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SELF-DUAL CONNECTIONS OF HOMOGENEOUS
PRINCIPAL BUNDLES OVER QUATERNIONIC
KAEHLER SYMMETRIC SPACES

By

Hajime URAKAWA

Abstract. A characterization of self-dual connections of
homogeneous principal bundles over quaternionic Kaehler symmetric
spaces in terms of the holonomy homomorphism, is given using the
group theoretic approach.

Introduction.

Recently Mamone Capria and Salamon [C.S], and Nitta [N] extended the
notion of (anti-)self-dual connections in 4-manifolds to the higher dimensional
quaternionic Kaehler manifold and showed they are Yang-Mills connections. On
the other hand, compact quaternionic Kaehler symmetric manifolds were
classified by Wolf [W], and they are quotients M = U/K of a compact simple Lie
group U by a closed subgroup K with the spliting K=A,-L, where A, is
isomorphic to Sp(1)=SU(2)=S3 . Therefore it would be interesting to determine
the invariant (anti-)self-dual connections of a homogeneous principal bundle over
a compact quaternionic Kaehler symmetric manifold.

In this paper, using the group theoretic approach, we show:

THEOREM 1.2. Let M = U/K be a Wolf space, i.e., a compact quaternionic
Kaehler symmetric manifold. Let P be a U-homogeneous principal bundle over M
with the structure group G, and let A= A(P) be the corresponding holonomy
homomorphism of K into G. For a U-invariant connection ® on P, which is
always a Yang-Mills connection, we have

(i) @ is self-dual < A|L, = trivial, and

(ii) w is anti-self-dual < A|A, = trivial.
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This theorem can be regarded as a natural generalization of Theorem 2 in [T],
which determined the invariant (anti-)self-dual connections of invariant bundles
over S*.

§1. Preliminary.

In this section, we prepare the notion of (anti-)self-dual connections over a
quaternionic Kaehler manifold, following Capria and Salamon [C.S], and Nitta
[N], and explain Wolf’s results about compact quaternionic Kaehler symmetric
spaces.

1.1. Quaternionic Kaehler Manifolds.

DEFINITION. A 4n-dimensional Riemannian manifold (M,g) is said to be
quaternionic Kaehler (cf.[B]) if its holonomy group is contained in the subgroup
Sp(n)-Sp(1) = Sp(n)x Sp()/{(1,1),(=1,-1)} of SO(4n), which is equivalent to the
following: There exist an open covering {U;} of M, and almost complex structures
I, J,and K on U, such that

(a) the Riemannian metric g is hermitian for I, J, K on U,,

(b) K=1J=-JI,

(c) the covariant derivatives of I, J, K with respect to g on U,, are linear
combinations of /, J, K, and

(d) for each xeU;,NU,, the vector subspaces of End(7.M) generated by
{1,J,K} coincides with each other for each i, j.

1.2. (Anti-)Self-Dual Connections.

Following [C.S], [N], we define (anti-)self-dual connections of a principal
bundle P having the structure group G with the Lie algebra g over a quaternionic
Kaehler manifold M.

" Let H be the field of quaternions, and H" the right H-module of n-tuples of
quaternions. The group Sp(n)-Sp(l) acts on H" as left multiplications of Sp(n),
and right multiplications by Sp(1). The Sp(n)-Sp(1)-module A’H" has the
following irreducible decomposition:

(1.1) AH " =A,®A/DB,,
where A; is the submodule of Sp(n)-fixed vectors, and B, is the one of Sp(1)-

fixed vectors. By the assumption that the holonomy group of M is included in
Sp(n)-Sp(1), we get the global decomposition of A’T*M :
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(1.2) ANT*M=A,®A®B,,

where AJ,A7 and B, mean also the subbundles of A*T*M corresponding to the
above submodules.

DEFINITION. A connection ® on P is said to be an A, (resp. A},B,)-
connection if the curvature form Q¢, which is a g-valued 2 form on P, is a
section of e®nm*A, (resp. e®nm*A),e®n*B,), where €=Pxg (the product
bundle), and 7m*A;,m*A),n*B, are the pullback subbundles of A*T*M by the
projection m;P > M.

Nitta [N] and Mamone Capria — Salamon [C.S] showed all the AJ,A),B,-
connections are Yang-Mills connections of P, and B, (resp. A,)-connections are
the natural extension of self-dual (resp. anti-self-dual) connections in the case
dim(M) = 4, to the quaternionic Kaehler manifolds.

For later use, we express locally these connections. Take a local orthonormal
frame field {e;;i =1,:--,4n} such that

Ve, =0,

ley, =€yl =€ Kegy =4y, k=0,1,--,n—1,

and denote by {w,;i =1,---,4n}, the dual basis. The rank 3-bundle A;, and the rank
n(2n+1)-bundle B, have the following bases of local sections, I, J, K for A;,
which are given by

n—1

I:= an(w:;kﬂ Ao+ Oz ADypig)s
n—1

J = Eo(wztkﬂ ADypy Oy ADyyir),

n-1
K= k;o(w4k+l AN@ypq+ Oyp ADyyi3)s

and I ,J,K ,0=s=n-1, D ,E .F, .G

g Epgs FrgsGopy 0=p<qg=n-—1, for B, are given by

I =0 Ay = Dy ADyys

S =0y AN Dy = Oy g A Oy

K=, ANOy g — Oy ANDy s

D, =0, ANOyy) + WOy Ay + 0y AW yyy3 O s AWDyyiss

E =0y ANy =0y ADyyy) =Dy s AWy + Wy ADy 35
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]:pq = w4p+l A w4q+3 + w4p+2 A a)4q+4 - w4p+3 A w4q+| - w4p+4 A w4q+2 ’

Gy =04 AWy =Wy ANy 3+ Oy 3 ADyyr =Wy g AWy

Then a connection @ is A, if and only if the curvature form 2= Q2 can be
expressed locally as

N=a@ a*xI+ b n*J+ c® n*K ,

where a, b, ¢ are g-valued functions locally defined on P, and so on for A, ,B,-
connections. Summing up these, we get then the following criterion to be A;,
A; , B,-connections:

PROPOSITION 1.1. For a connection ® on a principal G-bundle P over a
quaternionic Kaehler manifold M,

(1) itis Ay, i.e., anti-self-dual, if and only if the curvature form £2 satisfies
locally,

$2(e411* 5 €4002%) = S2€4103%  €44,4% ) = L2e*, 6,%) = 2(es*,e,*),
$2(e41 %5 €4043%) = S2(€44, 4%, €4442% ) = S2e ¥, €)= e, *,e,%),
$2(€410 €40 0™) = $2€4000% 5 €4003% ) = L2 %, 0,%) = L2(e,*,e.%),

forall k=0,l,---,n—1, and all the other components of 2 are zero.

(2) W is an Ay -connection if and only if £2(u*)= 0 for all the horizontal lifts
u* of elements u in A* TM dual to the bases of A, ,B,.

(3) Wisa B,,i.e., self-dual, -connection if and only if

Qe % €4,02%) = Sy, 4%,€4,03%)

£2(ey,, %5 €4503%) = £2(€4,40%, €45, 4%)

$2e, % €4, 4% )= $2e43%,€40%), 0= s=n-1,

Q(e4p+l*’e4q+l*) = -Q(ea,»z*’e‘zqn* )= Q(e4p+3*’e4q+3*) = 'Q(e4p+4*’e4q+4* ),

-Q(e4p+|*»e4q+z* )= —Q(e4p+2*’e4q+l*) = —Q(e4p+3*’e4q+4* )= Q(e4p+4*’e4q+3* ),

Q(e4p+|*’e4q+3*) = 'Q(e4p+2*’e4q+4* )= _Q(e4p+3*’e4q+l*) = —Q(e4p+4*’e4q+2*)’

-Q(ea,m*’em,m* )= _Q(e4,ro-2*’e4q+3* )= Q(e4p+3*’e4q+2* )= _Q(e4p+4*’e4q+l* ),
0=p<qg=n-1,

and all the other components are zero. Here, for a vector field X on M, we
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denote by X*, the horizontal lift to P.

1.3. Wolf’s quaternionic Kaehler symmetric spaces.

A compact simply connected quaternionic Kaehler Riemannian symmetric
space M, classified by Wolf [W], is the coset space M = U/K of a compact
simple Lie group U with trivial center by a closed subgroup K with K=A,-L,,
where A;,L, are closed subgroups of K given as follows: Taking a maximal torus
T of K, let A be the root system of the complexification u® of the Lie algebra u
of U with respect to the Lie algebra t,i.e., for xe A,

[H,E,]1=+-1a(H)E,, for all Het.

Here E, eu® satisfies TE, =E_,,B(E,,E_,)=-1, where 7 is the conjugation of
u€ with respect to # and B is the Killing form of u®. For Aue A,(A,u)=
-B(H,,H,), and H,et is given by —B(H,,H)=A(H), for all Het. Put
U,=E,+EV,=+-1(E,—E_,),0c A. Let B be the highest root of A under

some order. Define the Lie subalgebras a,,l, of # by
a :={Hg,Upg Vg}p,

l:={Het; p(H)=0}® Y ({U,,V,}p

a>0(a,B)=0

and k:=a,®1,, and let A,L,K be the corresponding analytic subgroups of U.
Denoting

P5= Z {Ua9va}R9

o>0,a2p,(a,B)20

then u=k® p is the Cartan decomposition of # and M = U/K is a symmetric
space. Moreover, the endomorphisms

I:= Ad(exp%ﬂX), J:= Ad(exp%nY), K:= Ad(exp?lz—ﬂ:Z),

of u give the almost complex structures of M = U/K around the origin, where

2 V2 V2

X=—"H, Y=-"roU,, Z=—V,.
B.B) * 1Bl ° 1Bl

Namely,

(1.1) I’=-1d, J’=-Id, K*=-1d, K=1J, on p.

Note that, giving the inner product (-,-)=—-B(,") on U,
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(1.2) (X, X)=(Y,Y)=(Z,2)=4/B.B),
(X,Y)=2Z, (Y,Z)=2X, (Z,X)=2Y.

All compact simply connected quaternionic Kaehler symmetric spaces are

exhausted by these coset spaces M = U/K.
Let P be a U-homogeneous principal G-bundle over M, and A= A(P), the

holonomy homomorphism of K into G at a point u, in P with 7(u,)=o0={K}e
U/K,ie., forall ke K, ku, = u,A(k) for some A(k)e G. We denote by the same
letter its Lie algebra homomorphism. Then we obtain:

THEOREM 1.2. Let M = U/K be a Wolf space, i.e., a compact simply
connected quaternionic Kaehler symmetric space. Let P be a U-homogeneous
principal G-bundle over M, and A= A(P), the holonomy homomorphism of K into
G. For a U-invariant connection @won P,

(1) wis an A,-connection < A=0 on I,

(2) wis an A} -connection < A =0, in this case, P is trivial and w is flat,

(3) wis a B,-connection < A=0 on a,.

For the proof, let us recall the facts (cf. [K.N, Chapter X]) about the
invariant connections on homogeneous principal bundles. Note that a U-invariant
connection @ must be canonical, i.e., the linear map A of u into g corres-
ponding to @ satisfies A=0, on p, because M = U/K is symmetric (c.f. [K.N,]
Theorem 3.1, p.230]). Then the curvature form 2, at the fixed point u, is given
by

(1.3) 20, (X", ¥)=-A(X.YD.X.Yep.
Here X ,Xe€u,is a vector field on P defined by

d
X, :=—| exp(X)p,peP.
dt) o
Note that X".,,X € p, is the horizontal lift of the tangent vector X € T M since
o, (X)= A(X)=0.

Using these facts, we will prove in the section three.

§2. Some Lemmas about Wolf Spaces.

Before going into the proof of [Theorem 1.2, we prepare some lemmas about
the fine structure of quaternionic Kaehler symmetric spaces. We retain the
notations in §1, in particular 1.3. We obtain then immediately:
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LEMMA 2.1. The endomorphisms I, J, K of the Lie algebra u satisfy the

following:
D

for all Het with B(H)=0, in particular, I'=J*=K*=1d,on t.
(IT1) We put, for e A,a>0 with oc# B, and (o,)#0,

J(@)(H)= a(JH), K(a)(H)= a(KH),He t .

I(Hg)=J(Hp)= K(Hp)=—-H,, I(H)=J(H)= K(H)=H,

Then (1) J(a),K(x)e A, (2) —J(a)>0, 3) a=-J(a), (4) {ae A,0>0,

oz B, (o,p)=0}={a,, -, -J(a), ,—-J(x,)} (a disjoint union) for some
dim(M). (5) IE,=iE,,IE ,=—iE._,, in

JE, = CoE, o JE.o = ¢_yE. ;) KE, =
c,.d,' s satisfy the

mutually distinct «,---,a, with 4n

w,=v,Iv,=-U,. (6)

particular,
the complex numbers

daEK(a)’KE—a = d-aE‘K(a)- Here

relations:
d, =-ic,, d_, =ic_,.

CaC g = L, Ca=C qs Cyiay = C g

Moreover, we get:
LEMMA 2.2. (1) For Wek,
IW=W& WeRX®I,,
JW=W & WeRY®I and

KW=W < WeRZ®I,.
(2) IY=-Y,IZ=-Z; JX=-X,JZ=-Z; KX=-X,KY =-Y.

Due to [Theorem 4.2, W], we get:

LEMMA 2.3. {Het,p(H)=0}
={H,-H_;a,0’ € A,o,a’ >0,(cx, ) >0,(a’, B) > 0}
=(H, ct:a e A @.f)>0.0=2 B+7.(B7)= 0.
LEMMA 2.4. According to the decomposition k=a, +1,, we denote by X,,
the a,-component, for X €k . Then for a€ A, >0 with o # 8 and (a,)#0,

U, JU, ), =(N2)"'|BIU,, and [U,.KU,], =(2)"|BIV;.

PROOF OF LEMMA 2 4. Since [U,,JU,] and [U,,KU,lek, are fixed by J and
K, we get that [U,,JU,], €RY, [U,,KU,], € RZ, by Lemma 2.2. Then we only
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may show

(2.1) (JU,[Y.U, D=2, and (KU,,[Z,U,])=2.

By definition of J, and K, and ad(Y) is skew symmetric relative to ( , ), we

have

_e @iy o el 2
WUplV U= 5 "5 (21" adY) w,)
—_ < (n-/2)2"+l _1\" n+l 2
KU [Z.U, D= 3 5 () adZ) w,) -

Here we show:
[Y,U,1=1U; . [Y,Uy 1=2U,,
(2.2)
[Z,U,1=2%V ., [Z,V, 1=1U,,
which imply because of |U,|* =|U, | =V, =2.
The proof of (2.2) goes as follows: Recall that we took the Weyl basis
{E,),€4,ie; [E,,E ]=N, E,,, ., with a real number N, , satisfying N_,.
=N and -B(E,,E_,)=1. Then we get

Ny o' =N_o5° =N, s =B /2.

_a'_a’ £

In fact, since B is highest, B—(-c) is not a root. Then we get N_,,°=

k(-a,—a)/2, where k is the integer in such a way that B+ (-a),---,B+k(-a) are
roots, but S+ (k+1)(—) is not root. On the other hand, —k(-a,-a)/2=(fB,~)
=—|a|’ /2 due to Theorem 4.2 in [W]. Thus N_, ;> =|B*/2. We get therefore

[Y.U,1=2U; . [ZU,]=%V,,

In a similar way, since

2 _ 2 _ 2 _ 2 _ a2
N—ﬁ-ﬂ—a —Nﬁv—di-a) _Nﬁ-!(a) —Nl(a).ﬁ =B /2,

we obtain the rest of the equalities of (2.2). Q.E.D.

§3. Proof of Theorem 1.2.

We take an orthonormal frame field {e,;i=1,---,4n} on a neighborhood of the
origin o in M = U/K as

(€410 = Ug,, +(€ari2 o =1Uq,  +(€4443 ), =JU,,, s (€s104)0 = KU, ..
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for k=0,1,---,n—1, where {¢,, --,a,} is as in Lemma 2.1, (1I),(4). Then by
Proposition 1.1, since our I, J, K preserve the Lie bracket [ , ] of u, we have:
(1) o is an A;-connection if and only if, for k=1,---,n,

AU, 1U, ) ==AUU, . 1U, D) =AU, .1U, )==-AUJIU,,1U, 1),
G.1)  AU,JU, D=-AKIU,,JU, )= A(U,,JU, 1)==AKI[U,,JU, 1),
MU, .KU, 1)=-A(U,, KU, )= AU, KU, D=-AUIU,.KU, D).

(2) @ is an A} -connection if and only if

AC ki_l (W, .1V, 1+1JU, KU, 1)) =0,

AME (U, JU, 1+KU,, ,1U, 1) =0,
k=1

AE AU, KU, )+ (1U,, . JU,, 1) =0,

AU, 1U, 1= MLJU, KU, 1),

32) y MU,,,JU, 1= MIKU, ,1U, D),

AU, KU;X 1= AU, . JU, D, s=1-n,

MU, U, 1+, ,IU, 1+1JU, ,JU, 1+IKU, ,KU, =0,
AU, 10, 1-11U, U, 1-1JU, ,KU, 1+[KU, ,JU, =0,
AlU,,.JU, 1+1U, KU, 1-1JU, .U, 1-[KU, ,IU, 1)=0,
MU, .KU, 1-UU, ,JU, 1+1JU, ,1U, 1-[KU, ,U, =0,

I=p<g=n.

(3) @ is a B,-connection if and only if

MU, 1U, )= MK[U, .1U, ),

MU, .JU, D)= AU, ,JU, ),

MU, .KU, )= AJIU, KU, 1), s=1,--,n,

(3.3) | AWU,,.KU, I)=AUIU, KU, =AU, .U, ))=MKIU, .U, D).
MU, 1U, D =AU, ,1U, ) =AU, ,1U, D =AKIU, .IU, D),
MU, ,JU, )= AU, ,JU, 1) =AU, ,JU, 1) = MKU, ,JU, ),
MU, KU, 1) =AU, ,KU, 1)=AUIU, KU, 1)= AKIU, .KU, D),

I=p<g=n.
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Now we will prove Theorem 1.2.
Case: Aj;-connection. If ® is an A;-connection, then by (3.1),
A‘([Uak ’IUak ]) = A‘([Ual ’IUa| ])’ k= 19“'9” .

By Lemma 2.1, it follows that A(H, —H,)=0, k=1,--,n, which implies 1=0
on {Het;(H)=0} by Lemma 2.3. Since A is a homomorphism, A=0 on [,.
Conversely, assume that A=0 on /,. Then by Lemma 2.4, we get,

MU, 1U, 1) =~AJIU,, 1U, D),

AU, ,JU, 1) =~AMKI[U,, ,JU, D),
MU, . 1U, D =-AUIU, ,1U, ),

MU, KU, 1)=-AU[U,, KU, 1), and
MU, .U, D= A(U,,,JU, D.AU,, KU, 1)=-A(U, ,KU, 1),

for k=1,---,n. By Lemma 2.3, we get
MU, 1U, D)= MU, ,1U, D),

thus wis an A, -connection.

Case: A} -connection. By Lemma 2.4,

é (U, .JU, 1-K(U, ,JU, 1)=|BF n¥,(mod a,), and

M=

{lU,,.KU, 1-1U,, ,KU, 1}=|B[* nZ,(mod a,).

k

However, by Lemma 2.2, these [,-components are zero. We get, therefore, that
the first three equalities of (3.2) are equivalent to saying that A=0 on
a, ={X,Y,Z},. Note that the elements appearing in the rest belong to I, and
{[Uak,IUak]+J[Uak,1Uak]; k=1,--,n}p={Het; (H)=0}. Then we get that the
rest of the equations hold if and only if A=0 on /,. Thus we obtain the desired
result (2).

Case: B,-connection. Assume that A =0 on a,. Then, by Lemma 2.2, all
the elements W-IW,W-JW,W—-KW, with Wek, belong to a,. Thus (3.1)
holds. Conversely, since U, =V, , the first equality of (3.1) implies that
AMH,)=-MH_;,,), ie., AH, +H ,,))=0, k=1--,n, and then we get
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A(Hz)=0 ie., A=0on a,,since 4 is a homomorphism. is proved.
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