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REFLEXIVE MODULES OVER QF-3 RINGS*

By

Jos\’e L. G\’OMEZ PARDO and Pedro A. GUIL ASENSIO

Abstract. We characterize reflexive modules over $QF- 3^{\prime}$ rings us-
ing a linear compactness condition relative to the Lambek torsion
theory, and we also give a necessary and sufficient condition for a
left $QF- 3^{\prime}$ maximal quotient ring to be right $QF- 3^{\prime}$ .

1. Introduction.

The problem of flnding the reflexive modules over generalizations of $QF$

rings (and, in particular, over QF-3 rings) has a long tradition. One of the
flrst contributions is due to Morita [10], who determined the flnitely generated

reflexive modules over a right artinian QF-3 ring and, some years later, Masaike
[8] extended this result by giving a characterization of reflexive modules over
QF-3 rings with ACC (or DCC) on left annihilators. On the other hand, M\"uller

[11] proved that if $RU_{s}$ is a bimodule that induces a Morita duality, then the
U-reflexive modules are precisely the linearly compact modules and this applies,

in particular, to the case in which $R=U$ is a $PF$ ring. Recently, Masaike [9],

extended this to QF-3 rings without chain conditions by showing that the re-
flexive modules over these rings are the modules of R-dominant dimension $\geqq 2$

that satisfy a suitable linear compactness condition.
Recall that a ring is left QF-3 when it has a minimal faithful left module

and left $QF- 3^{\prime}$ when the injective envelope $E(RR)$ is torsionless. When $R$ is
left and right $QF- 3^{\prime}$ , we will simply say that it is a $QF- 3^{\prime}$ ring (and a similar
convention will be used for other classes of rings). $QF- 3^{\prime}$ rings have been
studied by a number of authors and their relation with Morita duality and the
properties of the double dual functors has been analyzed by Colby and Fuller
in a series of papers (see, $e$ . $g.,$ $[1]$ and its references). One of the aims of
this paper is to show that a characterization of reflexive modules similar to
Masaike’s one may be given for the much larger class of $QF- 3^{\prime}$ rings. In fact,
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we obtain a more general module-theoretic result that embraces also the theorem
of M\"uller mentioned above. As a further application of the techniques developed
here, we study the interplay between $R$ being right QF-3’ and linear compact-

ness conditions on the left, that leads to a necessary and sufficient condition
for a left $QF- 3^{\prime}$ ring to be right QF-3’, and to a new one-sided characterization
of QF-3 maximal quotient rings.

Throughout this paper, $R$ denotes an associative ring with identity and R-
Mod (resp. Mod-R) the category of left (resp. right) R-modules. If $X$ and $M$

are left R-modules, $X$ is said to be flnitely M-generated when it is a quotient
of a flnite direct sum of copies of $M$ and $X$ has M-dominant dimension $\geqq 2$ (M-

dom. $\dim X\geqq 2$) when there exists an exact sequence $0\rightarrow X\rightarrow Y\rightarrow Z$ , whith $Y$ and
$Z$ isomorphic to direct products of copies of $X$ .

We will call $\sigma\tau_{M}$ to the localizing subcategory of R-Mod cogenerated by the
injective envelope $E(M)$ of $M$. The corresponding quotient category of R-Mod
will be denoted by $R- Mod/\sigma\tau_{M}$ and its objects are precisely the modules of
$E(M)$-dom. $\dim\geqq 2$ . The most important case of this construction arises for
$M=RR$ , and then $\mathcal{F}_{M}=\mathcal{L}$ is just the Lambek (or dense) localizing subcategory

of R-Mod (see [15]).

2. Reflexive modules.

We will flx a module $M\in R$-Mod and call $S=End(RM)$ . The M-dual func-
tors $Hom_{R}(-, M)$ and Homs $($ –, $M)$ will be denoted by $($ $)^{*}$ , and their composi-

tion in either order by $($ $)^{**}$ . For each $X\in R$-Mod there is a canonical (evalua-

tion) morphism $\sigma_{X}$ : $X\rightarrow X^{**};$ $\sigma_{x}$ is a monomorphism precisely when $X$ is M-
cogenerated and when $\sigma_{x}$ is an isomorphism, $X$ is said to be M-reflexive (or

just reflexlve if we take $M=RR$).

We are interested in characterizing reflexive modules and, not surprisingly,
a certain form of linear compactness plays a key role in this characterization.
Recall from [3] that an object of a Grothendieck category $\cup q$ is said to be linearly
compact when, for each inverse system $\{p_{i} : X\rightarrow X_{i}\}_{I}$ in a such that the $p_{i}$ are
epimorphisms, the induced morphism $\lim_{\leftarrow}p_{i}$ : $X\rightarrow\lim_{\leftarrow}X_{i}$ is also an epimorphism
(this just gives ordinary llnear compactness when $\mathcal{A}=R$-Mod). We will also
use the following related concept (introduced by Hoshino and Takashima in [5]):

An R-module $X$ will be called $\mathcal{F}_{M}$-linearly compact when, for each inverse
system $\{p_{i} : X\rightarrow X_{i}\}_{I}$ in R-Mod such that the $X_{i}$ are M-cogenerated and Coker
$p_{i}\in\xi r_{M}$ , Coker $(\lim_{\leftarrow}p_{i})\in\xi\Gamma_{M}$ . It is not difficult to show that when every flnitely
M-generated submodule of $E(M)$ is M-cogenerated and $M$ is an object of R-
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$Mod/g_{M}$ ( $M$ rationally complete), then $M$ is $\mathcal{F}_{M}$ -linearly compact if and only if
it is linearly compact in the category $R- Mod/\mathcal{F}_{M}$ . When a module $1S\mathcal{L}$-linearly
compact, we will also say that it is Lambek linearly compact.

$\mathcal{F}_{M}$-linearly compact modules have the following useful property:

PROPOSITION 2.1. Let $M$ be a left R-module such that each finitely M-
generated submodule of $E(M)$ is M-cogenerated. Then, for each $\mathcal{F}_{M}$-linearly
compact R-module $X$ , Coker $\sigma_{X}\in \mathcal{F}_{M}$ .

PROOF. The proof is essentially the same of [5, Corollary 2.2], where this
is shown in the case $M=RR$ . $\square $

LEMMA 2.2. Let $X\in R$-Mod, $Y$ an M-reflexive module, and I a set. If
$f:X\rightarrow Y^{I}$ is a homomorphism, then there exists a homomorphism $g:X^{**}\rightarrow Y^{I}$

such that $g\circ\sigma_{X}=f$ .

PROOF. Let, for each $i\in I,$ $p_{i}$ : $Y^{I}\rightarrow Y$ be the canonical projection and con-
sider the homomorphism $g_{i}$ $:=\sigma_{Y}^{-1}\circ(p_{i}\circ f)^{**}:$ $X^{**}\rightarrow Y$ . Since $\sigma_{Y}\circ p_{i}\circ f=(p_{i}\circ f)^{**}\circ\sigma_{X}$

we see that $p_{i}\circ f=\sigma_{Y}^{-1}\circ(p_{i}\circ f)^{**}\circ\sigma_{X}=g_{i}\circ\sigma_{x}$ for each $i\in I$ and so, calling $g:X**$
$\rightarrow Y^{I}$ to the unique homomorphism such that $p_{i}\circ g=g_{i}\forall i\in I$ , we see that $p_{i}\circ f$

$=p_{i^{o}}g\circ\sigma_{x}\forall i\in I$ and hence that $f=g\circ\sigma_{X}$ . $\square $

PROPOSITION 2.3. Let $M\in R$-Mod be such that every finitely M-generated
submodule of $E(M)$ is M-cogenerated and let $X\in R$-Mod a $q_{M}$-linearly compact
module. Then $X$ is M-reflexive if and only if M-dom. $dimX\geqq 2$ .

PROOF. The necessity is clear, for if $X$ is M-reflexive and $S^{(J)}\rightarrow S^{(I)}\rightarrow X^{*}$

$\rightarrow 0$ is a free presentation of $x*$ in Mod-S, then applying $($ $)^{*}$ we get an exact
sequence in R-Mod: $0\rightarrow X\cong X^{**}\rightarrow M^{I}\rightarrow M^{J}$ and so M-dom. $\dim X\geqq 2$ .

To prove the sufficiency, assume that $X$ is $q_{M}$-linearly compact and that

there exists an exact sequence in R-Mod: $0\rightarrow X\rightarrow uM^{I}\rightarrow pM^{J}$ . By Proposition
2.1, Coker $\sigma_{X}\in \mathcal{F}_{M}$ and, as $x**$ is $\mathcal{F}_{M}$-torsionfree, it is clear that $\sigma_{X}$ is an
essential monomorphism. On the other hand, by Lemma 2.2 we see that there
exists a homomorphism $g:X^{**}\rightarrow M$ such that $u=g\circ\sigma_{X}$ and, as $\sigma_{X}$ is essential,
$g$ is a monomorphism. Therefore, Coker $\sigma_{X}$ is a $\mathcal{F}_{M}$-torsion module which is
isomorphic to a submodule of the M-cogenerated module Coker $u$ and so Coker
$\sigma_{X}=0$ . Thus $\sigma_{X}$ is an isomorphism and $X$ is M-reflexive. $\square $

In the case $M=R$ , the preceding result has been observed by Hoshino and
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Takashima in [5, Remark, p. 9]. In the following proposition we denote by
$gj_{M}^{\prime}$ the localizing subcategory of Mod-S cogenerated by $E(M_{S})$ .

PROPOSITION 2.4. Let $M\in R$-Mod. Then $E(RM)$ is M-cogenerated if and
only if, for every monomorphism $g$ of R-Mod, Coker $g^{*}\in \mathcal{F}_{M}^{\prime}$ .

PROOF. The proof can be easily adapted from that of [4, Theorem 1.1],

where a similar result is proved in the case $M=R$ . $\square $

We can now give our $ma\ln$ result characterizing M-reflexive modules. Recall

that a bimodule $RM_{s}$ is called faithfully balanced when $R=End(M_{S})$ and $S=$

End $(_{R}M)$ .

THEOREM 2.5. Let $RM_{s}$ be a faithfully balanced bimodule such that both
$E(RM)$ and $E(M_{S})$ are M-cogenerated, and let $X\in R$-Mod. Then $X$ is M-reflexive
if and only if it is $q_{M}$-linearly compact and M-dom. $dimX\geqq 2$ .

PROOF. Applying Proposition 2.3, the only thing that remains to be proved

is that any M-reflexive left R-module is $g_{M}$-linearly compact. Assume then
that $X$ is M-reflexive and let $\{p_{i} : X\rightarrow X_{i}\}_{I}$ be an inverse system with $X_{i}$ M-

cogenerated and Coker $p_{i}\in\xi\Gamma_{M}$ , for each $i\in I$ . Since $\sigma_{x}$ is an isomorphism, we
can identify the inverse system $\{p_{i}^{**}\}_{I}$ with the inverse system $\{\sigma_{X_{i}}\circ p_{i}\}_{I}$ and
we have:

$\varliminf\sigma_{x_{i}}\circ\lim_{\leftarrow}p_{i}=Lmp_{i}^{**}=(\lim_{\rightarrow}p_{i}^{*})^{*}$ .

Since Coker $p_{i}\in\sigma r_{M}$ , the $p_{i}^{*}$ are monomorphisms and so is $\lim_{\rightarrow}p_{i}^{*}$ . Now, since
$E(M_{S})$ is M-cogenerated and $R=End(M_{S})$ , it follows from Proposition 2.4 that
Coker $(\lim_{\leftarrow}p_{i}^{**})\in\sigma_{M}$ . But, on the other hand, as $\lim_{\leftarrow}$ is a left exact functor,

we have that $\lim_{\leftarrow}\sigma_{X_{i}}$ is a monomorphism and so Coker $(\lim_{\leftarrow}p_{i})\subseteqq Coker(\leftarrow\lim p_{i}^{**})$ .
Thus Coker $(\lim_{\leftarrow}p_{i})\in\sigma_{M}$ and so $X$ is $g_{M}$-linearly compact. $\square $

Specializing Theorem 2.5 to the case $M=R$ , we obtain the promised charac-
terization of reflexive modules over $QF- 3^{\prime}$ rings.

COROLLARY 2.6. Let $R$ be a $QF- 3^{\prime}$ ring and $X\in R$-Mod. Then $X$ is refle-
xive if and only if it is Lambek linearly compact and R-dom. $dimX\geqq 2$ .

As we have remarked after Proposition 2.3, the “if” part of Corollary 2.6
has been proved by Hoshino and Takashima in [5], assuming only that every
flnltely generated submodule of $E(R_{R})$ is torsionless. The “only if” part, how-
ever, does not hold even in the case that $R$ has this property on both sides.
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An easy example is the following. Let $R=Z$ be the ring of rational integers
and $X$ a countable direct sum of copies of $RR$ . Then it is clear that $X$ is not
Lambek linearly compact, but $X$ is reflexive by a theorem of E. Specker [14].

3. Right QF-3’ rings.

It is easy to infer from the proof of Theorem 2.5 that a right $QF- 3^{\prime}$ ring is
Lambek linearly compact on the left, and now we want to go in the opposite
direction and, similarly to what is done in [9, Theorem 5] (see also [4, Theo-
rem 2.2]) to give conditions on the left for a left $QF- 3^{\prime}$ ring to be $QF- 3^{\prime}$ (on

both sides). Since the property of being $QF- 3^{\prime}$ does not pass well from the
maximal quotient ring of $R$ to $R$ , we will assume that $R$ is, furthermore, a
left maximal quotient ring. We will also need a stronger linear compactness

condition that appeared in [3]. Assuming that $R\in R- Mod/\mathcal{L}$ , let $\sigma_{\mathcal{L}}^{f}[R]$ be the
full subcategory of $R- Mod/\mathcal{L}$ consisting of the subobjects of quotients of flnite
direct sums of copies of $R$ in this category (this is just the smallest flnitely

closed. $i$ . $e.$ , closed under subobjects, quotient objects, and flnite direct sums-
subcategory of $R- Mod/\mathcal{L}$ containing $R$ ). We will say that $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly

compact subcategory of $R- Mod/\mathcal{L}$ if, for each inverse system $\{p_{i} : X_{i}\rightarrow Y_{i}\}_{I}$ in
$R- Mod/\mathcal{L}$ with the $p_{i}$ epimorphisms and $X_{i}\in\sigma_{X}^{f}[R]$ , the morphism $\lim\leftarrow p_{i}$ is
also an epimorphism of $R- Mod/\mathcal{L}$ .

THEOREM 3.1. Let $R$ be a left maximal quotient ring. Then the following
statements hold:

i) If $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory of $R- Mod/\mathcal{L}$ , then $R$ is right
$QF- 3^{\prime}$ if and only if every fmitely generated submodule of $E(R_{R})$ is torsionless.

ii) If every finitely generated submodule of $E(RR)$ is torsionless, then $R$ is
right $QF- 3^{\prime}$ if and only if $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory of $R- Mod/\mathcal{L}$ .

PROOF. i) Assume that each flnitely generated submodule of $E(RR)$ is tor-
sionless. Then, using Proposition 2.4 and [4, Theorem 1.1], it is enough to
prove that if $j:X\rightarrow Y$ is a monomorphism in Mod-R, then Coker $j^{*}\in \mathcal{L}$ , assum-
ing that the analogous property holds for monomorphisms in Mod-R that have
flnitely generated codomain. Thus, let $j:X\rightarrow Y$ be a monomorphism of Mod-R
and write $Y=\lim_{\rightarrow}Y_{i}$ , where $\{Y_{i}\}_{I}$ is the direct system of all the flnitely gen-
erated submodules of $Y$ . For each $i\in I$, set $X_{i}$ $:=X\cap Y_{i}$ , with inclusions
$j_{i}$ : $X_{i}\rightarrow Y_{i}$ . Using AB5 we see that $j=\lim_{\rightarrow}j_{i}$ and, taking R-duals, that $j^{*}=$

$(\lim_{\rightarrow}j_{i})^{*}=\lim_{\leftarrow}j_{i}^{*}$ . Since the $Y_{i}$ are flnitely generated right R-modules, we have
that Coker $j_{i}^{*}\in \mathcal{L}$ for each $i\in I$ and, since $R$ is a maximal quotient ring, the
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$X_{i}^{*}$ and $Y_{i}^{*}$ are objects of $R- Mod/\mathcal{L}$ , so that we have an inverse system of
epimorphisms $j_{i}^{*}$ : $Y_{i}^{*}\rightarrow X_{i}^{*}$ in $R- Mod/\mathcal{L}$ , with $Y_{i}^{*}\in\sigma_{\mathcal{L}}^{f}[R]$ . Now, as $\sigma_{\mathcal{L}}^{f}[R]$ is a
linearly compact subcategory of $R- Mod/\mathcal{L}$ , we see that $j^{*}=\lim_{\leftarrow}j_{i}^{*}$ is an epimor-
phism of $R- Mod/\mathcal{L}$ and so Coker $1^{*}\in \mathcal{L}$ , completing the proof of i).

ii) Assume flrst that every flnitely generated submodule of $E(RR)$ is tor-
sionless and $R$ is right $QF- 3^{\prime}$ . Since $R$ is, furthermore, a left maximal quotient
ring, it follows from [4, Theorem 1.5] that every object of $\sigma_{1}^{f}[R]$ is reflexive.
Thus if we have an inverse system of epimorphisms $\{p_{i} : X\rightarrow X_{i}\}_{I}$ in $R- Mod/\mathcal{L}$

with $X_{i}\in\sigma_{\mathcal{L}}^{f}[R]$ , we may identify each $p_{i}$ with $p_{i}^{**}$ and we have $\lim_{\leftarrow}p_{i}=$

$(\lim_{\rightarrow}p_{i}^{*})^{*}$ . Since Coker $p_{i}\in \mathcal{L}$ , each $\rho_{i}^{*}$ is a monomorphism in Mod-R, and hence
so is $\lim_{\rightarrow}p_{i}^{*}$ . Now, as $R$ is right $QF- 3^{\prime}$ , we have by Proposition 2.4 Coker
$(\lim_{\leftarrow}p_{i})\in \mathcal{L}$ and so $\sigma_{\mathcal{L}}^{f}[R]$ is linearly compact. Finally, assume that every
flnitely generated submodule of $E(RR)$ is torsionless and $\sigma_{\mathcal{L}}^{f}[R]$ is linearly com-
pact. Then $R$ is a linearly compact object of $R- Mod/\mathcal{L}$ and by [4, Theorem
2.2], we have that every flnitely generated submodule of $E(R_{R})$ is torsionless,

so that, applying i) we see that $R$ is right $QF- 3^{\prime}$ . $\square $

Recall that a right R-module $P_{R}$ is called dominant if it is a flnitely gen-
erated faithful projective module such that if $T=End(P_{R})$ , then ${}_{\tau}P$ cogenerates
all the simple left T-modules [7]. Then, assuming again that $R$ is a left maxi-
mal quotient ring, the existence of a dominant right module is equivalent to
$R- Mod/\mathcal{L}$ being a module category by [7]. As it is well known, the left
minimal faithful module over a left QF-3 rlng is dominant [13] and so we may
use the preceding theorem to characterize QF-3 maximal quotient rings. This
is an important class of rings for, according to the Ringel-Tachikawa theorem
[12], they correspond to Morita dualities. We next show that QF-3 maximal
quotient rings can be characterized by conditions on the left that are similar to,

but weaker than, those given by Masaike [9, Theorem 5] for QF-3 rings that
are not necessarily maximal quotient rings.

COROLLARY 3.2. Let $R$ be a left maximal quotient ring. Then $R$ is QF-3

if and only if the following conditions hold:
i) $R$ is left $QF- 3^{\prime}$

ii) $R$ is left Lambek linearly compact
iii) $R- Mod/\mathcal{L}$ is a module category (equivalently, $R$ has a dominant right

module).

PROOF. It is clear from what we have already said that if $R$ is QF-3, then
all three conditions above hold. Conversely, if conditions ii) and iii) hold, then
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it follows from [6, Theorem 7.1] that $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory
of R-Mod/X and then, if i) also holds, we see from Theorem 3.1 that $R$ is a
$QF- 3^{\prime}$ ring. Now, using [2, Corollary 6], we see that $R$ is a QF-3 ring. $\square $

REMARKS. i) The hypothesis that $R$ is a left maximal quotient ring cannot

be dropped from Theorem 3.1 and Corollary 3.2. Indeed, the ring $R=\left(\begin{array}{ll}Z & Q\\0 & Q\end{array}\right)$

satisfles i), ii) and iii) of Corollary 3.2 but is neither left QF-3 nor right $QF- 3^{\prime}$ .
ii) Assume that $R$ is a left maximal quotient ring which is linearly com-

pact as an object of $R- Mod/\mathcal{L}$ . Then, a sufficient condition for $\sigma_{\mathcal{L}}^{f}[R]$ to be
a linearly compact subcategory of $R- Mod/\mathcal{L}$ is that $R- Mod/\mathcal{L}$ has a projective
generator, as can be seen in the proof of [3, Corollary 7]. Thus an argument
similar to the one used in the proof of Corollary 3.2 gives that if $R$ is a left
maximal quotient ring such that every flnitely generated submodule of $E(RR)$

is torsionless, $R- Mod/\mathcal{L}$ has a projective generator, and $R$ is Lambek linearly
compact, then $R$ is right $QF- 3^{\prime}$ .
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