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GLOBAL EXISTENCE FOR A CLASS OF QUASILINEAR
HYPERBOLIC-PARABOLIC EQUATIONS

By

Albert MILANI

Abstract. We prove that classical solutions of the dissipative wave
equation

$\epsilon u_{lt}+u_{t}-u_{xx}-(f(u_{x}))_{x}=0$

are globally defined in time, regardless of the size of the initial
data, if $\epsilon$ is sufficiently small.

\S 1. Introduction.

1.1. We consider the quasillnear dissipative hyperbolic equation

(1.1) $\epsilon u_{lt}+u_{t}-u_{xx}-(f(u_{x}))_{x}=0$

where $\epsilon>0,$ $x\in R,$ $u$ is a scalar function of $(x, t)$ and $f$ is a given smooth in-
creasing function on $R$ . We study the global in time existence of classical
solutions of (1.1), corresponding to “large” initial values

(1.2) $u(x, 0)=u_{0}(x)$ , $u_{t}(x, 0)=u_{1}(x)$ ,

and show that such solutions are globally defined, regardless of the size of the
initial values, if $\epsilon$ sufficiently small. More precisely, given $u_{0}$ and $u_{1}$ , we find
$\epsilon_{0}>0$ such that, if $\epsilon\leqq\epsilon_{0}$ , the corresponding solutions of (1.1), (1.2) are defined
for all $t\geqq 0$ ; moreover, their derivatives decay to $0$ as $ t\rightarrow+\infty$ . This result is
somewhat complementary to our previous result of [7], where we considered a
first order system formally equivalent to the equation

(1.3) $\epsilon y_{tt}+y_{t}-(\sigma(y_{x}))_{x}=0$

(so that here $f(r)=\sigma(r)-r$), and showed that if (1.3) is locally strictly hyperbolic
( $i.e$ . if $\sigma^{\prime}(0)>0$ and $\sigma^{\prime\prime}(0)\neq 0$ ), then solutions of (1.3) corresponding to data with
small $|y_{0x}|$ do not develop singularities in their higher order derivatives if $\epsilon$ is
small. In contrast, here we assume that (1.1) is globally strictly hyperbolic,
$i$ . $e$ . $f^{\prime}(r)\geqq 0\forall r\in R$ , and show that no restriction on the size of the data is
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required to prove global existence of the solutions if $\epsilon$ is small. Although this
result may not be surprising, since the limitation on the size of $|y_{x}|$ is needed
only to guarantee hyperbolicity of (1.3), we believe it is worth of explicit con-
sideration, because of the simpler, very direct method of proof, and its possible

generalization to higher dimensions. Indeed, our proof is based on direct $a$

priori estimates on the time derivatives of $u$ , and exploits the presence of the
dissipation term $u_{t}$ in the equation in a way similar to that of Matsumura, [6],

replacing his smallness requirements of the data with the smallness of $\epsilon$ (which

is equivalent to require that the dissipation is sufficiently large).

In the higher dimensional case, we were able to generalize our result of
[7] in [8], where we considered the equation

(1.4) $\epsilon u_{tt}+u_{t}-\sum_{i.j=1}^{n}a_{ij}(\nabla u)\partial_{ij}u=0$ ,

under the local strict hyperbolicity assumption $\sum a_{ij}(0)q^{i}q^{j}\geqq|q|^{2}$ , and showed
that global existence of solutions in the Sobolev spaces $H^{\$+1}(R^{n}),$ $s>(n/2)+1$ ,

follows, if $\epsilon$ is small, under the sole assumption that $\Vert\nabla u_{0}\Vert_{s_{0}}$ be small, where
$s_{0}=[n/2]+1$ (in which case $|\nabla u_{0}|_{L}\infty\leqq||\nabla u_{0}\Vert_{\iota_{0}}$ ). $\ln[9]$ we tried to remove this
resrriction, at least for equations analogous to (1.1), $i.e$ . of the form

(1.5) $\epsilon u_{tt}+u_{t}-\Delta u-\sum_{i,j=1}^{n}\alpha_{ij}(\nabla u)\partial_{ij}u=0$ ,

under the global hyperbolicity assumption $\sum\alpha_{ij}(p)q^{i}q^{j}\geqq 0$ for all $p,$ $q\in R^{n}$ , but
that proof contains an error that, so far, we have not been able to correct.
Thus, by considering the simpler model (1.1), we have tried to gain a better
understanding of the mutual balancing effect between the nonlinear and the
dissipative terms in the equation, with the hope to be able to generalize this
global existence result to equation (1.5), at least if the nonlinear operator is in
the conservative form $-divF(\nabla u)$ , with $F$ monotone.

1.2. One of our main motivations in this study stems from the associated
singular perturbation problem, consisting in considering equation (1.1) as a per-
turbation of the limit parabolic equation

(1.6) $u_{t}-u_{xx}-(f(u_{x}))_{x}=0$ .
Indeed, a lot of attention has recently been devoted to the general question of
the validity of modelling propagation phenomena by means of “parabolic” equa-
tions, such as the heat or the porous media equations, which give rise to such
inconsistencies as for instance the ”instant propagation with infinite speed” of
the heat flow. Already in 1948, for instance, Cattaneo ([1]) proposed equation
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(1.1) as a better model for the nonlinear heat equation, with the remark that
the ”thermal relaxation” parameter $\epsilon$ is very small, but not negligible.

A similar model is provided by Maxwell’s equations for the electromagnetic
potential $A$ , which can be written as

(1.7) $\epsilon A_{tt}+\sigma A_{l}+curl\zeta(curlA)-\nabla divA=0$ ;

in this model, $\epsilon$ and $\sigma$ measure respectively the displacement and eddy currents.
In many situations, one has that $\epsilon\ll\sigma$ , so that the reduced equations

(1.8) $\sigma A_{l}+curl\zeta(curlA)-\nabla divA=0$

are considered instead. The reason for this is of course that equation (1.8) is
much easier to study, both theoretically and numerically; for instance, when $\zeta$

is monotone (so that (1.7) is of type (1.1)), a suitable weak solution theory can
be established for (1.8), with quite robust finite element methods for its numerical
treatment, while the same is not available, as far as we know, for (1.7), except
of course for its one-dimensional version (1.3). In this case, with the usual
substitutions $y_{l}=u,$ $y_{x}=v,$ $(1.3)$ is formally equivalent to the first order system

$\epsilon u_{t}=(\sigma(v))_{x}-u$ ,
(1.9)

$v_{l}=u_{x}$ ;

when $r\sigma^{\prime\prime}(r)>0\forall r\in R,$ $(1.9)$ represents a model, in nonlinear isothermal elastici-
tity, for the vibrations of an elastic string influenced by a linear damping term;
when $\sigma(r)=-r^{-\gamma},$ $1<\gamma<3,$ $(1.9)$ describes instead a model for the evolution of
a polytropic gas (in Lagrangean coordinates). In both instances, $\epsilon$ is a measure
of the intemal inertial forces; note that, when $\epsilon=0$ in (1.9), we formally derive
the porous media equation

(1.10) $v_{l}-(\sigma(v))_{xx}=0$ .
For this model, the singular convergence of weak solutions is described in [5];

for the general n-dimensional case, we refer to [10] where, however, the global
existence of smooth solutions of (1.4), at least when $\epsilon$ is small, is explicitly
assumed. Hence, we believe, the importance of global existence results of the
type we propose to present.
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\S 2. Notations and Results.

As in [9], by the change of variable $ l\rightarrow t/\epsilon$ we transform (1.1), (1.2) into
the initial value problem

(2.1) $u_{tt}+u_{t}-\epsilon u_{xx}-\epsilon(f(u_{x}))_{x}=0$ ,

(2.2) $u(x, 0)=u_{0}(x)$ , $u_{t}(x, 0)=\epsilon u_{1}(x)$ .
For integer $m\geqq 0$ we consider the Sobolev spaces $H^{m}=H^{m}(R)$ , with norm $\Vert\cdot||_{m}$

and scalar product $(\cdot, )_{m}$ ; we omit the index $m=0$ for $H^{0}=L^{2}(R)$ ; also, $|$

denotes the $L^{\infty}$ norm. Following Kato, [3], we look for solutions of (2.1) in
the space $X_{\iota+1}(T)=\bigcap_{k=0}^{l+1}C^{k}([0, T];H^{s+1-k})$ , where $T>0$ is arbitrary and $s\geqq 2$

an integer (to conform with Kato’s theory, which requires $s>(n/2)+1$ if $x\in R^{n}$ ;
here, $n=1$).

We assume that $f:R\rightarrow R$ is a $C^{m}$ function, $m\geqq 3$, satisfying

(2.3) $f(O)=0$ , $f^{\prime}(r)\geqq 0\forall r\in R$ ,

and that, for $j=1,$ $\cdots$ , $m$ , there are continuous increasing functions $h_{j}$ : $R^{+}\rightarrow R^{+}$

such that

(2.4) $\forall r\in R$ , $|f^{(j)}(r)|\leqq h_{j}(|r|)$

(as, for example, the one-dimensional version of the p-Laplacian considered by
Lions in Chapter I.8 of [4], $i.e$ . $f(r)=|r|^{p-2}r,$ $p>2$ : then (2.4) holds with $m=3$

if $p\geqq 4$).

Under the said assumptions, a srraightforward application of Kato’s results
of [3] yields the local existence result

THEOREM 1. Let $m\geqq 3$ , and $s$ be such that $2\leqq s\leqq m-1$ . Given any $u_{0}\in H^{*+1}$ ,
$u_{1}\in H^{s}$ and $\epsilon>0$ , there exist $\tau>0$ and a unique $u\in X_{\epsilon+1}(\tau)$ , solution of (2.1), (2.2).

Our goal is now to show that, if $\epsilon$ is sufficiently small, such a local solu-
tion can be extended to any interval $[0, T]$ (and, in fact, to all of $R^{+}$): setting,
for integer $k,$ $l$ ,

$C_{b}^{k}(R_{0}^{+} ; H^{l})=\{f\in C^{k}([0, +\infty [; H^{\iota})|\exists M>0\forall t\geqq 0, \forall i=0, -- k, \Vert\partial_{t}^{l}f(t)\Vert_{\iota}\leqq M\}$ ,
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we claim

THEOREM 2. Let $m\geqq 3$ , and $s$ be such that $2\leqq s\leqq m-1$ . Given any $u\in H^{s+1}$

and $u_{1}\in H^{S}$ , there exists $\epsilon_{0}>0$ such that, if $\epsilon\leqq\epsilon_{0}$ , problem (2.1), (2.2) has a unique
$solut\iota onu\in X_{S+1}(+\infty)=\bigcap_{k=0}^{S+1}C_{b}^{k}(R_{0}^{+} ; H^{s+1-k})$ .

We remark that, as will be evident from the proof of Theorem 2, we could
consider equations of type (1.3) directly, provided we assume global strict hyper-
bolicity, $i$ . $e$ . that $\exists\nu>0|\forall r\in R,$ $\sigma^{\prime}(r)\geqq\nu$ .

As is to expected, such global solutions will be uniformly bounded as $ t\rightarrow$

$+\infty$ , and their derivatives will decay to $0$ (although, as far as we can show,

with a rate of decay not uniform with respect to $\epsilon$ ). At least in the case $s=0$

(and, we believe, for $s>2$ as well, but we have not checked the details of the
proof), this is described by

THEOREM 3. Let $s=2,$ $\epsilon\leqq\epsilon_{0}$ , and $u\in X_{3}(+\infty)$ be the solution of (2.1), (2.2)

assured by Theorem 2. There exists $M>0$ such that

(2.5) $\forall t\geqq 0$ , $\sum_{i=0}^{3}\Vert\partial_{t}^{i}u(t)\Vert_{3-i}^{2}\leqq M$ ,

(2.6) $\lim_{t\rightarrow+\infty}(||u_{x}(t)\Vert_{2}^{2}+\sum_{i=1}^{3}\Vert\partial_{l}^{i}u(t)\Vert_{3-i}^{2})=0$ .

\S 3. Proof of Theorem 2.

We start by remarking that it is sufficient to extend the local solution to a
global one in $X_{3}$ : in fact, higher order derivatives can be bounded in terms of
the norm in $X_{3}$ by means of standard estimates (see $e$ . $g$ . $[8]$ or [9]). Given
then integers $m,$ $r\geqq 0$ and a smooth function $u(x, t)$ , we introduce the functions

$E_{m.r}(u, )=\Vert\partial_{l}^{r}u_{t}\Vert_{m}^{2}+(\partial_{t}^{r}u, \partial_{\iota^{r}}u_{l})_{m}+\frac{1}{2}\Vert\partial_{t}^{r}u\Vert_{m}^{2}+\epsilon\Vert\partial_{\iota^{r}}u_{x}||_{m}^{2}$

(the “energy” norms), and the seminorms

$S_{m,r}(u, )=\Vert\partial_{\iota^{r}}u_{t}\Vert_{m}^{2}+\epsilon\Vert\partial_{l}^{r}u_{x}\Vert_{m}^{2}$ ;

indeed, by Schwartz’ inequality we easily check that, for instance, $\sup_{l\geq 0}E_{0.0}(u, t)$

is the square of a norm in $X_{1}$ , and in particular

(3.1) $\Vert u_{l}\Vert^{2}\leqq 2E_{0.0}(u, )$ , $\Vert u\Uparrow^{2}\leqq 4E_{0,0}(u, \cdot)$ , $\epsilon\Vert u_{x}\Vert^{2}\leqq E_{0.0}(u, )$ ;

similar inequalities hold for the other norms $E_{m.r}$ .

Exploiting the different behavior of the time and space derivatives of $u$
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with respect to the rescaling $ t\rightarrow t/\epsilon$ , we propose at first to establish a direct $a$

priori estimate on the norm

$ E_{0.1}(u, t)+E_{0.2}(u, \iota)+\frac{1}{2}\int_{0}^{t}(S_{0.1}(u, \theta)+S_{0.2}(u, \theta))d\theta$

and then, by a sort of ”elliptic” procedure, to use this estimate to provide an
analogous estimate for the norm

$ E_{2.0}(u, l)+\frac{1}{2}\int_{0}^{t}S_{2,0}(u, \theta)d\theta$ .

In the course of these estimates we shall also have to consider the functions

$\phi(u)=\int_{R}F(u(x, \cdot))dx$ , where $F(r)=\int_{0}^{r}f(s)ds$ ,

$F_{m,r}(u, )=(f^{\prime}(u_{x})\partial_{x}^{m}\partial tu, \partial_{x}^{m}\partial_{t}^{r}u)$ ;

note that (2.3) implies that $F$, and therefore $\phi$ and $F_{m}$ .,, are all nonnegative.

We start from the local existence Theorem 1, from the proof of which we
know that

PROPOSITION 1. Let $\Delta_{0}^{2}=E_{2.0}(u, 0)+\epsilon(2\phi(u_{0x})+F_{2.0}(u, 0)+F_{s.0}(u, 0))$ . For all
$\Delta>\Delta_{0}$ , there exists $T>0$ such that

(3.2) $\forall t\in[0, T]$ , $E_{2.0}(u, t)+\frac{1}{2}\int_{0}^{t}S_{2.0}(u, \theta)d\theta\leqq\Delta^{2}$ .

(The proof is standard, and we actually obtain the estimate

(3.3) $ E_{2.0}(u, t)+\frac{1}{2}\int_{0}^{l}S_{2.0}(u, \theta)d\theta$

$+\epsilon(2\phi(u_{x}(t))+F_{2.0}(u, t)+F_{3.0}(u, t))$

$+\frac{\epsilon}{2}\int_{0}^{t}(2\phi(u_{x}(\theta))+F_{2.0}(u, \theta)+F_{3.0}(u, \theta))d\theta\leqq\Delta^{2}$ ,

which, however, we shall not need). We now claim:

PROPOSITION 2. There exists $M>\Delta_{0}$ , independent of $\epsilon$ , such that, for all
$\Delta>\Delta_{0}$ , there exists $\epsilon_{\Delta}>0$ such that, for all $\epsilon\leqq\epsilon_{\Delta}$ , for all $T>0$ such that (3.2)
holds,

(3.4) $\forall t\in[0, T]$ , $E_{2.0}(u, t)+\frac{1}{2}\int_{0}^{t}S_{2.0}(u, \theta)d\theta\leqq M^{2}$ ;

We shall prove this Proposition in the next section; assuming its validity,
we choose $\Delta=2M$ and, by Proposition 1, we first find $T_{1}>0$ such that $\forall\iota\in$
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$[0, T_{1}],$ $E_{2.0}(u, t)+\frac{1}{2}\int_{0}^{t}S_{2.0}(u, \theta)d\theta\leqq 4M^{2}$ . Then, Proposition 2 ensures that, if

$\epsilon\leqq\epsilon_{2M}$ , we have in fact $\forall t\in[0, T_{1}]$ , $E_{2.0}(u, \iota)+\frac{1}{2}\int_{0}^{t}S_{2.0}(u, \theta)d\theta\leqq M^{2}$ . This

means that the energy norm does not increase in $[0, T_{1}]$ , so that we can repeat

the same argument to extend the local solution to a global one in the usual
way. Thus, Theorem 2 follows from Propositions 1 and 2, with the choice
$\epsilon_{0}=\epsilon_{2M}$ . $\square $

\S 4. Proof of Proposition 2.

4.1. We shall obtain the a priori bounds on the space derivatives of $u$

described in Proposition 2 by means of analogous bounds on the time derivatives
of $u$ , provided by

PROPOSITION 3. For all $\Delta>\Delta_{0}$ , there exists $\epsilon_{\Delta}>0$ such that, for all $\epsilon\leqq\epsilon_{\Delta}$ ,

for all $T>0$ such that (3.2) holds in $[0, T]$ , for all $t\in[0, T]$ ,

(4.1) $E_{01}(u, t)+E_{0.2}(u, t)+\epsilon F_{1.1}(u, t)+\epsilon F_{1.2}(u, t)$

$+\frac{1}{2}\int_{0}^{t}(S_{0.1}(u, \theta)+S_{0.2}(u, \theta))d\theta+\frac{\epsilon}{2}\int_{0}^{t}(F_{1.1}(u, \theta)+F_{1.2}(u, \theta))d\theta$

$\leqq E_{0,1}(u, 0)+E_{0.2}(u, 0)+\epsilon F_{1.1}(u, 0)+\epsilon F_{1.1}(u, 0)+\epsilon^{2}$ .

PROOF. We start by remarking that the right side of (4.1) is $O(\epsilon^{2})$ : in
fact, from (2.1) and (2.2) we compute that

$u_{tt}(0)=(\epsilon u_{xx}+\epsilon f^{\prime}(u_{x})u_{xx}-u_{l})(0)\equiv\epsilon u_{2}\in H^{1}$ ,

and, from the differentiated equation

(4.2) $u_{ttt}+u_{ll}-\epsilon u_{xxt}-\epsilon(f^{\prime}(u_{x})u_{xt})_{x}=0$ ,

$u_{ltt}(0)=(\epsilon u_{xxl}+\epsilon(f^{\prime}(u_{x})u_{xt})_{x}-u_{tl})(0)\equiv\epsilon u_{3}\in L^{2}$ .
Next, we multiply equation (2.1) in $L^{2}$ by $2u_{t}$ , obtaining

(4.3) $\frac{d}{dt}(\Downarrow u_{t}\Vert^{2}+\epsilon\Vert u_{x}\Vert^{2}+2\epsilon\phi(u_{x}))+2\Vert u_{t}\Vert^{2}=0$ ;

from this we deduce that, for suitable $K_{I}>0$ independent of $\epsilon$ ,

(4.4) $(\Vert u_{t}H^{2}+\epsilon\Vert u_{x}||^{2}+2\epsilon\phi(u_{x}))(t)+2\int_{0}^{t}\Vert u_{l}||^{2}\leqq K_{1}^{2}\epsilon$ .

Multiplying then (2.1) by $u$ as well, adding to (4.3) and integrating, we obtain
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(4.5) $E_{0.0}(u, t)+2\epsilon\phi(u_{x}(t))+\int_{0}^{t}(S_{0.0}(u, s)+\epsilon(f(u_{x}), u_{x})(s))ds$

$\leqq E_{0.0}(u, 0)+2\epsilon\phi(u_{ox})$ ;

since $\forall r\in R,$ $r(f(r))\geqq 0$ by (2.3), (4.5) means in particular that the norm of
$\{u, u_{t}\}$ in $H^{1}\times L^{2}$ is conserved.

4.2. Next, we multiply the differentiated equation (4.2) in $L^{2}$ by $2u_{tt}+u_{t}$ ,

obta ining

(4.6) $\frac{d}{dt}\{||u_{lt}\Vert^{2}+\epsilon\Vert u_{xt}\Vert^{2}+\epsilon(f^{\prime}(u_{x})u_{xt}, u_{xl})+(u_{tt}, u_{l})+\frac{1}{2}\Vert u_{t}\Vert^{2}\}$

$+\Vert u_{lt}\Vert^{2}+\epsilon||u_{xt}\Vert^{2}+\epsilon(f^{\prime}(u_{x})u_{xl}, u_{xt})=\epsilon(f^{\prime\prime}(u_{x})u_{xt}u_{xl}, u_{xl})\equiv I$ .

We estimate 1 by means of (2.4), using Nirenberg’s interpolation inequalities
and (3.2), (4.4), noting that, by (3.1), these imply that $\Vert u_{xx}\Vert\leqq 2\Delta,$ $\Vert u_{xxt}||\leqq\sqrt{2}\Delta$ ,
$||u_{t}\Vert\leqq\sqrt{}\overline{\epsilon}K_{1}$ and 1 $u_{x}\Vert\leqq K_{1}$ : we obtain that, for suitable constant $C>0$ indepen-
dent of $u$ ,

$|u_{x}|\leqq C\Vert u_{xx}\Vert^{1/2}\Vert u_{x}\Vert^{1/2}\leqq C\sqrt{2\Delta K_{1}}$,
(4.7)

$|u_{xt}|\leqq C\Vert u_{xxt}\Vert^{3/4}\Vert u_{t}\Vert^{1/4}\leqq 2^{3/8}C\Delta^{S/4}K_{1}^{1/4}\epsilon^{1/8}$ ,

and therefore, denoting here and in the sequel by $R$ a generic positive constant
depending only on $\Delta$ ,

(4.8) $I\leqq\epsilon h_{2}(|u_{x}|)|u_{xt}|\Vert u_{xt}\Vert^{2}\leqq R\epsilon^{9/8}\Vert u_{xt}\Vert^{2}$

Consequently, if $\epsilon$ is so small (in dependence of $\Delta$ ) that

(4.9) $2R\epsilon^{1/8}\leqq\frac{1}{2}$ ,

we obtain from (4.6) that, in particular,

(4.10) $\frac{d}{dt}\{E_{0.1}(u, t)+\epsilon F_{1,1}(u, t)\}+\frac{1}{2}(S_{0.1}(u, t)+\epsilon F_{1.1}(u, t))\leqq 0$ ;

and since $\forall r,$ $\forall s\in R,$ $f^{\prime}(r)s^{2}\geqq 0$ because of (2.3), (4.10) means that the norm of
$\{u_{t}, u_{lt}\}$ in $H^{1}\times L^{2}$ is also conserved. In particular, (4.10) implies that there
exists $K_{2}>0$ , depending only on the norm of the initial values, but not on $\epsilon$

nor on $\Delta$ if $\epsilon$ satisfies (4.9), such that

(4.11) $\Vert u_{tt}\Vert\leqq K_{2}\epsilon$ , $\Vert u_{t}\Vert\leqq K_{2}\epsilon$ $||u_{xt}\Vert\leqq K_{2}\sqrt{\epsilon}$ ,

(4.12) $\int_{0}^{t}\Vert u_{tt}||^{2}\leqq K_{2}\epsilon^{2}$ , $\int_{0}^{t}\Vert u_{xt}\Vert^{2}\leqq K_{2}\epsilon$ ;

note that estimate (4.11b) allows us to improve estimate $(4.7b)$ : lndeed, we now
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have

(4.13) $|u_{xl}|\leqq 2^{a/8}C\Delta^{3/4}K_{2}^{1/4}\epsilon^{1/4}$ .
In the sequel, we shall indicate by $K_{i}$ a generic positive constant with the same
properties as $K_{1}$ and $K_{2}$ .

4.3. We would now like to differentiate (4.2) once more with respect to
time; however, if $s=2$ , we are prevented to do so by the fact that, in general,
$u_{llt}$ and $u_{xlt}\not\in C^{1}([0, T];L^{2})$ . Thus, we shall regularize by means of Ikawa’s
mollifiers: denoting by $*the$ convolution with respect to time, for $\alpha>0$ we set
$w^{\alpha}=\phi^{\alpha}*u_{l}$ , that is, as in [2],

$ w^{\alpha}(x, t)=\int_{-\infty}^{+\infty}\frac{1}{\alpha}\phi(\frac{t-\tau}{\alpha})u_{t}(x, \tau)d\tau$ ,

where $\phi$ is a $C^{\infty}$ function with support in $[-2, -1]$ , such that $\phi\geqq 0,$ $\int_{-\infty}^{+\infty}\phi(t)dt$

$=1$ ; we recall that if $z\in L^{2}(\Omega\times]0, T+\alpha_{0}[)$ for some $\alpha_{0}>0$ , then for $0<\alpha<$

$(1/2)\alpha_{0}\phi^{\alpha}*z\in C^{\infty}([0, T];L^{2})$ , and $\phi^{\alpha}*commutes$ with $\partial/\partial t$ . Applylng $\phi^{\alpha}*$ to
(4.2), we see that $w^{\alpha}$ solves the equation

$w_{tl}^{\alpha}+w_{l}^{\alpha}-\epsilon w_{xx}^{\alpha}-\epsilon(f^{\prime}(u_{x})w_{y}^{\alpha})_{x}$

$=\epsilon(\phi^{\alpha}*(f^{\prime}(u_{x})u_{xl})-f^{\prime}(u_{x})w_{x}^{a})_{x}\equiv\epsilon R_{x}^{\alpha}$ .

We can now differentiate this equation in time; multiplying then by $2w_{ll}^{\alpha}+w_{l}^{\alpha}$ ,

we obtain

(4.14) $\frac{d}{dt}\{\Vert w_{ll}^{\alpha}\Vert^{2}+\epsilon\Vert w_{xt}^{\alpha}\Vert^{2}+\epsilon(p^{\prime}(u_{x})w_{xt}^{\alpha}, w_{xt}^{\alpha})+(w_{ll}^{\alpha}, w_{l}^{\alpha})+\frac{1}{2}\Vert w_{l}^{\alpha}\Vert^{2}\}$

$+\Vert w_{tl}^{\alpha}\Vert^{2}+\epsilon\Vert w_{xl}^{\alpha}\Vert^{2}+\epsilon(f^{\prime}(u_{x})w_{xl}^{\alpha}, w_{xl}^{\alpha})$

$=\epsilon(f^{\prime\prime}(u_{x})u_{xl}w_{xl}^{\alpha}, w_{xl}^{\alpha})+2\epsilon(f^{\prime\prime}(u_{x})u_{xxt}w_{x}^{\alpha}, w_{ll}^{\alpha})$

$+2\epsilon(f^{\prime\prime}(u_{x})u_{xt}w_{xx}^{a}, w_{tt}^{\alpha})+2\epsilon(f^{\prime\prime\prime}(u_{x})u_{xx}u_{xl}w_{x}^{\alpha}, w_{ll}^{\alpha})$

$-e(f^{\prime\prime}(u_{x})u_{xl}w_{x}^{\alpha}, w_{xt}^{\alpha})+\epsilon(R_{xl}^{\alpha}, 2w_{tl}^{\alpha}+w_{l}^{\alpha})$

$\equiv A+B_{1}+B_{2}+D_{1}+D_{2}+E_{1}+E_{2}$ .
We estimate $A$ as in (4.8):

$A\leqq\epsilon h_{2}(|u_{x}|)|u_{xt}|\Vert w_{xt}^{\alpha}\Vert^{a}\leqq R\epsilon^{9/8}\Vert w_{xt}^{\alpha}\Vert^{2}$ ;

again by interpolation inequalities, (2.4), and recalling that, as we have remarked,
$\Vert u_{xll}\Vert\leqq \mathcal{F}2\Delta$ , we have
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$ B_{1}\leqq 2\epsilon h_{2}(|u_{x}|)\Vert u_{xxt}\Vert|w_{x}^{\alpha}|\Vert w_{tt}^{\alpha}\Vert$

$\leqq\epsilon R|w_{x}^{\alpha}|\Vert w_{tl}^{\alpha}\Vert\leqq\epsilon R\Vert w_{x}^{\alpha}\Vert^{1/2}\Vert w_{xx}^{\alpha}\Vert^{1/2}\Vert w_{lt}^{a}\Vert$

$\leqq\epsilon^{2}R\Vert w_{x}^{a}\Vert\Vert w_{xx}^{\alpha}\Vert+\eta\Vert w_{lt}^{a}\Vert^{2}$ ,

for any $\eta>0$ ; similarly, recalling (4.13),

$ B_{2}\leqq 2\epsilon h_{2}(|u_{x}|)|u_{xt}|\Vert w_{xx}^{\alpha}\Vert\Vert w_{tt}^{\alpha}\Vert\leqq\epsilon R\epsilon^{1/4}\Vert w_{xx}^{\alpha}\Vert\Vert w_{tt}^{a}\Vert$

$\leqq R\epsilon^{5/2}\Vert w_{xx}^{\alpha}\Vert^{2}+\eta\Vert w_{tt}^{\alpha}\Vert^{2}$ ;

also, recalling (4.11c), for suitable $c>0$ :
$D_{1}\leqq 2\epsilon h_{3}(|u_{x}|)\Vert u_{xx}\Vert|u_{xl}||w_{x}^{\alpha}|\Vert w_{lt}^{a}$ I

$\leqq 2c\epsilon h_{3}(|u_{x}|)\Vert u_{xx}\Vert\Vert u_{xxl}\Vert^{1/2}\Vert u_{xt}\Vert^{1/2}\Vert w_{x}^{\alpha}\Vert^{1/2}\Vert w_{xx}^{\alpha}\Vert^{1/2}\Vert w_{tt}^{\alpha}\Vert$

$\leqq\epsilon R\epsilon^{1/4}\sqrt{}\overline{K_{2}}\Vert w_{x}^{\alpha}\Vert^{1/2}\Vert w_{xx}^{\alpha}\Vert^{1/2}\Vert w_{tt}^{a}\Vert$

$\leqq\epsilon^{5/2}R\Vert w_{x}^{\alpha}\Vert\Vert w_{xx}^{\alpha}\Vert+\eta\Vert w_{ll}^{\alpha}\Vert^{2}$ ;

$ D_{2}\leqq\epsilon h_{2}(|u_{x}|)|u_{xt}|\Vert w_{x}^{\alpha}\Vert\Vert w_{xt}^{\alpha}\Vert$

$\leqq\epsilon ch_{2}(|u_{x}|)\Vert u_{xxl}\Vert^{1/2}\Vert u_{xt}\Vert^{1/2}\Vert w_{x}^{\alpha}\Vert\Vert w_{xl}^{\alpha}\Vert$

$\leqq\epsilon^{5/4}R\Vert w_{x}^{\alpha}$ II I $w_{xt}^{\alpha}\Vert\leqq\epsilon^{3/2}R\Vert w_{x}^{\alpha}\Vert^{2}+\eta\epsilon\Vert w_{xt}^{\alpha}\Vert^{2}$ ;

$E_{1}=2\epsilon(R_{xl}^{\alpha}, w_{lt}^{\alpha})\leqq R\epsilon^{2}\Vert R_{xt}^{\alpha}\Vert^{2}+\eta\Vert w_{lt}^{\alpha}\Vert^{2}$ ,

$E_{2}=\epsilon(R_{xl}^{\alpha}, w_{t}^{\alpha})=-\epsilon(R_{l}^{\alpha}, w_{xt}^{\alpha})\leqq R\epsilon\Vert R_{l}^{\alpha}\Vert^{2}+\eta\epsilon\Vert w_{xt}^{\alpha}\Vert^{2}$ .
Choosing $\eta$ small enough, we deduce then from (4.14) that

(4.15) $\frac{d}{dt}\{E_{0.1}(w^{\alpha}, t)+\epsilon F_{1.1}(w^{a}, t)\}+\frac{1}{2}S_{0.1}(w^{a}, t)+\epsilon F_{1.1}(w^{\alpha}, t)$

$\leqq R\epsilon^{6/2}\Vert w_{xx}^{\alpha}\Vert^{2}+R\epsilon^{3/2}\Vert w_{x}^{\alpha}\Vert^{2}+\epsilon^{2}\Vert R_{xt}^{\alpha}\Vert^{2}+R\epsilon\Vert R_{\iota}^{\alpha}\Vert^{2}$ ,

from which, mtegrating,

(4.16) $ E_{0.1}(w^{\alpha}, t)+\epsilon F_{1.1}(w^{\alpha}, t)+\frac{1}{2}\int_{0}^{l}\{S_{0.1}(w^{\alpha}, \theta)+\epsilon F_{1.1}(w^{\alpha}, \theta)\}d\theta$

$\leqq E_{0.1}(w^{\alpha}, 0)+\epsilon F_{1.1}(w^{\alpha}, 0)+R\epsilon^{6/2}\int_{0}^{t}\Vert w_{xx}^{\alpha}\Vert^{2}$

$+R\epsilon^{s/2}\int_{0}^{t}\Vert w_{x}^{\alpha}\Vert^{2}+R\epsilon^{2}\int_{0}^{t}\Vert R_{xl}^{\alpha}\Vert^{2}+R\epsilon\int_{0}^{t}\Vert R_{t}^{\alpha}\Vert^{2}$ .

To estimate the right side of (4.16), we recall the following results on the
mollifier, whose proof can be obtained by adapting the arguments of Ikawa, [2]:

LEMMA 1. Let $u\in X_{3}(T)$ : then, as $\alpha\downarrow 0$ :
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(4.17) $\int_{0}^{t}\Vert R_{l}^{\alpha}\Vert_{1}^{2}-0$ , $\int_{0}^{l}\Vert w_{x}^{\alpha}\Vert_{1}^{2}-\int_{0}^{l}\Vert u_{xt}\Vert_{1}^{2}$ ,

(4.18) $E_{0.1}(w^{\alpha}, t)\rightarrow E_{0.1}(u_{t}, t)$ , $F_{1,1}(w^{\alpha}, t)-F_{1,1}(u_{t}, t)$ ,

$S_{0,1}(w^{\alpha}, l)-S_{0,1}(u_{l}, t)$ ,

(4.19) $\sup_{0\leq l\leq T}\{\Vert w_{x}^{\alpha}(t)\Vert_{1}^{2}+\Vert R_{l}^{a}(t)\Vert_{1}^{2}\}=O(1)$ .

Thus, letting $\alpha\downarrow 0$ in (4.16), we obtain

$ E_{0,1}(u_{t}, t)+\epsilon F_{1.1}(u_{l}, t)+\frac{1}{2}\int_{0}^{l}\{S_{0,1}(u_{l}, \theta)+\epsilon F_{1,1}(u_{l}, \theta)\}d\theta$

$\leqq E_{0,1}(u_{l}, 0)+\epsilon F_{1,1}(u_{t}, 0)+R\epsilon^{5/2}\int_{0}^{l}\Vert u_{xxl}\Vert^{2}+R\epsilon^{3/2}\int_{0}^{t}\Vert u_{xl}\Vert^{2}$ ,

and therefore, recalling (4.12b) and that (3.2) implies in particular that $\int_{0}^{l}\Vert u_{xxl}\Vert^{2}$

$\leqq 2\Delta^{2}$ ,

(4.19) $ E_{0.2}(u, t)+\epsilon F_{1,2}(u, t)+\frac{1}{2}\int_{0}^{l}\{S_{0,2}(u, \theta)+\epsilon F_{1,2}(u, \theta)\}d\theta$

$\leqq E_{0,2}(u, 0)+\epsilon F_{1,2}(u, 0)+R\epsilon^{5/2}2\Delta^{2}+R\epsilon^{3/2}K_{2}\epsilon$ .

Integrating (4.10) and adding to (4.19) yields then

$E_{0.1}(u, t)+E_{0.2}(u, t)+\epsilon F_{1,1}(u, t)+\epsilon F_{1.2}(u, t)$

$+\frac{1}{2}\int_{0}^{t}\{S_{0,1}(u, \theta)+S_{0,2}(u, \theta)\}d\theta+\frac{\epsilon}{2}\int_{0}^{l}\{F_{1.1}(u, \theta)+F_{1.2}(u, \theta)\}d\theta$

$\leqq E_{0.1}(u, 0)+E_{0.2}(u, 0)+\epsilon F_{1,1}(u, 0)+\epsilon F_{1.2}(u, 0)+R\epsilon^{5/2}2\Delta^{2}+R\epsilon^{3/2}K_{2}\epsilon$ ,

so that we obtain (4.1) if $\epsilon$ is so small (again, in dependence of $\Delta$ ) that, in
addition to (4.9),

(4.20) $2\Delta^{2}R\sqrt{\epsilon}+K_{2}R\sqrt{\epsilon}\leqq 1$ :

this ends the proof of Proposition 3. $\square $

4.4. In particular, (4.1) implies that, for suitable $K_{3}>0$ ,

(4.21) $\Vert u_{llt}\Vert\leqq K_{3}\epsilon$ , $\Vert u_{lt}\Vert\leqq K_{3}\epsilon$ , $\Vert u_{xll}\Vert\leqq K_{3}\sqrt{\epsilon}$ ,

(4.22) $\int_{0}^{l}\Vert u_{ttt}\Vert^{2}\leqq K_{3}\epsilon^{2}$ , $\int_{0}^{t}\Vert u_{xtl}\Vert^{2}\leqq K_{3}\epsilon$ :

with these estimates, we are now ready to prove Proposition 2, for which we
still need to estimate

$\Vert u_{xx}\Vert$ , $\Vert u_{xxt}\Vert$ , $\int_{0}^{l}$ I $u_{xxl}\Vert^{2}$ ;
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$\sqrt{}\epsilon^{-}\Vert u_{xxx}\Vert$ , $\epsilon\int_{0}^{l}\Vert u_{xx}\Vert^{2}$ , $\epsilon\int_{0}^{l}\Vert u_{xxx}\Vert^{l}$ .

From equation (2.1) we have

$\epsilon u_{xx}=\frac{u_{tt}+u_{l}}{1+f\prime(u_{x})}$ ,

and since $f^{\prime}(u_{x})\geqq 0$ , recalling (4.11) we deduce that

(4.23) $\epsilon\Vert u_{xx}\Vert\leqq\Vert u_{ll}\Vert+\Vert u_{l}\Vert\leqq 2K_{3}\epsilon$ .

From equation (4.2) we also have

(4.24) $\epsilon u_{xxt}=^{u_{\underline{t}t}}-\frac{t+u_{lt}-\epsilon f^{\prime}(u_{x})u_{xx}u_{x}}{1+f\prime(u_{x})}t$

from which

(4.25) $\epsilon\Vert u_{xxl}\Vert\leqq\Vert u_{lll}\Vert+\Vert u_{ll}\Vert+\epsilon\Vert f^{\prime}(u_{x})u_{xx}u_{xl}\Vert$ .

Noting that (4.23) allows us to modify (4.7a) into $|u_{x}|\leqq C\sqrt{2K_{2}K_{1}}$, recalllng

(4.21) we proceed from (4.25) with

$\epsilon\Vert u_{xxt}\Vert\leqq\Vert u_{tll}\Vert+\Vert u_{tl}\Vert+\epsilon h_{1}(|u_{x}|)|u_{xl}|\Vert u_{xx}\Vert$

$\leqq 2\epsilon K_{3}+\epsilon C/1_{1}(C\sqrt{}\overline{2}K_{1}^{-}K_{2}^{-})\Vert u_{xt}\Vert^{\prime 12}\Vert u_{xxt}\Vert^{2/2}\Vert u_{xx}\Vert$

$\leqq 2\epsilon K_{3}+\epsilon Ch_{1}(C\sqrt 2\overline{K_{1}}K_{2})\epsilon^{1/4}K_{2}^{1/2}\Vert u_{xxl}\Vert^{1/2}2K_{2}$

$=2\epsilon K_{3}+\epsilon^{3/4}K_{4}(\epsilon\Vert u_{xxl}\Vert)^{1/2}$

$\leqq 2\epsilon K_{3}+\frac{1}{2}\epsilon^{3/2}K_{4}^{2}+\frac{1}{2}\epsilon$ I $ u_{xxl}\Vert$ ;

therefore, we obtain that

(4.26) $\epsilon\Vert u_{xxl}\Vert\leqq 4\epsilon K_{3}+\epsilon^{3/2}K_{4}^{2}\leqq\epsilon K_{5}$ .

From (4.24) we also have, using (4.23), (4.22a), (4.12a), that

$\epsilon^{2}\int_{0}^{l}\Vert u_{xxl}\Vert^{2}\leqq 2\int_{0}^{t}\Vert u_{tll}+u_{tt}\Vert^{2}+2\int_{0}^{t}\Vert\epsilon f^{\prime}(u_{x})u_{xx}u_{xl}\Vert^{2}$

$\leqq 4\int_{0}^{l}\Vert u_{ltt}\Vert^{2}+4\int_{0}^{l}\Vert u_{lt}\Vert^{2}+2N\epsilon^{2}\int_{0}^{t}\Vert u_{xxt}\Vert\Vert u_{xt}\Vert$

$\leqq 4K_{3}\epsilon^{2}+4K_{2}\epsilon^{2}+2N\epsilon^{2}(\int_{0}^{l}\Vert u_{xt}\Vert^{2})^{1/2}(\int_{0}^{l}\Vert u_{xxl}\Vert^{2})^{\iota/2}$

$\leqq 4K_{3}\epsilon^{2}+4K_{2}\epsilon^{2}+CN^{2}\epsilon^{2}\int_{0}^{l}\Vert u_{xl}\Vert^{2}+\frac{1}{2}\epsilon^{2}\int_{0}^{l}\Vert u_{xxl}\Vert^{2}$ ,

where $N=4CK_{2}^{2}h_{1}(C\sqrt{2K_{1}}K_{2})^{2}$ ; thus, using (4.12b), we have
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(4.27) $\frac{1}{2}\epsilon^{2}\int_{0}^{l}\Vert u_{xxt}\Vert^{2}\leqq 4K_{3}\epsilon^{2}+4K_{2}\epsilon^{2}+CN^{2}K_{2}\epsilon^{3}\leqq K_{6}\epsilon^{2}$

From (4.23), (4.12a) and (4.4) we also have

$\epsilon^{2}\int_{0}^{l}\Vert u_{xx}\Vert^{2}\leqq 2\int_{0}^{l}\Vert u_{lt}\Vert^{2}+2\int_{0}^{t}\Vert u_{l}\Vert^{2}\leqq 2K_{2}\epsilon^{2}+K_{1}^{2}\epsilon$ ,

so that

(4.28) $\epsilon\int_{0}^{l}\Vert u_{xx}\Vert^{2}\leqq K_{7}$ .

Differentiating equation (2.1) with respect to $x$ we obtain that

(4.29) $\epsilon(1+f^{\prime}(u_{x}))u_{xxx}=u_{ltx}+u_{lx}-\epsilon f^{\prime\prime}(u_{x})u_{xx}u_{xx}$ ;

from this we obtain, as before, that

$\epsilon\Vert u_{xxx}\Vert\leqq\Vert u_{xll}\Vert+\Vert u_{xl}\Vert+\epsilon\Vert f^{\prime\prime}(u_{x})u_{xx}u_{xx}\Vert$

$\leqq\Vert u_{xlt}\Vert+\Vert u_{xl}\Vert+\epsilon h_{2}(|u_{x}|)|u_{xx}|_{L^{4}}^{2}$

$\leqq\Vert u_{xtl}\Vert+\Vert u_{xl}\Vert+\epsilon Ch_{2}(|u_{x}|)\Vert u_{xx}\Vert^{3/2}\Vert u_{xxx}\Vert^{1/2}$

$\leqq\sqrt{\epsilon}K_{3}+\sqrt{\epsilon}K_{2}+\epsilon Ch_{2}(C\sqrt{2K_{1}K_{2}})(2K_{2})^{3/2}\Vert u_{xxx}\Vert^{1/2}$

$\leqq\sqrt{\epsilon}K_{3}+\sqrt{\epsilon}K_{2}+\epsilon C_{K}+\frac{1}{2}\epsilon\Vert u_{xxx}\Vert$ ,

for suitable $C_{K}>0$ ; hence,

(4.30) $\epsilon\Vert u_{xxx}\Vert\leqq\sqrt{\epsilon}K_{8}$ .
Finally, from (4.29) we estimate

$\epsilon^{2}\int_{0}^{l}\Vert u_{xxx}\Vert^{2}\leqq 4\int_{0}^{l}\Vert u_{xll}\Vert^{2}+4\int_{0}^{l}\Vert u_{xi}\Vert^{2}+2\int_{0}^{l}\Vert\epsilon f^{\prime\prime}(u_{x})u_{xx}u_{xx}\Vert^{2}$

$\leqq 4K_{3}\epsilon+4K_{2}\epsilon+2\epsilon^{2}Ch_{2}(C\sqrt{2K_{1}K_{2})}\int_{0}^{l}\Vert u_{xxx}\Vert\Vert u_{xx}\Vert^{3}$

$\leqq 4K_{3}\epsilon+4K_{2}\epsilon+C_{K}\epsilon^{2}\int_{0}^{l}\Vert u_{xx}\Vert^{2}+\frac{1}{2}\epsilon^{2}\int_{0}^{l}\Vert u_{xxx}\Vert^{2}$ ,

and therefore, $recal[lng(4.28)$ ,

(4.31) $\epsilon^{2}\int_{0}^{l}\Vert u_{xxx}\Vert^{2}\leqq 8K_{8}\epsilon+K_{2}\epsilon+\epsilon C_{K}K_{7}=\epsilon K_{9}$ .

Putting together estimates (4.5), (4.11c), (4.4), (4.23), (4.26), (4.30), (4.12b), (4.28),

(4.27) and (4.31), and recalling also (3.1), we deduce that

$E_{2,0}(u, t)+\frac{1}{2}\int 0S_{2,0}(ul\theta)d\theta\leqq E_{0,0}(u, 0)+2\phi(u_{0x})+K_{10}\equiv M^{2}$ .

To conclude the proof of Proposition 2, we only need to remark that $M$ depends



494 Albert MILANI

only on the norm of the initial values; finally, $\epsilon_{\Delta}$ is defined by (4.9) and (4.20).

$\square $

REMARK. Using the same procedure, it would be possible to prove more
than (3.4), namely (compare to (3.3))

$ E_{2.0}(u, t)+\frac{1}{2}\int_{0}^{t}S_{2,0}(u, \theta)d\theta$

$+\epsilon(2\phi(u_{x}(t))+F_{2,0}(u, t)+F_{3.0}(u, t))$

$+\frac{\epsilon}{2}\int_{0}^{t}(2\phi(u_{x}(\theta))+F_{2.0}(u, \theta)+F_{3,0}(u, \theta))d\theta\leqq M^{2}$ .

\S 5. Proof of Theorem 3.

For $\epsilon\leqq\epsilon_{0}$ , we consider the global solution $u$ of (2.1) and (2.2) assured by

Theorem 2. At first we remark that, since $u\in X_{3}(+\infty)$ , estimate (4.19) holds
uniformly with respect to $T$ ; consequently, from (4.15) we deduce that, with the
same meaning of $w^{\alpha}$ ,

$\frac{d}{dt}\{E_{0,1}(w^{\alpha}, t)+\epsilon F_{1.1}(w^{\alpha}, t)\}\leqq C\epsilon$ ,

with $C>0$ independent of $t$ and $\alpha$ ; adding this to (4.10) we have then that, in
particular,

(5.1) $\frac{d}{dt}\{E_{0.I}(u, t)+E_{0.1}(w^{\alpha}, t)+\epsilon F_{1.1}(u, t)+\epsilon F_{1.1}(w^{\alpha}, l)\}\leqq C\epsilon$ .

Also, from (4.1) we have that, for all $t\geqq 0$ :

(5.2) $E_{0.1}(u, t)+E_{0.2}(u, t)+\epsilon F_{1.1}(u, t)+\epsilon F_{1.2}(u, l)$

$\leqq E_{0.1}(u, 0)+E_{0.2}(u, 0)+\epsilon F_{1.1}(u, 0)+\epsilon F_{1.2}(u, 0)+\epsilon^{2}\equiv C_{2}\epsilon^{2}$ .
Next, we easily see that

$\int_{0}^{t}(E_{0.1}(u, \theta)+E_{0.2}(u, \theta))d\theta\leqq\frac{5}{2}\int_{0}^{t}(S_{0.1}(u, \theta)+S_{0.2}(u, \theta))d\theta+\int_{0}^{l}\Vert u_{t}\Vert^{2}$

so that from (4.1) and (4.4) we have that for all $t\geqq 0$

(5.3) $\int_{0}^{t}\{E_{0,1}(u, \theta)+E_{0.2}(u, \theta)+\epsilon F_{1.1}(u, \theta)+\epsilon F_{1,2}(u, \theta)\}d\theta\leqq 5\epsilon^{2}C_{2}+\frac{1}{2}\epsilon K_{1}^{2}\equiv C_{3}\epsilon$ .

Recalling (4.19), inequalities (5.1), (5.2) and (5.3) show that

$\lim_{l\rightarrow+\infty}\{E_{0.1}(u, t)+E_{0.1}(w^{\alpha}, t)+\epsilon F_{1.1}(u, t)+\epsilon F_{1.1}(w^{\alpha}, l)\}=0$ ;

therefore, slnce $F_{1.1}(u, t)+F_{1,1}(w^{a}, t)\geqq 0$ and the convergence in (4.18) is uniform
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in $t$ because $u\in X_{3}(+\infty)$ , letting $\alpha\downarrow 0$ we obtain that

$\lim_{l\rightarrow+\infty}\{E_{0.1}(u, t)+E_{0,2}(u, t)\}=0$ ,

which in turn implies that

(0.4) $\lim_{l\rightarrow+\infty}\{\Vert u_{lll}(t)\Vert^{2}+\Vert u_{ll}(t)\Vert_{1}^{2}+\Vert u_{l}(t)\Vert_{1}^{2}\}=0$ .

Because of (4.23), (4.25) and (4.29), (5.4) also implies that

(5.5) $\lim_{l\rightarrow+\infty}\{\Vert u_{xx}(t)\Vert_{1}^{2}+\Vert u_{xxl}(t)\Vert^{2}\}=0$ ;

finally, decay of $\Vert u_{x}(\cdot)\Vert$ is a consequence of (4.3), (4.4), (4.5) and (5.4). $\square $

REMARK. As we have stated in the Introduction, it should not be difficult

to extend this procedure to equations in the conservative form

(5.6) $\epsilon u_{ll}+u_{l}-\Delta u-divF(\nabla u)=0$ ,

with $F:R^{n}\rightarrow R^{n}$ monotone; on the other hand, however, extension to equations

in the divergence form

$\epsilon u_{tl}+u_{t}-\Delta u-\sum_{i,j=1}^{n}\partial_{j}(\alpha(\nabla u)\partial_{i}u)=0$

seems to be out of our reach. Still, our method would clearly be applicable to
the initial boundary value problems corresponding to (1.1) or (5.6), with homo-
geneous Dirichlet boundary conditions.
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