# **SEMISIMPLE HOPF ALGEBRAS OF DIMENSION 12**

By

## Nobuyuki Fukuda

Abstract. We determine the isomorphic classes of 12-dimensional semisimple Hopf algebras over an algebraically closed field k whose characteristic ch  $k \neq 2, 3$ .

## Introduction

Recently the project of classifying semisimple Hopf algebras over an algebraically closed field is in progress. For example, in [M2, M3, M4, M5] Masuoka has classified semisimple Hopf algebras of dimensions 2p,  $p^2$  and  $p^3$  for a prime p in characteristic zero, and found some self-dual Hopf algebras of dimension  $p^3$  which are neither commutative nor cocommutative. Apart from these, little "non-trivial" semisimple Hopf algebras seem to be known. In this paper we classify all semisimple Hopf algebras of dimension 12. As a conclusion, there exists only two (up to isomorphism) Hopf algebras which are neither commutative, and these are self-dual. For proving the results, we take advantage of the methods of [M2] and [M3].

NOTATION. For a Hopf algebra A over a field k, we denote by  $\Delta_A : A \to A \otimes A$ ,  $\Delta_A(a) = \sum a_{(1)} \otimes a_{(2)}$ ,  $\varepsilon_A : A \to k$  and  $S_A : A \to A$  the comultiplication, the counit and the antipode of A, respectively. We further denote by G(A) the group of the group-like elements in A. For a finite group G, kG denotes the group-like Hopf algebra of G, and  $k^G$  means the dual Hopf algebra  $(kG)^*$  of kG.  $C_n$  stands for the cyclic group of order n.

Throughout let A be a semisimple Hopf algebra of dimension 12 over an algebraically closed field k whose characteristic ch  $k \neq 2, 3$ . It follows from [LR, Prop. 4.6] that A is involutory, that is,  $S_A \circ S_A = id_A$ . Therefore by [LR, Prop.1.3(a)]  $A^*$  is semisimple, too.

Received January 9, 1995.

### Nobuyuki FUKUDA

1. If A is commutative or cocommutative, then A is isomorphic to a grouplike Hopf algebra or its dual. In order to classify all A's that are neither commutative nor cocommutative, we first show:

LEMMA 1.1. Each of the orders |G(A)|,  $|G(A^*)|$  equals either 3,4 or 12.

**PROOF.** By the Nichols-Zoeller theorem [NZ, Thm.7], |G(A)| divides dim *A*. Further  $A^*$  is isomorphic to a direct product of some matrix algebras since it is semisimple. Note that the number of the one-dimensional ideals of  $A^*$  equals |G(A)|. By counting dimensions, one sees that  $A^*$  is isomorphic to one of following:

$$k \times k \times k \times M_3(k), \quad k \times k \times k \times k \times M_2(k) \times M_2(k), \quad \overbrace{k \times \cdots \times k}^{12 \text{ times}}$$

where  $M_n(k)$  is the algebra of all  $n \times n$  matrices. Thus it follows that |G(A)| = 3, 4 or 12. Similarly we have  $|G(A^*)| = 3, 4$  or 12.  $\Box$ 

**PROPOSITION 1.2.** If  $|G(A^*)| = 3$ , then A is cocommutative.

COROLLARY 1.3. If A is neither commutative nor cocommutative, then both the orders |G(A)|,  $|G(A^*)|$  equal 4.

We devote Sections 2, 3 to the proof of Proposition 1.2. For this, we suppose in these sections that  $|G(A^*)| = 3$ . It follows from Lemma 1.1 that there exists a subgroup G of G(A) such that |G| = 3 or 4.

2. First in this section we prove the following proposition by means of the method of [M2, Sect.1].

**PROPOSITION 2.1.** Suppose that  $|G(A^*)| = 3$ . If G(A) has a subgroup of order 3, then A is cocommutative.

Throughout this section we suppose that  $|G(A^*)| = 3$ , and that G(A) has a subgroup G of order 3. We fix a generator g of  $G(\cong C_3)$ . Let H = kG.

LEMMA 2.2. The inclusion map  $i: H \to A$  has a Hopf algebra retraction  $\pi: A \to H$ , that is, a Hopf algebra map such that  $\pi \circ i = id_H$ .

**PROOF.** (Similar to the proof of [M2, Prop.1.2]) by dualizing the inclusion map  $kG(A^*) \hookrightarrow A^*$ , we obtain the Hopf quotient map  $p: A \to D = k^{G(A^*)}$ . Let

$$B = \Big\{ a \in A | \sum a_{(1)} \otimes p(a_{(2)}) = a \otimes p_{(1)} \Big\},$$

the left coideal subalgebra of the right D-coinvariants. By [Sch, Thm.2.4] we have

 $A \cong B \otimes D$  (left *B*-modules and right *D*-comodules).

This implies that dim B = 4. If p(g) = 1, equivalently  $H \subset B$ , then dim H divides dim B by the Nichols-Zoeller theorem. This is a contradiction. Therefore  $p(g) \neq 1$ . Since  $D \cong kC_3$ , one sees easily that  $H \cong D$  via p. Thus this lemma follows.  $\Box$ 

We can view *B* as a quotient coalgebra of *A* via the isomorphism  $B \cong A/AH^+$ ,  $b \mapsto \overline{b}$ , where  $H^+ = \text{Ker } \varepsilon_H$ . By [R, Thm.3], *B* is a left *H*-module algebra with the action

$$h \rightarrow b = \sum h_{(1)} b S_H(h_{(2)}) \quad (h \in H, b \in B),$$

and a left H-comodule coalgebra with the coaction

$$\rho(b) = (\pi \otimes id_B) \circ \Delta_A(b) \quad (b \in B).$$

Following [R], we denote by  $B \times H$  the *biproduct* constructed from  $(B, H, \rightarrow, \rho)$ .

LEMMA 2.3 [R, Thm.3(c)]. As a Hopf algebra A is isomorphic to the biproduct  $B \times H$ .

**PROOF.** By Lemma 2.2 this follows directly from [R, Thm.3].

**LEMMA** 2.4. (1) As an algebra B is isomorphic to  $k \times k \times k \times k$ . (2) B is spanned by group-like elements in B.

**PROOF.** (1) As in the proof of [M2, Lemma 1.4], it follows that B is semisimple. Since B has the non-trivial (two-sided) ideal  $\text{Ker}(\varepsilon_A|_B)$ , B must not be isomorphic to the algebra of all  $2 \times 2$  matrices. Thus Part (1) follows.

(2) Apply Part (1) to  $B^*$ .

By lemma 2.4(2), we can write as

 $B = k1 \oplus kx_0 \oplus kx_1 \oplus kx_2,$ 

where  $x_i$  is a group-like element in *B* for each *i*. Let  $\omega$  be a primitive 3rd root of 1. Then we have a symmetric, non-degenerate Hopf pairing  $\langle , \rangle :$  $H \times H \to k, \langle g^i, g^j \rangle = \omega^{ij}$ . For each *i*, we denote by  $e_i (\in H)$  the dual basis of  $g^i (\in H^*)$  with respect to this pairing.

LEMMA 2.5. Suppose that A is not cocommutative.

(1) The H-module algebra action  $\rightarrow$  on B is determined by

 $g \rightharpoonup 1 = 1, \quad g \rightharpoonup x_0 = x_1, \quad g \rightharpoonup x_1 = x_2, \quad g \rightharpoonup x_2 = x_0$ 

for a suitable indexing.

(2) The H-comodule coalgebra coaction  $\rho$  of B is determined by

$$ho(1) = 1 \otimes 1, \quad 
ho(x_i) = e_{-i} \otimes x_0 + e_{-i+1} \otimes x_1 + e_{-i+2} \otimes x_2 \quad (i = 0, 1, 2)$$

for a suitable choice of  $\omega = \langle g, g \rangle$ .

(3) We have

$$\begin{cases} \frac{x_0}{x_1} + \omega \frac{x_1}{x_2} + \omega^2 \frac{x_2}{x_0} = 0\\ \frac{x_0}{x_2} + \omega \frac{x_2}{x_1} + \omega^2 \frac{x_1}{x_0} = 0. \end{cases}$$

(4) We have

$$\Delta_B(x_0^2) = \frac{1}{3} \sum_{0 \le i,j \le 2} \omega^{-ij} x_0 x_i \otimes x_0 x_j.$$

**PROOF.** Since B and H is commutative (resp. cocommutative), it follows from [R, Prop.1] that, if the action  $\rightarrow$  (resp. the coaction  $\rho$ ) is trivial, A is commutative (resp. cocommutative). Thus both  $\rightarrow$  and  $\rho$  must be non-trivial.

(1) By [R, Thm.1], the automorphism  $g \rightarrow : B \rightarrow B$  of order 3 is a coalgebra map fixing 1. Thus Part (1) follows.

(2) Since B is a left  $H(=H^*)$ -comodule coalgebra, B is a right H-module coalgebra with the action

$$b \leftarrow h = \sum \langle h, b_H \rangle b_B \quad (b \in B, h \in H),$$

where  $\rho(b) = \sum b_H \otimes b_B$ . Note that the automorphism  $\leftarrow g$  of B is a coalgebra map of order 3 which fixes 1. As in Part (1),  $\leftarrow$  can be determined. Part (2) follows, if one sees that the  $e_i$  with respect to the pairing  $\langle g, g \rangle = \omega$  equals the  $e_{-i}$  with respect to the pairing  $\langle g, g \rangle = \omega^{-1}$ .

(3) Note that there exists a convolution-inverse  $S_B$  of  $id_B$  by [R, Prop.2]. As in the proof of [M2, Lemma 1.6(3)], we have

$$\sum S_H(b_{(2)H}) \rightharpoonup (S_B(b_{(2)B})b_{(1)}) = \varepsilon_B(b) \quad (b \in B).$$

Put  $b = x_0$  in the above equation. One can verify that

$$e_2 \rightarrow \frac{x_0}{x_1} + e_1 \rightarrow \frac{x_0}{x_2} = 0.$$
 (2.6)

Apply  $e_2 \rightarrow (\text{resp. } e_1 \rightarrow)$  to the equation (2.6), we obtain the upper (resp. lower) equation in Part (3).

(4) From [R, Thm.1(b)], one sees that

$$\Delta_{\boldsymbol{B}}(bb') = \sum b_{(1)}(b_{(2)H} \rightharpoonup b'_{(1)}) \otimes b_{(2)B}b'_{(2)} \quad (b,b' \in \boldsymbol{B}).$$

Put  $b = b' = x_0$ , we obtain the equation in Part (4).

Now we are ready to prove Proposition 2.1

**PROOF OF PROPOSITION 2.1.** Suppose that A is not cocommutative. We will prove that this supposition leads to a contradiction.

From lemma 2.4(1), *B* is isomorphic as an algebra to  $k \times k \times k \times k$ . Let *e* be the unique primitive idempotent such that  $\varepsilon_A(e) = 1$ . We can assume that e = (1,0,0,0). Put  $u_0 = (0,1,0,0)$ ,  $u_1 = (0,0,1,0)$ ,  $u_2 = (0,0,0,1)$ . Since the non-trivial action  $g \rightarrow of g$  is an algebra automorphism of *B*, the action  $\rightarrow$  is determined by

$$g \rightharpoonup e = e, \quad g \rightharpoonup u_0 = u_1, \quad g \rightharpoonup u_1 = u_2, \quad g \rightharpoonup u_2 = u_0$$

for a suitable indexing. Note that  $\varepsilon_A(x_0) = 1$ , and that  $x_0$  is a unit in *B*. We can put  $x_0 = (1, c_0, c_1, c_2)$ , where  $c_i \neq 0$  for each *i*. From Lemma 2.5(1) and the equations in Lemma 2.5(3), we have

$$\begin{cases} \frac{c_0}{c_1} + \omega \frac{c_1}{c_2} + \omega^2 \frac{c_2}{c_0} = 0\\ \frac{c_0}{c_2} + \omega \frac{c_2}{c_1} + \omega^2 \frac{c_1}{c_0} = 0. \end{cases}$$
(2.7)

These equations imply that  $c_0^3 = c_1^3 = c_2^3$ . Hence  $x_i$ 's are described as

$$x_0 = (1, c, \lambda c, \mu c), \quad x_1 = (1, \mu c, c, \lambda c), \quad x_2 = (1, \lambda c, \mu c, c),$$

where  $c(\in k)$  is non-zero, and  $\lambda, \mu$  are 3rd roots of 1. But it cannot happen that  $\mu = \lambda^{-1}$ , for  $x_0, x_1, x_2$  are linearly independent. If  $(\lambda, \mu) = (1, \omega)$  or  $(\omega, 1)$ , it

### Nobuyuki FUKUDA

contradicts the equation (2.7). We show a contradiction in the other cases, to complete the proof. Suppose that  $(\lambda, \mu) = (\omega, \omega), (1, \omega^2)$  or  $(\omega^2, 1)$ . Since  $x_0^2 \in B$ , we write as  $x_0^2 = \alpha 1 + \beta x_0 + \gamma x_1 + \delta x_2$   $(\alpha, \beta, \gamma, \delta \in k)$ . Then

$$\Delta_{\boldsymbol{B}}(x_0^2) = \alpha(1 \otimes 1) + \beta(x_0 \otimes x_0) + \gamma(x_1 \otimes x_1) + \delta(x_2 \otimes x_2).$$
(2.8)

By comparing the coefficients of  $u_i \otimes u_i (i = 0, 1, 2)$  in the right-hand side of the equation (2.8) and that in Lemma 2.5(4), we have

$$\begin{pmatrix} 1 & \mu^2 & \lambda^2 \\ \lambda^2 & 1 & \mu^2 \\ \mu^2 & \lambda^2 & 1 \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \\ \delta \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

where  $t = \frac{1}{c^2}((1 + \lambda + \mu)c^4 - \alpha)$ . This equation shows that  $\beta = \gamma = \delta$ . Then it is seen easily that  $\Delta_B(x_0^2) = \Delta_B(g \rightarrow x_0^2) = \Delta_B(x_1^2)$ , so that  $x_0^2 = x_1^2$ . In the case  $(\lambda, \mu) = (1, \omega^2)$  or  $(\omega^2, 1)$  (resp.  $(\omega, \omega)$ ), one can verify that  $c^2 = \omega c^2$  (resp.  $c^2 = \omega^2 c^2$ ), which gives a contradiction to the fact that  $c \neq 0$ .

3. Next in this section we prove the following proposition, to complete the proof of Proposition 1.2. For this, we adopt the method of [M3].

**PROPOSITION 3.1.** Suppose that  $|G(A^*)| = 3$ . If G(A) has a subgroup of order 3, then A is cocommutative.

Throughout this section we suppose that  $|G(A^*)| = 3$ , and that G(A) has a subgroup G of order 4. As in Section 2, we obtain a Hopf quotient map  $\pi: A \to k^{G(A^*)} (\cong kC_3)$ . We can regard  $k^G = kG \subset A$ , for G is an abelian group.

LEMMA 3.2. The short sequence

$$1 \rightarrow k^G \xrightarrow{i} A \xrightarrow{\pi} kC_3 \rightarrow 1$$

of Hopf algebras is exact [M1, Def.1.3], where i is the inclusion map.

**PROOF.** We claim that  $\pi(x) = 1$  for any  $x \in G(k^G)$ . Otherwise, the order of  $\pi(x)$  equals 2 or 4, for  $|G(k^G)| = 4$ . This contradicts that  $\pi(x) \in G(kC_3)(=C_3)$ . Hence the condition (in [M1, Lemma 1.2]) that

$$k^{G} = \left\{ a \in A \big| \sum a_{(1)} \otimes \pi(a_{(2)}) = a \otimes \pi(1) \right\}$$

holds. In other words, the sequence is exact.  $\Box$ 

## Semisimple Hopf algebras of dimension 12

Let  $K = k^G$ ,  $H = kC_3$ . Now we obtain a Hopf algebra extension

$$1 \to K \xrightarrow{i} A \xrightarrow{\pi} H \to 1. \tag{3.3}$$

As mentioned in [M3, Sect.1], such an extension has a section, that is, a unit and counit-preserving convolution-invertible integral  $\phi: H \to A$  and a retraction, that is, a unit and counit-preserving convolution-invertible cointegral  $\gamma: A \to K$ . Furthermore there is a 1-1 correspondence between all sections and all retractions. Then  $\phi$  causes a left H-module algebra action on K

$$\longrightarrow : H \otimes K \to K, \quad i(h \multimap c) = \sum \phi(H_{(1)})i(c)\phi^{-1}(h_{(2)}) \quad (h \in H, c \in K),$$

and  $\gamma$  causes a right K-comodule coalgebra coaction of H

$$ho: H \to H \otimes K, \quad 
ho(\pi(a)) = \sum \pi(a_{(2)}) \otimes \gamma^{-1}(a_{(1)})\gamma(a_{(3)}) \quad (a \in A).$$

Since *H* is commutative and *K* is cocommutative, such an action  $\rightarrow$  and a coaction  $\rho$  are independent of the choice of  $\phi$  and  $\rho$ . (See [M3, Sect.1].) Then *A* is isomorphic to the *bicrossed product* with the action  $\rightarrow$  and the coaction  $\rho$  [H, Sect.3]. (We need not know the cocycle and the dual cocycle.) In terms of [P], *A* is as an algebra *crossed product*  $K * C_3$  with the action  $\rightarrow$ , and  $A^*$  is as an algebra *H*<sup>\*</sup> \* *G* with the action  $\rho^*$ . Notice that *A* has the *K*-basis  $\{1, \phi(g), \phi(g^2)\}$ , and that  $A^*$  has the *H*<sup>\*</sup>-basis  $\{\gamma^*(x)|x \in G\}$ .

LEMMA 3.4. Suppose that the Hopf algebra extension (3.3) causes a pair  $(-, \rho)$  described above.

(1)  $G \cong C_2 \times C_2$ .

- (2) The right K-comodule coalgebra coaction  $\rho$  of H is trivial.
- (3) The left H-module algebra action  $\rightarrow$  on K is determined by

$$g 
ightarrow e_{ij} = e_{j-i,i},$$

where g is a generator of  $C_3$ , and  $e_{ij} (\in K)$  is a dual basis of  $s^i t^j$  $(\in kG = k(\langle s \rangle \times \langle t \rangle))$  for each i, j.

**PROOF.** Since  $(H, K, \rightarrow, \rho)$  is a *abelian matched pair* of hopf algebras by [H, Prop.3.8], it follows by [M3, Lemma 1.2] that the pair  $(\rightarrow, \rho)$  is corresponding to a pair  $(\triangleright, \triangleleft)$  which makes  $(G, C_3)$  a matched pair of groups, where  $\triangleright: G \times C_3 \rightarrow C_3, \triangleleft: G \times C_3 \rightarrow G$  are group actions. The correspondence is as follows:

$$(y \rightarrow f)(x) = f(x \triangleleft y), \quad \rho(y) = \sum_{x \in G} (x \triangleright y) \otimes e_x,$$

where  $x \in G$ ,  $y \in C_3$ ,  $f \in K$  and  $e_x (\in K)$  is a dual basis of  $x (\in kG)$ . So in order to determine the pair  $(\rightarrow, \rho)$ , we will determine the corresponding pair  $(\triangleright, \triangleleft)$ . Denote by  $C_3 \bowtie G$  the group constructed from a matched pair  $(G, C_3, \triangleright, \triangleleft)$ . (See [T, Def.2.3].) It follows from [Sz, Page 112] that either G or  $C_3$  must be a normal subgroup of  $C_3 \bowtie G$ . Then one sees easily that either  $\triangleright$  or  $\triangleleft$  is trivial. If  $\triangleleft$  is trivial, equivalently  $\rightarrow$  is so, then A is isomorphic to the *twisted group ring*  $K^t[C_3]$ [P, Page 4]. Since a twisted group ring of cyclic group over a commutative ring is commutative,  $\triangleleft$  must be non-trivial. Further it is seen easily that  $\triangleleft$  is always trivial in the case  $G \cong C_4$ . This observation shows that  $G \cong C_2 \times C_2$ , and that  $\triangleright$ is trivial. Then  $\triangleleft g: G \to G$  is a group automorphism of order 3. Such a group action  $\triangleleft$  is determined by

$$s \triangleleft g = t, \quad t \triangleleft g = st$$

for a suitable choice of generators s, t of G. The action  $\rightarrow$  corresponding to this group action  $\triangleleft$  is as in Part (2).

Now we will prove Proposition 3.1.

**PROOF OF PROPOSITION 3.1.** Notation as above. Let  $\gamma: A \to K$  be a retraction of the extension (3.3). Note that the coaction  $\rho$  is trivial. As in the proof of [M3, Lemma 2.11(1)], we can choose a retraction  $\gamma$  satisfying

$$\gamma^*(s^2) = \gamma^*(t^2) = 1.$$

Note that  $\phi(g)c = (g \rightarrow c)\phi(g)$  for any  $c \in K$ . Then as in the proof of [M3, Lemma 2.11(2)(3)], we have for  $\xi = 1$  or -1

$$\Delta_{\mathcal{A}}(\bar{g}) = \sum_{0 \leq i, j, r, s \leq 1} \xi^{jr} e_{ij} \bar{g} \otimes e_{rs} \bar{g},$$

where  $\phi: H \to A$  is the section corresponding to  $\gamma$ , and  $\bar{g} = \phi(g)$ . A straightforward calculation using the above equation shows

$$\Delta_A(\bar{g}^3) = \sum_{i,j,r,s} \xi^{ir+j(r+s)} e_{ij} \bar{g}^3 \otimes e_{rs} \bar{g}^3.$$

Since  $\bar{g}^3 \in K$ , we write as  $\bar{g}^3 = \sum c_{ij}e_{ij}$  for  $C_{ij} \in k$ . By comparing the coefficients of  $e_{01} \otimes e_{10}$ ,  $e_{10} \otimes e_{01}$  in  $\Delta_A(\bar{g}^3)$ , one verifies that

$$c_{11} = \xi c_{01} c_{10}, \quad c_{11} = c_{10} c_{01}.$$

These yield that  $\xi = 1$ , so that  $\bar{g} \in G(A)$ . Then we can check easily that  $A \cong kD$ ,

where  $D = (C_2 \times C_2) \rtimes C_3$  is the unique (up to isomorphism) semi-direct product. In particular A is cocommutative.

4. Finally we find all A's that are neither commutative nor cocommutative, to complete the classification. By the Corollary 1.3, we may suppose that  $|G(A)| = |G(A^*)| = 4$ . Let G = G(A), H = kG. As in Section 2, the inclusion map  $i: H \to A$  has a Hopf algebra retraction  $\pi: A \to H$ . Let B = $\{a \in A | \sum a_{(1)} \otimes \pi(a_{(2)}) = a \otimes \pi(1)\}$ . By the same argument as in Section 2, B is a H-module algebra with a non-trivial action  $\rightarrow$  and a H-comodule coalgebra with a non-trivial coaction  $\rho$ . Further we have

$$A \cong B \times H$$
 (as Hopf algebras),  
 $B = k1 \oplus kx_+ \oplus kx_-,$ 

where  $x_{\pm}$  are group-like elements in *B*.

Denote by  $\mathfrak{S}_3$  the symmetric group of degree 3. Let  $\sigma$  be the cyclic permutation (123), and  $\tau$  the transposition (12). We denote by  $\iota$  the inner automorphism  $inn(\tau)$ . Notice that sgn, the signature map of  $\mathfrak{S}_3$ , is the unique non-trivial group-like element in  $k^{\mathfrak{S}_3}$ .

DEFINITION 4.1. Denote by  $A_+$  (resp.  $A_-$ ) the  $k^{\mathfrak{S}_3}$ -ring generated by z with relations:

$$z^2 = 1$$
 (resp. sgn),  $zc = \iota^*(c)z$  ( $c \in k^{\mathfrak{S}_3}$ ).

Given  $A_{\pm}$  a coalgebra structure such that the subalgebra  $k^{\mathfrak{S}_3}$  is a subcoalgebra, and that z is group-like, then  $A_{\pm}$  are bialgebras. Furthermore  $A_+$ (resp.  $A_-$ ) becomes a Hopf algebra with the antipodes S determined by

$$S(z) = z$$
 (resp.  $(sgn)z$ ),  $S(c) = S_k \mathfrak{s}_3(c)$   $(c \in k \mathfrak{s}_3)$ .

We point out that  $A_{\pm}$  are semisimple. Indeed  $A_{\pm} \cong k \times k \times k \times M_2(k) \times M_2(k)$ . It is seen easily that  $G(A_+) \cong C_2 \times C_2$ , and that  $G(A_-) \cong C_4$ .

**REMARK** 4.2. (1) As an algebra  $A_+^*$  is isomorphic to  $A_-^*$ . In fact, these are the  $k\mathfrak{S}_3$ -rings generated by v with relations:

$$v^2 = v$$
,  $av = va$   $(a \in k\mathfrak{S}_3)$ .

On the other hand, the coalgebra structures  $\Delta$ ,  $\varepsilon$ , and the antipode S of  $A_{+}^{*}$  (resp.

 $A_{-}^{*}$ ) are determined by

$$\begin{split} \Delta(\sigma) &= \sigma v \otimes \sigma + \sigma (1 - v) \otimes \sigma^2, \quad \varepsilon(\sigma) = 1, \\ \Delta(\tau) &= \tau \otimes \tau \text{ (resp. } \tau v \otimes \tau + \tau (1 - v) \otimes \tau (2v - 1)), \quad \varepsilon(\tau) = 1 \\ \Delta(v) &= v \otimes v + (1 - v) \otimes (1 - v), \quad \varepsilon(v) = 1, \\ S(\sigma) &= \sigma (1 - v) + \sigma^2 v, \\ S(\tau) &= \tau \text{ (resp. } \tau (2v - 1)), \quad S(v) = v. \end{split}$$

(2)  $A_{\pm}^*$  are both self-dual, that is,  $A_{\pm}^* \cong A_{\pm}$ . Let  $\omega$  be a primitive 3rd root of 1,  $\zeta_+$  a square root of 1, and  $\zeta_-$  a primitive square root of -1. Denote by  $e_{ij}(\in K^{\mathfrak{S}_3})$  the dual basis of  $\sigma^i \tau^j (\in k \mathfrak{S}_3)$  for each *i*, *j*. Then the mapping  $\sigma \mapsto \sum \omega^j e_{ij}, \tau \mapsto 1/2((1+\zeta_{\pm})+(1-\zeta_{\pm})sgn)z, v \mapsto 1/2(1+sgn)$  gives Hopf algebra isomorphisms from  $A_{\pm}^*$  to  $A_{\pm}$ .

**PROPOSITION 4.3.** Suppose that  $|G(A)| = |G(A^*)| = 4$ . Then as a Hopf algebra A is isomorphic to either  $A_+$  or  $A_-$ .

**PROOF.** Case  $G \cong C_4$ . We fix a generator g of G. By the same way as in Section 2, the *H*-module algebra action  $\rightarrow$  on *B* and the *H*-comodule coalgebra coaction  $\rho$  of *B* are determined by

$$g 
ightarrow x_{\pm} = x_{\mp}, \quad 
ho(x_{\pm}) = \frac{1}{2}((1+g^2) \otimes x_{\pm} + (1-g^2) \otimes x_{\mp}).$$

Since  $\rho(B) \subset k\langle g^2 \rangle \otimes B$ , it follows that  $B \otimes k\langle g^2 \rangle = B \times k\langle g^2 \rangle$  is a 6-dimensional (semisimple) Hopf subalgebra of A. Denote by K this Hopf subalgebra. Note that K is commutative and not cocommutative, it follows by [M2, Thm.1.10] that  $K \cong k^{\mathfrak{S}_3}$ . It is clear that A is the crossed product  $K * C_2$  with the K-basis  $\{1, g\}$  such that  $g \in G(A)$ , and that  $g^2$  is the unique non-trivial group-like element in K. We conclude that  $A \cong A_-$ , if one sees that  $\iota^*$  is the unique (up to conjugacy) Hopf algebra automorphism of  $k^{\mathfrak{S}_3}$  of order 2 with non-trivial invariants.

Case  $G \cong C_2 \times C_2$ . We can choose generators s, t of G so that the action  $\rightarrow$  is determined by

$$s \rightarrow x_{\pm} = x_{\mp}, \quad t \rightarrow x_{\pm} = x_{\pm}.$$

The coaction  $\rho$  is one of following:

- (i)  $\rho(x_{\pm}) = \frac{1}{2}((1 \pm t) \otimes x_{+} + (1 \mp t) \otimes x_{-}).$
- (ii)  $\rho(x_{\pm}) = \frac{1}{2}((1 \pm s) \otimes x_{+} + (1 \mp s) \otimes x_{-}).$
- (iii)  $\rho(x_{\pm}) = \frac{1}{2}((1 \pm st) \otimes x_{\pm} + (1 \mp st) \otimes x_{\pm}).$

In each case, it follows as in the above case that  $B \times \langle t \rangle$ ,  $B \times \langle s \rangle$  or  $B \times \langle st \rangle$  is a 6-dimensional Hopf subalgebra of A. Since this Hopf subalgebra must be commutative or cocommutative by [M2, Thm.1.10] Case (ii) or (iii) cannot happen. As in Case  $G \cong C_4$ , we conclude that  $A \cong A_+$ .

Now we obtain the classification result.

THEOREM. Let A be a 12-dimensional semisimple Hopf algebra over an algebraically closed field k whose characteristec  $\neq 2$  or 3. Then A is isomorphic to either

 $kG, k^G, A_+$  or  $A_-,$ 

where G is a group of order 12 and  $A_{\pm}$  are the mutually non-isomorphic Hopf algebras defined in Definition 4.1.

### Acknowledgments

I would like to express my sincere gratitude to Professor M. Takeuchi who improved the description of the Hopf algebras  $A_{\pm}$  and to Professor A. Masuoka who simplified the proof of Proposition 3.1 and 4.3.

#### References

- [H] I. Hofstetter, Extensions of Hopf algebras and their cohomological description, J. Algebra 164 (1994), 264-298.
- [LR] R. G. Larson and D. E. Radford, Semisimple Hopf algebras, J. Algebra, to appear.
- [M1] A. Masuoka, Coideal subalgebras in finite Hopf algebras, J. Algebra 163 (1994), 819-831.
- [M2] A. Masuoka, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math., to appear.
- [M3] A. Masuoka, Selfdual Hopf algebras of dimension  $p^3$  obtained by extension, J. Algebra, submitted.
- [M4] A. Masuoka, The  $p^n$  theorem for semisimple Hopf algebras, Proc. A. M. S., to appear.
- [M5] A. Masuoka, Semisimple Hopf algebras of dimension 2p, Comm. Algebra, to appear.
- [NZ] W. D. Nichols and M. B. Zoeller, A Hopf algebras freeness theorem, Amer. J. Math. 111 (1989), 381-385.
- [P] D. Passman, Infinite Crossed Products, Academic Press, London, 1989.
- [R] D. E. Radford, The structure of Hopf algebras with a projection, J. Algebra 92 (1985), 322-347.
- [Sch] H.-J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (1992), 289-312.
- [Sz] M. Suzuki, Group Theory I, Springer, Berlin-Heiderberg-New York, 1977.
- [T] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra 9 (1981), 841-882.

Department of Mathematics Shimane University Matsue, Shimane 690 JAPAN