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1. Introduction

In this paper we prove the asymptotic completeness for the following 1-
particle Schrodinger operator with a constant magnetic field $B\in R^{3},$ $B\neq 0$ :

$H=H_{0}+V=\frac{1}{2}(p-\frac{1}{2}B\times r)^{2}+V(r)$ ,

where $r\in R^{3}$ and $p=-i\nabla_{r}$ . The real-valued smooth function $V(r)$ is a long-

range potential, that is, we impose the following decay condition on $V(r)$ :

(V) As $|r|\rightarrow\infty$ ,

(1.1) $|V(r)|+|r_{||}\partial_{||}V(r)|=o(1)$ .

Moreover, for some $\delta_{0}>0$ ,

(1.2) $|\partial_{\perp}V(r)|\leqq C\langle r_{N}\rangle^{-1-\delta_{0}}$ ,

(1.3) $|\partial_{||}^{\iota}V(r)|\leqq C_{t}\langle r_{||}\rangle^{-\iota-\delta_{0}}$ for any integer $l\geqq 0$ .

Here $r_{||}=r\cdot B/|B|$ , and $r_{\perp}$ denotes the component of $r$ perpendicular to $B$ ;
$\partial_{\perp}$ and $\partial_{||}$ denote the partial differentials with respect to the variables $r_{\perp}$ and
$r_{||}$ , respectively. We use $\langle r\rangle$ for $(1+|r|^{2})^{1/2}$ throughout this paper. As will be
easily seen from below, $V(r)$ is allowed to include short-range parts with some
local singularities.

In the absence of magnetic fields, scattering theory is quite well understood
for 2-body Schrodinger operators with a large class of long-range potentials
and, recently, the long-range scattering for constant electric fields have been
intensively investigated by several authors (cf. [5, 8, 9, 16]). On the other
hand, the asymptotic completeness for long-range Schrodinger operators with
constant magnetic fields was first proved by Avron-Herbst-Simon in [1]; they
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treated only azimuthally symmetric potentials, though their results contains the
case for potentials unbounded along the directions prependicular to the magnetic
fields. They employed a general argument of Kuroda [11] (see also [4]) to
reduce the completeness to the existence of modified wave operators. After we
had completed this work, we learned the work of Laba [13]. Her restriction
on the long-range potential $V_{L}$ : $|\partial^{\alpha}V_{L}(r)|\leqq C_{a}\langle r\rangle^{-|a|-\nu_{0}},$ $\nu_{0}>0$ , is stronger than
ours and the approach is based on the estimates of the growth of the angular
momentum $B\times r\cdot p$ , that is, on the fact that scattering states do not essentially
propagate in the space-time region $|r_{\perp}|\geqq|t|^{\nu}$ with some $\nu<\nu_{0}$ .

We shall now state our main result in this paper. For simplicity we write
$z=r_{||}$ and $p_{z}=-i\partial_{||}$ . Let

(1.4) $W(z)=V(r)|_{r\perp=0}$ ,

and let $\chi(s)\in C^{\infty}(R^{1})$ such that $0\leqq\chi\leqq 1$ , $\chi(s)=1$ if $|s|\geqq 2$ , and $=0$ if $|s|\leqq 1$ .
Define

$\chi(t, z)=x(\frac{\log\langle t\rangle}{\langle t\rangle}z)$ , $W(t, z)=x(t, z)W(z)$ .

Then the smooth function $W(t, z)$ satisfies

$|\partial_{t}^{l}\partial_{z}^{k}W(t, z)|\leqq C_{tk}\langle(t, z)\rangle^{-t-k-\delta_{1}}$ ,

for some positive $\delta_{1}<\delta_{0}$ . Let $S(t, \xi)$ be a solution to the Hamilton-Jacobi equa-
tion:

$\partial_{\frac{S}{\partial t}(t}\xi)=\frac{1}{2}\xi^{2}+W(t,$ $\frac{\partial S}{\partial\xi}(t, \xi))$ , $\xi\in R^{1}$

(see [10, 12]). Let $H_{0\perp}=H_{0}-(1/2)p_{z}^{2}$ .

THEOREM. Assume that the condition (V) is obeyed. Then, the modified
wave operators $\Omega_{\pm}$ defined by

$\Omega_{\pm}=s-\lim_{t\rightarrow\pm\infty}e^{itH}e^{-iS(t.p_{z})-itH_{0\perp}}$

exist and are complete.

The present work is new in the sense that all the results for the l-particle
operator obtained in this paper remain true for a 2-particle system $H(k)$ with
the center-of-mass removed (see [2]):

$H(k)=H_{0}(k)+V(r-\beta)$

$=\frac{1}{2\mu}[p-\frac{m_{2}-m_{1}}{2(m_{1}+m_{2})}B\times r]^{2}+\frac{1}{2M}|B\times r|^{2}+\frac{1}{2M}k_{||}^{2}+V(r-\beta)$ ,
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where $m_{1}$ and $m_{2}$ stand for the masses of the first and the second particle, re-
spectively, $\mu$ the reduced mass, and $M$ the total mass; we have denoted by $r$

the relative coordinate of the two particles and by $p$ the conjugate momentum.
The parameter $k\in R^{3}$ is the total pseudomomentum and $\beta=k\times B/|B|^{2}$ . The
Hamiltonian $H(k)$ is derived under the condition of the total charge zero (see

also $[3, 7]$ ).

Note also that this paper covers such a potential that is not azimuthally
symmetric and slowly decays as $|r|\rightarrow\infty$ along the direction perpendicular to $B$ .
For example, if $B=(O, 0, B)$ and $r=(x, y, z)$ , then a function

$V(r)=[\log\{(1+x^{2}+z^{2})(1+y^{2}+z^{2})\}]^{-1}\langle z\rangle^{-\delta_{0}}$ , $\delta_{0}>0$

satisfies the condition (V) and the property mentioned above.
Our strategy is similar to that of [13] and is to see the asymptotic com-

pleteness from the point of view of propagation and non-propagation estimates.
We follow the idea of Sigal [14] for propagation estimates. We do not use,
anywhere, the exponential decay property of the eigenfunctions for $H_{0\perp};$ both
in the proof of the existence of wave opeartors and in that of inverse wave
operators, we use the non-propagation estimate (see Theorem 2.4 and the remark
following it) that is our essential result. Our non-propagation estimate is much
simpler than that of [13] and, in the case of a l-particle problem, is based on
the mechanics of classical particles and the commuativity of two operators, the
pseudomomentum and the free Hamiltonian:

$[p+\frac{1}{2}B\times r,$ $(p-\frac{1}{2}B\times r)^{2}]=0$ .

In the case of a two-particle problem, the estimate is a direct consequence of
the property of the domain $D(H(k))$ .

2. Nonpropagation estimates

For simplicity of the arguments below, we may restrict ourselves to the
magnetic field $B=(0,0, B),$ $B>0$ . Then we write $r=(r_{\perp}, z)=(x, y, z),$ $p=$

$(p_{J_{\sim}}, p_{z})=(p_{x}, p_{y}, p_{z})$ , and

$H_{0}=H_{0\perp}\otimes Id+Id\otimes H_{0||}$ on $L^{2}(R_{x.y}^{2})\otimes L^{2}(R_{z}^{1})$ ,

$H_{0||}=\frac{1}{2}p_{z}^{2}$ ,

$H_{0\perp}=\frac{1}{2}(p_{\perp}-\frac{1}{2}B\times r)^{2}$



372 Hirokazu IWASHITA

$=-\frac{1}{2}\Delta_{x.y}+\frac{B^{2}}{8}(x^{2}+y^{2})-\frac{B}{2}(-yp_{x}+xp_{y})$ .

Let $\xi\Gamma_{0}$ be the set of pure point spectrum of $H_{0\perp}$ given by

$\xi\Gamma_{0}=\{\frac{B}{2}(2n+1)|n=0,1,2,$ $\cdots\}$ .

Define $A=(1/2)(z\cdot p_{z}+p_{z}\cdot z)$ and

$d(\lambda)=\left\{\begin{array}{l}dist(\lambda,(-\infty,\lambda]\cap \mathcal{F}_{0}) if\lambda\geqq\frac{B}{2},\\0 otherwise.\end{array}\right.$

Then, under the conditions (1.1) and (1.3) we have (cf. [7])

LEMMA 2.1. (1) For every $\epsilon>0$ and $\lambda\in R^{1}$ , there exist an open interval $I$,

containing $\lambda$ , and a compact operator $K$ such that the Mourre estimate holds:

(2.1) $E_{I}(H)i[H, A]E_{I}(H)\geqq 2(d(\lambda)-\epsilon)E_{I}(H)+K$ ,

where $E_{l}(H)$ is the spectral projection for $H$ associated with interval $I$.
(2) The set $\sigma_{p}(H)$ of point spectrum of $H$ is discrete in $R^{1}\backslash g_{0}$ .
(3) Define $\mathcal{F}=\sigma_{p}(H)\cup \mathcal{F}_{0}$ . Let I be a compact interval in $ R^{1}\backslash f\Gamma$ and for

any integer $n>0$, let $s>n-1/2$ . Then there exists a constant $C>0$ such that

$\sup_{0<\kappa\leq 1.\lambda\in I}$

$\Vert\langle z\rangle^{-*}\{(H-(\lambda\pm i\kappa))^{-1}\}^{n}\langle z\rangle^{-\iota}\Vert\leqq C$ .

A direct consequence of Lemma 2.1 is

LEMMA 2.2. Let $f(\lambda)\in C_{0}^{\infty}(R^{1}\backslash f)$ . Then, for any $s,$
$s^{\prime}$ with $0<s^{\prime}<s$ , there

exists $C>0$ such that

(2.2) $\Vert\langle z\rangle^{-s}e^{-itH}f(H)\langle z\rangle^{-s}\Vert\leqq C\langle t\rangle^{-\theta^{\prime}}$

With the Mourre estimate (2.1) in mind we can apply the argument of
Skibsted [15, Exs. 1, 2] to obtain the following minimal velocity estimates.

LEMMA 2.3. Let $\lambda>B/2$ and $\lambda\not\in\xi\Gamma$ . Let I be a compact interval containing
$\lambda$ such that $I\cap g=empty$ . Then there exists a constant $m>0$ such that for any
$f\in C^{\infty}(R^{1})$ supported in I and for any $s>s^{\prime}>0$ ,

(2.3) $F(\frac{z^{2}}{t^{2}}\leqq m)e^{-itH}f(H)\langle z\rangle^{-\epsilon}=O(t^{-\epsilon^{\prime}})$ as $ t\rightarrow\infty$ ,

where $F(S)$ denotes the projection onto the set $S$ .

THEOREM 2.4. Suppose that the condition (V) is obeyed. For any compact
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interval $I\subset R^{1}\backslash \mathcal{F}$ , let $\phi=E_{I}(H)\phi\in L^{2}(R^{3})$ and $\phi\in D(|p|)\cap D(|r|^{1+\epsilon}),$ $\epsilon>0$ . Then
there exists a positive constant $C_{\phi}$ , independent of $t$ such that for any $t\in R^{1}$ ,

(2.4) $\Vert r_{\perp}e^{-itH}\phi\Vert\leqq C_{\phi}$ .

PROOF. We first note that

(2.5) $[H_{0},$ $p_{x}-\frac{B}{2}y]=[H_{0},$ $p_{y}+\frac{B}{2}x]=0$ .

We will only show that $\Vert ye^{-itH}\phi\Vert$ is bounded in $t\geqq 0$ . The case $t<0$ and the
boundedness of $\Vert xe^{-itH}\phi\Vert$ can be verified in a similar manner. We set $\phi_{l}=$

$ e^{-itH}\phi$ and $I(t)=\Vert(p_{x}-(B/2)y)\phi_{t}\Vert^{2}$ . Since $\Vert H_{0}\phi_{t}\Vert$ is bounded in $t$ , we see that
$\Vert(p_{x}+(B/2)y)\phi_{l}\Vert$ is also bounded. So, to prove the boundedness of $\Vert y\phi_{l}\Vert$ , it
suffices to show that $I(t)$ is bounded $\ln l$ .

We use (2.5) to compute:

$\frac{d}{dt}I(t)=2{\rm Re}(i[H,$ $p_{x}-\frac{B}{2}y]\phi_{l},$ $(p_{x}-\frac{B}{2}y)\phi_{t})$

$=2{\rm Re}(i[V, p_{x}]\phi_{t},$ $(p_{x}-\frac{B}{2}y)\phi_{t})$

$=2{\rm Re}(- V_{x}\phi_{t},(p_{x^{-\frac{B}{2}y}})\phi_{t})$ ,

where we have put $V_{x}=\partial_{x}V$ . The Schwartz inequality implies that

$\frac{d}{dt}I(t)\leqq\Vert V_{x}\phi_{t}\Vert+\Vert V_{x}\phi_{l}\Vert I(t)$ .

We can apply Gronwall’s inequality to get

$I(t)\leqq\exp(\int_{0}^{t}\Vert V_{x}\phi_{s}\Vert ds)(I(0)+\int_{0}^{t}\Vert V_{x}\phi_{\epsilon}\Vert ds)$ .

The propagation estimate (2.2) is combined with the condition (1.2) and the as-
sumption $\phi\in D(|r|^{1+\epsilon})$ to imply that $\Vert V_{x}\phi_{l}\Vert=O(t^{-1-\delta})$ as $ t\rightarrow\infty$ for some $\delta>0$ .
Hence we obtain with some positive constants $C_{\phi}$ and $C_{\phi}^{\prime}$ ,

$I(t)\leqq C_{\phi}(\Vert(p_{x}-\frac{B}{2}y)\phi\Vert^{2}+C_{\phi}^{\prime})$ ,

which completes the proof.

REMARK. (1) In the case of two-particle problems, the estimate (2.4) is a
direct consequence of the fact that $|B\times r|^{2}(H(k)+i)^{-1}$ is bounded.

(2) We consider a classical free one-particle Hamiltonian: $h_{0}(r, \xi)=$

$(1/2)(\xi-(1/2)B\times r)^{2}$ . Then the Hamilton flow $(r(t), \xi(t))$ for $h_{0}$ has the property:
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$\xi(t)_{\perp}+(1/2)B\times r(t)=constant$ . This is the motivation for introducing $I(t)$ in the
proof of the theorem.

3. Asymptotic completeness

To make our contribution clear we split the proof of Theorem 1.1 into two

steps by introducing the following intermediate Hamiltonian:

$H_{0W}=H_{0}+W$ ,

where the function $W=W(z)$ is given by (1.4). We note that the assertions of
Lemma 2.3 and Theorem 2.4 also hold for $H_{0W}$ if $\sigma r$ is replaced by $\sigma_{W}:=$

$\sigma_{p}(H_{0W})\cup \mathcal{F}_{0}$ .
As the first step, we obtain

THEOREM 3.1. The following inverse wave operators exist:

$(3.2_{\pm})$
$s-\lim_{t\rightarrow\pm\infty}e^{itH_{0W}}e^{-itH}(I-E_{p}(H))$ ,

where $E,(H)$ denotes the projection onto the point spectral subspace of $H$.

PROOF. We shal prove the assertion only for $+$ case. Let $I$ be any com-
pact interval in $R^{1}\backslash \sigma r$ . If we show that the limit $(3.2_{+})$ exists for any $\phi\in L^{2}(R^{3})$

such that $ E_{I}(H)\phi=\phi$ and $\phi\in D(|\rho|)\cap D(|r|^{1+\epsilon}),$ $\epsilon>0$, then we can obtain the
assertion by the density argument. With $V(t, r)=x(t, z)V(r)$ , we compute the
derivative:

(3.3) $\frac{d}{dt}e^{itH_{0W}}e^{-itH}\phi=ie^{itH_{0W}}(H_{0W}-H)e^{-itH}\phi$

$=ie^{itH_{0W}}(W(z)-W(t, z))e^{itH}\phi+ie^{itH_{0W}}(W(t, z)-V(t, r))e^{-itH}\phi$

$+ie^{itH_{0W}}(V(t, r)-V(r))e^{-itH}\phi$

$=T_{1}(t)+T_{2}(t)+T_{2}(t)$ .

Since $(\log\langle t\rangle)^{-1}=0(1)$ as $ t\rightarrow\infty$ , we can use the minimal velocity estimate (2.3)

to obtain
$(W(z)-W(t, z))e^{-itH}\langle z\rangle^{-1-\epsilon}=O(t^{-1-\delta})$ ,

$(V(t, r)-V(r))e^{-itH}\langle z\rangle^{-1-\epsilon}=O(t^{-1-\delta})$

for some $\delta>0$, and hence

(3.4) $\Vert T_{1}(t)\Vert=O(t^{-1-\delta})$ and $\Vert T_{3}(t)\Vert=O(t^{-1-\delta})$ .
We examine $T_{2}(t)$ . Note that
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$W(t, z)-V(t, r)=V(t, 0, z)-V(l, r_{\perp}, z)$

$=\int_{0}^{1}\nabla_{\perp}V(l, \theta r_{\perp}, z)d\theta\cdot r_{\perp}$ ,

and that $\nabla_{\perp}V(t, \theta r_{\perp}, z)=O(t^{-1-\delta_{1}})$ by condition (1.2). Then we can apply Theo-
rem 2.4 to get

I $(W(t, z)-V(t, r))e^{-itH}\phi\Vert\leqq C\langle t\rangle^{-1-\delta_{1}}\Vert r_{\perp}e^{-ilH}\phi\Vert\leqq C^{\prime}\langle t\rangle^{-1-\delta_{1}}$ ,

and conclude that $\Vert T_{2}(t)\Vert=O(t^{-1-\delta_{1}})$ . Combining this with (3.4) implles that (3.3)

is integrable over $[0, \infty$ ), and therefore the limit $(3.2_{+})$ exists. Q.E.D.

The same argument as in the proof of Theorem 3.1 yields

THEOREM 3.2. The wave operators

$s-\lim_{t\rightarrow\pm\infty}e^{itH}e^{-itH_{0W}}(I-E_{p}(H_{0W}))$

exist.

Thus it remains to prove

THEOREM 3.3. The modified wave operators

(3.5) $s-\lim_{t\rightarrow\pm\infty}e^{i}e^{-iSp_{Z})}tH_{0W(t,-itH_{0\perp}}$

and the inverse operators

(3.6) $s-\lim_{t\rightarrow\pm\infty}e^{iSt,+itH_{0\perp}}(p_{z})e^{-itH_{0W}}(I-E_{p}(H_{0W}))$ ,

exist.

PROOF. Since $H_{0W}$ has a form of direct sum

$H_{0W}=H_{0\perp}\otimes Id+Id\otimes(H_{0||}+W)$ on $L^{2}(R_{x.y}^{2})\otimes L^{2}(R_{z}^{1})$ ,

the existence of limit (3.5) can be reduced to the existence of modified were
operators for l-dimensional Schrodinger operator $H_{0||}+W$ and it is a direct con-
sequence of Hormander [6]. The existence of limit (3.6) can be verified similary

as in Sigal [14], by using sharp propagation estimates for $e^{-itH_{0W}}$ and we omit
it. Q. E. D.

Now the assertion of Theorem 1.1 can be verified by combining Theorems
3.1-3.3.
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