, t))<(k+1)^{-1}2^{-(k+1)}$ ,
for every $t\in[0,1]$ and $i\leq k$ . Therefore

$d(h_{U}(y, t),$ $h_{U}(z, t))<(k+1)(k+1)^{-1}2^{-(k+1)}+\sum_{i=k+1}^{\infty}2^{-(i+1)}=2^{-k}$ .

This means that the distance between $g(y)$ and $g(z)$ is less than or equal $2^{-k}$ .
Consequently, the map $g$ can be extended to a continuous map
$G:C1_{\overline{X}}U\rightarrow C([0,1],\tilde{X})$ . Obviously, $B_{d}(x, r/8)\subseteq C1_{\overline{X}}U$ and the homotopy
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$H:B_{d}(x, r/8)\times[0,1]\rightarrow\tilde{X}$ defined by

$H(y, t)=G(y)(t)$ for $y\in B_{d}(x, r/8)$ and $t\in[0,1]$

is a contraction of $B_{d}(x, r/8)$ in $\tilde{X}$ . Using the condition (b) one can easily
calculate that $diam_{d}H(B_{d}(x, r/8)\times[0,1])<2^{-(n+1)}\leq r$ hence $ H(B_{d}(x, r/8)\times$

$[0,1])\subseteq B_{d}(x, r)$ . Property (ii) and the ’addition’ part of 2.9 can be verified in the
same way as in the proof of 2.8. $\square $

We do not know whether or not Proposition 2.9 holds in a version of 2.8.
Such a version can be obtained if the answer to the following question is
affirmative.

2.10. QUESTION. Let $A$ be a locally homotopy negligible subset of a locally
contractible space $X$. Is $X\backslash A$ locally contractible?

Note that the complement $X\backslash A$ enjoys the following strong version of the
$LC^{\infty}$ -property: For every $x\in X\backslash A$ and neighborhood $U$ of $x$ there exists a
neighborhood $V$ of $x,$

$V\subseteq U$, such that spheres of all dimensions in $V$ are
contractible in $U$. Aiming at a negative answer to 2.10, it follows from [Tor2,

Theorem 3.1] that $X$ cannot be an absolute neighborhood retract. Let us
consider the example of Borsuk of a compactum $X=X_{0}\cup\bigcup_{k=1}^{\infty}X_{\dot{k}}$ which is
locally contractible but not an absolute neighborhood retract; we employ the
notation of [Bor, p. 125]. It is easy to see that the identity map on $X$ can be
arbitrarily closely approximated by maps (even retractions) into $\bigcup_{k=1}^{\infty}X_{\dot{k}}$ .
Hence, $X_{0}$ is locally homotopy negligible in X. (Since $\bigcup_{k=1}^{\infty}X_{\dot{k}}$ is locally finite
dimensional and locally contractible, it is an absolute neighborhood retract; this
provides another counterexample to the converse implication of [Tor2, Theorem
3.1].) For an arbitrary subset $A$ of $X_{0}$ , form the space $Y_{A}=A\cup\bigcup_{k=1}^{\infty}X_{\dot{k}}$ .
Clearly, $A$ is locally homotopy negligible in $Y_{A}$ . Yet, it can be shown that $Y_{A}$ is
locally contractible as well, and hence $Y_{A}$ cannot serve as a suitable solution
to 2.10.

3. Convex sets which lack the fixed point property

First we show that every noncompact convex subset $C$ of a metric linear
space lacks the fixed point property. As said in the Introduction, it is enough to
settle the case of an infinite-dimensional, nonlocally compact closed subset $C$ in
a complete metric linear space $E$.
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3.1. PROPOSITION. Let $C$ be a nonlocally compact closed convex subset of a
separable completely metrizable linear space E. Then, every map of a separable,
completely metrizable, finite-dimensional space $M$ into $C$ can be strongly
approximated by a closed embedding.

PROOF. By [DT] and [D], the space $C$ enjoys the so-called strong
approximation property, i.e., given an open cover $\mathscr{U}$ of $C$, every map
$\oplus_{n\in N}I^{n}\rightarrow C$ can be $\mathscr{U}$-approximated by a map $g$ so that $\{g(I^{n})\}_{n=1}^{\infty}$ forms a
discrete family in $C$. Next, since $C$ is locally contractible, and hence, is $LC^{n}$

for every $n$ , our statement can be obtained by inspecting reasonings of [Tor3,

p. 255], see also [Bol, p. 127] and [Bo2, p.10]. $\square $

3.2. REMARK. In 3.1, $M$ can be replaced by an arbitrary separable,
completely metrizable absolute neighborhood space. (Apply the approach of
[Tor3, p. 255].) $\square $

A discussion from the Introduction and the statement of 3.1 yield the
following answer to a question of Klee [K].

3.3. COROLLARY. Every noncompact convex subset of a metric linear space
contains a ray, and therefore fails the fixed point property. $\square $

Let us recall that a subset $A$ of a topological vector space $E$ is said to be
totally bounded, if for every neighborhood $U$ of $0$ in $E$ there are $x_{1},$ $x_{2},$ $\ldots x_{n}\in E$

such that $A\subset\bigcup_{i=1}^{n}x_{j}+U$ .

3.4. THEOREM. Let $C$ be a convex subset of a topological vector space E. If
$C$ is not totally bounded, then $C$ contains a ray and does not have the fixed point
property.

PROOF. We can assume (see [KN, p. 50]) that $E=\prod_{\alpha}E_{\alpha}$ , where each $E_{\alpha}$ is
a complete metric linear space. Let $\pi_{\alpha}$ : $E\rightarrow E_{\alpha}$ be the projection. If each $\pi_{\alpha}(C)$

is compact, then $C$, as a subset of the compact set $\prod_{\alpha}\pi_{\alpha}(C)$ , would be totally
bounded. Consequently, there exists $\alpha$ such that $C_{\alpha}=\pi_{\alpha}(C)$ is a noncompact,
convex subset of the metric linear space $(E_{\alpha}, \cdot |_{\alpha})$ . By 3.3, there exists a closed
embedding $p:[0,1$ ) $\rightarrow C_{\alpha}$ . We may assume that $p$ is piecewise linear.

To see this first we approximate $p$ by a piecewise linear map $p^{\prime}$ : $[0,1$ ) $\rightarrow C_{\alpha}$

in a following way. We construct piecewise linear maps $p_{n}^{\prime}$ : $[1-2^{-n}$ ,
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$1-2^{-n-1}]\rightarrow C_{\alpha},$ $n=0,1,$ $\ldots$ , so that $|p(t)-p_{n}^{\prime}(t)|_{\alpha}<2^{-n}$ for every $ 1-2^{-n}\leq$

$t\leq 1-2^{-n-1}$ . The map $p^{\prime}$ is defined as the union of $p_{0}^{\prime},p\{,$
$\ldots$ . Using the fact

that $p$ is closed and the approximation property of $p^{\prime}$ one can easily see that the
image $p^{\prime}([0,1))$ , a closed subset of $C_{\alpha}$ , is a noncompact, connected, locally
compact $LC^{0}$ -space. Therefore, by 2.5 we can find a closed embedding

$p^{\prime\prime}$ : $[0,1$ ) $\rightarrow p^{\prime}([0,1))$ . Since $p^{\prime}([0,1])$ is a union of a locally finite family of
segments we may assume that $p^{\prime\prime}$ is piecewise linear.

Now, we take the increasing sequence $\{t_{n}\},$ $0<t_{n}<1,$ $\lim t_{n}=1$ such that $p$

is affine on each subinterval $[\iota_{n}, r_{n+1}]$ . Put $x_{n}=p(t_{n})$ . We claim that $p$ can be
‘lifted’ to a map $q:[0,1$ ) $\rightarrow C$ , that is, we have $\pi_{\alpha}q=p$ . To arrange that, pick
$y_{n}\in\pi_{\alpha}^{-1}\{x_{n}\}\cap C$ . Let $q$ be an affine map on each $[t_{n}, t_{n+1}]$ joining $y_{n}$ with $y_{n+1}$ .
Clearly, $q$ is continuous and $\pi_{\alpha}q=p$ since $\pi_{\alpha}$ is linear. It follows that $q$ is a
closed embedding.

Let us now show that $C$ fails to have the fixed point property. We simply
will exhibit a retraction $r:C\rightarrow R$ , where $R=q([0,1))$ . Write $\sqrt{};C_{\alpha}\rightarrow p([0,1))$

for a retraction ( $C_{\alpha}$ is metrizable!). By our construction, $\pi_{\alpha}|R$ is a homeo-
morphism of $R$ onto $p([0,1))$ . Let $s$ be the inverse of $\pi_{\alpha}|R$ . It is clear that
$r=s\sqrt{}\pi_{\alpha}$ is a required retraction. $\square $

4. A noncompact convex set with the fixed point property

In Example 4.1 below we will show that Theorem 3.4 cannot be extended to
all totally bounded noncompact convex sets $C$ in topological vector spaces $E$ . In
view of 3.3, $C$ must be nonmetric. Surprisingly, a suitable $C$ can be found in a
locally convex space $E$ . This provides a negative answer to a question of Klee
[$K$ , p. 32].

4.1. EXAMPLE. There exists a locally convex topological vector space $E$

and a noncompact convex subset $W$ of $E$ which has the fixed point property.
Let $K=\omega_{1}+1$ be the compact space of all ordinals $\leq\omega_{1}$ with the order

topology. Consider the Banach space $C(K)$ . Let $E=C(K)^{*}$ be the dual of $C(K)$

equipped with the weak* topology. The space $E$ can be identified with the space
of all regular Borel measures on $K$. Since $K$ is scattered (i.e. does not contain
any dense-in-itself subset) every measure $\mu\in E$ is purely atomic (has countable
support $supp(\mu))$ , see [R].

Let $C$ be the subspace of $E$ consisting of probability measures and let
$W=\{\mu\in C|supp(\mu)\subseteq\omega_{1}\}$ . (Clearly, $W$ is dense in $C$, and since $C$ is compact,
$W$ is totally bounded.)
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4.2. LEMMA. The space $W$ has the fixed point property.

PROOF. Let $f:W\rightarrow W$ be a continuous map. For every $\alpha<\omega_{1}$ , let
$W_{\alpha}=\{\mu\in W|supp(\mu)\subseteq[0, \alpha]\}$ . The convex set $W_{\alpha}$ , regarded as a subspace of
all probability measures in the dual space $C([0, \alpha])^{*}$ with the weak* topology, is
closed, and therefore, $W_{\alpha}$ is compact. Since the compact space $[0, \alpha]$ is met-
rizable, $C([0, \alpha])$ is separable and therefore the weak* topology in $C([0, \alpha])^{*}$ and
$W_{\alpha}$ is metrizable. For infinite $\alpha$ the space $W_{\alpha}$ is infinite-dimensional and by
Keller’s Theorem (see [BP]) is homeomorphic to the Hilbert cube $I^{\omega}$ .

We will show that for some infinite $\alpha<\omega_{1}$ we have $f(W_{\alpha})\subseteq W_{\alpha}$ . Therefore
$f|W_{\alpha}$ (and f) has a fixed point.

By induction we construct a strictly increasing sequence of countable
ordinals $(\alpha_{n})_{n\in\omega}$ such that $f(W_{\alpha_{n}})\subseteq W_{\alpha_{n+1}}$ . Let $\alpha_{0}=0$ and suppose that
$\alpha_{0},$

$\ldots,$
$\alpha_{n}$ have been defined. Since $W_{\alpha_{n}}$ is separable and every countable subset

of $W$ is contained in $W_{\alpha}$ , for some $\alpha<\omega_{1}$ we can find $\alpha_{n+1}<\omega_{1}$ such that
$W_{\alpha_{n+1}}$ contains $f(W_{\alpha_{n}})$ . We may assume that $\alpha_{n+1}>\alpha_{n}$ . Now, we take $\alpha=$

$\sup\{\alpha_{n}|n\in\omega\}$ . The set $\bigcup_{n\in\omega}W_{\alpha_{n}}$ is dense in $W_{\alpha}$ and $f(\bigcup_{n\in\omega}W_{\alpha_{n}})\subseteq\bigcup_{n\in\omega}W_{\alpha_{n}}$

therefore $f(W_{\alpha})\subseteq W_{\alpha}$ . $\square $

4.3. REMARK. Since every closed separable subset of $W$ is compact, $W$

does not contain a ray. This also follows from Lemma 4.3 and the following
property of $W$.

4.4. LEMMA. The space $W$ is normal.

PROOF. By normality of the compact space $C$ it is enough to prove that
disjoint closed subsets $A,$ $B$ of $W$ have disjoint closures in $C$. Assume, to the
contrary, that there exists $\mu\in C1_{C}A\cap C1_{C}B$ . Let $\alpha<\omega_{1}$ be such $supp(\mu)\subseteq$

$\alpha+1\cup\{\omega_{1}\}$ . Let $\{f_{n}|n\in\omega\}$ be the norm dense subset of $\{f\in C(\omega_{1}+1)|f(\beta)=0$

for any $\beta>\alpha$ }. Define open sets

$U_{n}=\{v\in C|\forall(i\leq n)(|\int f_{i}dv-\int f_{i}d\mu|<\frac{1}{n+1})\}$ .

Then for every $v\in\bigcap_{n\in\omega}U_{n}$ and every $\beta\leq\alpha$ we have $v(\beta)=\mu(\beta)$ . For $\beta<\omega_{1}$ let
$ g\beta$ be the characteristic function of the interval $(\beta, \omega_{1}$ ] $=[\beta+1, \omega_{1}]$ . The function
$ g\beta$ is continuous on $\omega_{1}+1$ . Now, define by induction the increasing sequence $\beta_{n}$

and measures $v_{n}$ in the following way:
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We set $\beta_{0}=\alpha+1$ . Suppose that $\beta_{n}$ and $v_{k}$ for $k<n$ have been defined. We
take the following neighborhood of $\mu$ :

$V_{n}=\{v\in C|v\in U_{n}$ and $|\int g\rho_{n}dv-\int g\beta_{n}d\mu|<\frac{1}{n+1}\}$ .

If $n$ is even then take $v_{n}\in A\cap V_{n}$ ; if $n$ is odd then we choose $v_{n}\in B\cap V_{n}$ .
Finally, we define $\beta_{n+1}=\sup(supp(v_{n}))$ .

Let $\beta=\sup\beta_{n}$ and let the measure $v\in W$ be defined by:

$v(\gamma)=\left\{\begin{array}{l}\mu(\gamma) for\gamma\leq\alpha\\\mu(\omega_{1}) for\gamma=\beta\\ 0 otherwise\end{array}\right.$

Let $f\in C(\omega_{1}+1)$ . Since $v_{n}\in U_{n}$ it follows that $\int_{[0,\alpha]}fdv_{n}\rightarrow\int_{[0,\alpha]}fdv$ . Also
$v_{n}([0, \alpha])\rightarrow\mu([0, \alpha])=v([0, \alpha])$ . We have

$v_{n}((\beta_{n}, \beta])=v_{n}((\beta_{n}, \omega_{1}])=\int\beta_{n}\rightarrow\int g\rho_{n}d\mu=\mu(\omega_{1})=v(\beta)$ .

Therefore $v_{n}((\alpha, \beta_{n}$ ]), $v_{n}((\beta, \omega_{1}$ ]) $\rightarrow 0$ . By continuity of $f$ at $\beta$ it also follows that
$\int_{(\beta_{n},\beta]}fdv_{n}\rightarrow\int_{(\beta_{n},\beta]}fdv=f(\beta)v(\beta)$ . Now we can evaluate that

$\int fdv_{n}=\int_{[0,\alpha]}fdv_{n}+\int_{(\alpha,\beta_{n}]}fdv_{n}+\int_{(\beta_{n},\beta]}fdv_{n}+\int_{(\beta,\omega_{1}]}fdv_{n}$

$\rightarrow\int_{[0,\alpha]}fdv+0+f(\beta)v(\beta)+0=\int fdv$ .

This shows that $\lim_{n}v_{n}=v$ in $W$. Therefore $v\in A\cap B$ contradicting our
assumption on sets $A$ , B. $\square $

Let us present another example of a noncompact convex set with the fixed
point property; this example has been suggested to us by Roman Pol.

4.5. EXAMPLE. Let $S$ be the $\Sigma$-product of intervals $[0,1]$ in $R^{\omega_{1}}$ , i.e.

$S=$ { $(x_{\alpha})\in[0,1]^{\omega_{1}}|\{\alpha<\omega_{1}|x_{\alpha}\neq 0\}$ is $countable$} $\subseteq R^{\omega l}$ .

The set $S$ is a noncompact convex subset of the locally convex space $R^{\omega_{1}}$ and $S$

has the fixed point property.
The fixed point property of $S$ can be proved in a similar way as for the set

$W$ of Example 4.1. Namely, let $f:S\rightarrow S$ be a continuous map and let
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$S_{\alpha}=$ { $(x_{\alpha})\in S|x_{\beta}=0$ for $\beta>\alpha$ }. Using the same argument as in the proof of
Lemma 4.2 one can find an infinite $\alpha$ such that $f(S\alpha)\subseteq S_{\alpha}$ (here again we
employ the fact that every countable subset of $S$ is contained in $S_{\beta}$ for some
$\beta<\omega_{1})$ . Since $S_{\alpha}$ can be identified with the Hilbert cube $[0,1]^{\alpha},$ $f$ has a fixed
point in $S_{\alpha}$ .

By $[E$ , 2.7.14 $]$ the space $S$ is also normal.
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