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Abstract. We prove characterization and resolution theorems for
compact spaces and metrizable spaces with respect to cohomological
dimension modulo p.

1. Introduction and preliminary

In the last ten years, cohomological dimension theory has striking develop-
ment. A motivation of the development is surely the Edwards-Walsh theorem,

[24], as follows:

1.1. THEOREM. Every compact metric space X of cohomological dimension
c-dimz X<n (integer coefficient) is the image of a cell-like map f: Z—X from a
compact metric space Z of dim Z<n.

Not only the result but also techniques of the proof gave an important in-
fluence to the development. After them, L. R. Rubin and P.]. Schapiro [22]
showed the noncompact version of the Edwards-Walsh theorem and S. Mardesi¢
and L. R. Rubin gave the nonmetrizable version. On the other hand, A.N.
Dranishnikov, and [6], characterized cohomological dimension with respect
to Z, by the Edwards-Walsh’s way and showed the Edwards-Walsh-like theorem :

1.2. THEOREM. Every compact metric space X of cohomological dimension
with respect to Z,, c-dimZngn, is the image of a map f:Z—X from a com-
pact metric space Z of dim Z<n whose fibers are acyclic modulo p.
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Motivated above results and Mardesi¢’s characterization of c-dimz X<n, we
will show a characterization of ¢-dimz, X<n for both nonmetrizable and non-
compact cases. Using the characterization, we will give the existence of an
acyclic resolution modulo p. In fact, our characterization suggests a dimension-
like function, called approximable dimension, and can obtain the following more
general results.

1.3. THEOREM. Let X be a compact Hausdorff space or a metrizable space
having approximable dimension with respect to an arbitrary coefficients G<n.
Then there exists a proper map f: Z—X from a compact Hausdorff space or a
metrizable space Z, respectively, of dim Z<n and w(Z)<w(X) onto X such that
H*(f~Y(x); G)=0 for all xX.

As its consequence, we have both nonmetrizable and noncompact versions
of Theorems 1.1 and 1.2. We may call such a mapping f an acyclic resolution
of X (with respect to G), specially, in the case of G=Z,, an acyclic resolution
of X modulo p. Finally we will note that there exists a compact metric space
X of ¢-dimg X=1 which does not admit an acyclic resolution with respect to Q.
Thereby we can see that approximable dimension is different from cohomo-
logical dimension and Theorem 1.3 is a good property obtained from approxi-
mable dimension.

In this paper, we mean the definition of cohomological dimension as follows :
the cohomological dimension of a space X with respect to a coefficient group G 1is
less than and equal to n, denoted by c¢-dimg X<n, provided that every map
f:A—K(G, n) of a closed subset A of X into an Eilenberg-MacLane space
K(G, n) of typz (G, n) admits a continuous extension over X (c.f. [10]). The
dimension of a space X means the covering dimension of X and denotes by
dim X. Z is the additive group of all integers and for each prime number p,
Z, is the cyclic group of order p.

By a polyhedron we mean the space |K| of a simplicial complex K with
the Whitehead topology. In section 6, the topology of |K| may be generated
by a uniformity [Appendix, 22].

If v is a vertex of a simplicial complex K, let st(v, K) be the open star of
v in |K| and St(v, K) be the closed star of v in |K|. If AS|K|, then we de-
fine st(A, K)=U{Inte:0€K, cNA#0} and §t(4, K)=\U{o:0€K, aNA+0}.
The symbol Sd; K means the j-th barycentric subdivision of K. We define the
symbols &; and S; for a simplicial complex K; with an index to be the cover
{stv, K,): veK{} and the cover {5t(v, K;): veK{»}, respectively.
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We use the symbol < both to mean ‘refine’ for covers and ‘subdivides’ for
subdivisions of a complex. The symbol <* is used for star refines.
Let U be an open cover of a space X. Then for Ue,

st(U, U)=st'(U, U)=U{U" : U U, UNU+0},
st/*}U, U)=U{U’: U'eU, UnNnst/(U, U)+0}.

By st/(U) we mean the cover {st/(U, U):UcsU}. If f and g are maps from
a space Z to a space X, (f, 2 <U means that for each z&Z, there exists
UevU with f(z), g(z)€U. If X is a metric space with a metric d, we write
(f, g@)<¢ instead of (f, g)<U., where U, is the cover whose consists of all
¢/2-neighborhoods in X. By the symbol (V) we mean the nerve of the cover
U. For covers U, <V, the symbol WA is used for the following cover
{UANV, U,V .:UevU, Vec/}.

2. Edwards-Walsh complexes

In the latter section, we need Edwards-Walsh complexes for arbitrary sim-
plicial complexes.

2.1. LEMMA. Let |L| be a simplicial complex with the Whitehead topology,
p be a prime number and n be a natural number. Then there exists a combina-
torial map (i.e. w7 (L") is a subcomplex of EWZP(L, n) if L’ is a subcomplex of
L) ¢r: EWz (L, n)—|L| such that
(i) for e=L with dimo=n+1, ¢;'(e)eK(Di°Z,, n),
where ry=rank w,(¢™),
(ii) for e=L with dimo=<n, ¢i'(c)=0,
(iii) EWZP(L, n) is a CW-complex,
(iv) ¢z'(o) is a subcomplex of EWZP(L, n) with respect to the triangulation
in (iii),
V) ¢z (e)® is a finite CW-complex for k=n,
(vi) for any subcomplex L’ of L and map f:|L'|—K(Z,, n), there exists

an extension of fedrlyzturr .

PrROOF. We shall construct a sequence K,(L)SK,(L)S --- of CW-complexes
as follows. To produce K,(L), we shall construct a sequence L(1, 0)S L1, 1)S---
of CW-complexes as follows. If ¢=L and dime<n, let K,(¢)=0¢ and put
L1, O)=U{K(o): 0L, dimo<n}.

We shall produce L(1, 1) with L(1, 0)S L(1, 1). Suppose ¢ L with dim o=
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n+1. Let K. (o) be a complex obtained from do¢ by attaching an (n+1)-cell by
a map of degree p. Hence we have

K,(¢)=0de\J, B™*}, where a:0B"*! — do is a map of degree p.

Put L1, D)=U{K\((o): 6L, dimo<n+1}.
Next we shall construct L(1, 2) with L(1, 1)©L(, 2). Suppose g L with
dime=n+2. Let

U{K(7): 750} n=2
KI(O‘)E{

A(U{K (1) 7=0}) n=1,

where for a complex K, A(K) means a complex obtained by attaching finite
collection of 2-cells abelizing the fundamental group =,(K). Define L(1, 2) to
be \U{K.(¢): 6L, dimae<n+2}. This process continues in an obvious way
producing L(1, 0)S L, 1)< ---. Let K,(L)be \U{L(, 7):0=i<o}. Then K,(L)
has the natural structure of CW-complex in such a way that each L(1,7) is a
subcomplex as is each K,(¢). Further, it is clear that K,(¢)N\K,(r)=K,(¢N\7)
for o, r€ L and n(K,(g))=0 (¢<n), Pi*Z, (¢g=n), where r,=rank n,(¢'™).

To produce K,(L) we are going to attach (n+2)-cells to K,(L). To this
end, we shall construct a sequence L(2, 0)SL(2, 1)S --- of CW-complexes as
follows. If =L and dimo<n, let K,(6)=0¢ and put L2, 0)=\U{K.(0): 6L,
dime<n}. If 6L and dimoe=n+1, then x=,,,(K (o)) is a finitely generated
abelian group. Kill this generating set by attaching finitely many (n+2)-cells
to form K,(e). Let L2, )=\U{K,(0o): 0L, dime=<n-+1}. Next let us pro-
duce L(2,2). Suppose =L and dimo=n+2. Let Kydo)=\U{Kxr): 750}V
Ki\(g). Then it is clear that m,(K.@a))=0 (¢<n), §i°Z, (¢g=n), where r,=
rank 7,(¢‘®?) and 7,,,(K,(0¢)) is a finitely generated abelian group. Kill this
generating set by attaching finitely many (n-+2)-cells to form Ky(o). Let L(2, 2)
=\{K.(0): 0L, dimo<n+2}. This process continues in an obvious way
producing L(2, 0)S L(2, 1)< ---. Let Ky(L) be \U{L(2, #): 0=:<oo}. Then K,(L)
has the natural structure of CW-complex in such a way that each L(2,7) is a
subcomplex as is each K,(g). Further, it is clear that Ky,(o)NKy(t)=K:(oN1)
for ¢, €L and n(Ky(0))=0 (¢g<n or ¢g=n+1), Pi°Z, (¢g=n), where r,=
rank 7 ,(g‘™).

The construction of K, (L), K,(L) with K,(LY=SK,(L) given above indicates
how one may recursively constructed a sequence K,(L)SK,(L)S ---. For each
gL, let K(6)=\U{Ki(e):ieN}. Then by induction of the dimension of the
skeleton we can construct a combinatorial map ¢, : EW, p(L, n)—|L| with the
properties (i)-(vi) as
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(1) g (L™)=L"™ and ¢ L =1id 1>\,

(2) ¢z'(o) is the mapping cylinder M, of the embedding j,: ¢7'(00) K(o),
(3) ¢rlu, is the cone of ¢rly7t@e such that ¢ (K(0)) is the barycenter of .
Hence for each simplex ¢ of dimoe=n-+1, we have the property :

4) if n=2,

¢Zl(0)(n+1):0‘(n)x[0, ljual B7H1Uaz Uar,, Br+t |

where for each (n+1)-dimensional face t; of ¢, a;: dB"**—adr; X {1} is a map of
degree p,
(5) if n=1,

P (a)® =0 X[0, 11Ua, B Uay, *** Ua,, B Us, B*Usp, - Us, B*,

where for each 2-dimensional face z; of o, a;: 0B?*—dz;X {1} is a map
of degree p and the collection {[8,], ---, [B+,]} generates the com-
mutator subgroup of (¢ X [0, 11U, B*Uqa, Uar, B?). O

3. Characterizations for compact spaces

3.1. DEFINITION. Let G be an abelian group, n be a natural number and
¢ be a positive number. A map ¢: Q— P between compact polyhedra is (G, n, ¢)-
approximable provided that there exists a triangulation L of P such that for
any triangulation M of Q there is a map ¢’ : | M™ |—|L‘™| satisfying the fol-
lowing conditions :

1 ((ﬁ’, Gbl i) =€,

(ii) for any map a:|L‘™|—K(G, n), there exists a map B8: Q—K(G, n)

such that By =a-¢’.
Here the map ¢’ is called a (G, n, &)-approximation of ¢.

Note that it suffices for the condition (ii) to see that the map a-¢’ admits
a continuous extension over |M™*V |,

3.2. DEFINITION. A map f:X—P from a compact space to a compact poly-
hedron is (G, n)-cohomological provided that for every positive number ¢>0,
there exists a compact polyhedron Q@ and maps ¢: X—Q, ¢: Q—P such that

1) (Pep, NH=<e,

(ii) ¢ is (G, n, e)-approximable.

3.3. THEOREM. Let X be a compact space, p be a prime number and n be
a natural number. Then X has cohomological dimension with respect to Z, of
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less than and equal to n if and only if every map f of X to a compact polyhedron
P is (Z,, n)-cohomological.

PROOF. We establish the reverse implication first. lLet A be a closed subset
of X and let h: A—K(Z, n) be a map. Because of the compactness of A,
there is a compact subpolyhedron K of K(Z,, n) such that h(A)S K. Let P be
the cone over K. Then there exists a continuous extension f: X—P of h, and
there is a closed polyhedral neighborhood N of K and a retraction »: N—K.
Let us take a positive number >0 such that

(1) O(K)={xeP:dp(x, K)<0} &N,

(2) any two d-near maps of a space into N are homotopic in N,
where dp is a metric for P. By the condition, there exists a polyhedron @Q
and maps ¢: X—Q, ¢: Q—P such that

(3) (Peo, /I=4/3,

4) ¢ is (Z,, n, /3)-approximable.
By (1) and (3), we have ¢{(¢(A)S0s5(h(A))SN. Hence, there is a closed poly-
hedral neighborhood G of ¢(A) in Q such that

®) HG)SO05/5(f(ANEN .

Let take a triangulation M of Q such that G is the carrier of a subcomplex M,
of M. Then, by (4), there exists a triangulation L of P and a map ¢': | M|
—| L™ | satisfying the following conditions:
6) (¢, dlinwn)<0/3,
(7) for any mapa: |L™|—K(Z,, n)and every (n+1)-simplex ¢ of M, there
exists a continuous extension a,: d—K(Z,, n) of a-¢’|s.
Then by (6), (5) and (2), we see that ¢'(|M\NM™ NS O0s,(p(I1M{™[)EN, and

@) O oo =Pl A in N.

Since ¢ x,~xn> has a continuous extension ¢|s: G—N, by (8), we have a con-
tinuous extension ¢*: G\U|M™ |->NU|L™|ZP of ¢’ such that

9) $*lg=¢ls in N.

Considering » as a map into K(Z,, n), take a continuous extension »*: N\U| L™ |
—K(Z,, n) of r. For each (n+1)-simplex ¢ of M, by (7), there exists a map
a,: 6—K(Z,, n) such that

(10) alag=r*P*|5 .

Hence we have a continuous extension 6:GU|M™*Y|— K(Z,, n) of r*.¢*
given by
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fleg=r*¢p* and 60l|,=a, for each (n-+1)-simplex ¢ of M.

Therefore we can find a continuous extension 8*: Q—K(Z,, n) of §. Then by
(9), (2) and (3), we see that

(12) 0*°90|A:7*°¢*°90|A:7*°¢°§DiA:7’*°fiA:h in K(Z,, n).

Hence, by the homotopy extension theorem, i has a continuous extension
h*: X—K(Z,, n). Thus, c-dimszgn.

Conversely, suppose c-dimgz, X<n. Let us take a map f:X—Pof X to a
compact polyhedron and a positive number ¢>0. Then take a triangulation L
of P such that

13) mesh(L)<e¢,

and let ¢, : EW5 (L, n)—P be the map constructed in Lemma 2.1.
First, we show that there exists a map g:X—»Esz(L, n) such that
¢L°g|f—l(lL(n)l):f|f‘l(lL(n)l)’
g(f Y a))S¢1'(a) for every simplex ¢ of L with dimez=n+1.
Write L as the form

L=L™Ug,\J - Ugs, where n+1<dim ¢, --- <dim o, .
By the property (1) in Lemma 2.1, we can define the map
fo=flr-tarmn: fTUL™])—> [ L™ | SEWg (L, n).

By c-dimzp f“(al)gc-dimszgn and the property (i) in Lemma 2.1, the map
fol p-160p t f7H@0) — fol fH(@0,) = 00, S ¢z'(0,) has a continuous extension
foyt [T o)~ (0)).

For each =2, since 0¢;SL™Ug,U - \Ud;.;, we can similarly obtain a
map fi: fT(JL™ | Uf e\ - JUf o )—¢ (| L™ Ue,U - Ug;) such that

fi | f—l(IL(n>anlu...Uai_l):fi—b

A7) fi(f"(e))SdL'(a:).
Therefore the map f; is a desired one.

By the compactness of g(X), there exists a compact subpolyhedron K of
EW; (L, n) containing g(X). Then by the same as in [15], we can find a map
¢ : X—K such that

(18 ¢(X) is a subpolyhedron @ of Esz(L, n).

Moreover, by the construction and the property (iv) in Lemma 2.1, we may
assume that

(19) ‘/’L°901f-l(u,(n)n:flf—l(lL(n)l),
o(f o) S¢i'(a) for every simplex ¢ of L with dimo=n+1.
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Thus, by [(I8), [(20), (19) and [I3), we have a compact polyhedron Q and
maps ¢ : X—Q, ¢=¢.lo: Q—P such that

21 o(X)=0,

(22) (¢e, fl=e.

Hence, it suffices to show the following:
CLAIM. ¢ is (Z,, n, €)-approximable.

PrROOF OF CLAIM. Let M be a triangulation of Q. First, we show that
there exists a map #: |[M**V|>EW; (L, n)"*" satisfying the followings:

(23) 0|Qr\EWZp(L.n)(n+1):idQnszp(L,n)(n+1),

(24) 0(QN¢Yri(a)S¢r'(a) ™V for every simplex ¢ of L with dime=n+1.
Since |M*Y| is compact, there is a finite collection of cells {z,, .-, 7¢} in
EWZP(L, n), dim7,= - =2dim r,=n+2, such that

(25) |M™* Nz, #0 for each 7=1, -, &,

(26) |M+b | gEsz(L, n) O\ U e UTs.

We take a small PL-ball BS7,\d7, such that dim B=dim 7z,, and consider the
inclusion 7,: 0BN|M™*|—-gB. By dim(BN|M™*Y|)<n+1<dim B, 7, has a
continuous extension i,: BN | M+ |—-gB. Considering the map i, and a retrac-
tion from EWz (L, n)**P\U(z\Int B)UT,U --- Ut Onto EWz (L, n)***PUt\J
-+ \Ut,, we have a map 6, : [M"“”l—»Esz(L, n)**OUr,\U --- Ut such that
(27) 01lQnszp(L.n)<n+1)=ideszp(L.n)(n+1),
(28) 6,(|M*v N (e)S¢r'(a) for every simplex ¢ of L with dime=
n+1.
Inductively, for /=1, ---, k£, we can construct a map §;: | M**D |—>EWZP(L, n)®+n
Ut U - Urt, satisfying the corresponding to (27) and (28). Therefore 6, is
a required one.

Moreover, taking suitable subdivisions if necessary, we may assume that 6
is simplicial.

CASE 1. n=2.

By the properties (1), (4) in Lemma 2.1, we see that

Esz(L, n) PO =| L™ | U\ U{de X[0, 11U, Bi*': 0L, dimo=n+1},

where a,: S®™—0de is a map of degree p. For each (n+1)-simplex ¢ of L, choose
a point z,&B2*!\(S*UO(|M™|)), and take the retraction

r: Esz(L, n) "\ {z,: 0L, dimo=n+1} — | L]

induced by the compositions of the radial projection of BZ?*'\ {z,} onto do X {1}
and the natural projection of doxX[0, 1] onto de X {0} S| L‘™|. Now we define
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a map ¢': [M™[—|L™| by ¢/=r0| ucwn.
Let z be an (n+1)-simplex of M. If gb’(r)gEsz(l, n)™M=|L™]|, then

(29) ¢'15:=015=0 in [L™].

Otherwise, there is finite PL (n+1)-balls D,, ---, D, in z~\dr such that
Ul Int D; 2607 '({z,: dim e=n+1} )7,
0(D:)S By,\Bag, for some (n+1)-simplex o, of L.

Then we have that

2 (¢ laT=[r+0lon, 1+ -+ +[r+0loo,]  in mall L™

Since each »-@|;p, can be factorized through the attaching map a,, [7°0]ap,]
=p-a; for some a;=n,(|L™|). Hence, by [(32), we have

Gy [/ lo]=p-(@st + +an)  in 7| LPD).

Therefore, for any map &: | L™ |—K(Z,, n), &¢’|s can be extended over r.
CASE 2. n=l1.
For every simplex ¢ of dim 6=2, ¢7'(¢®) may be represented as the form
(5) in Lemma 2.1:

PTN(@)*=0DX[0, 11Ua, B Uy~ Ua,, B*Us, B, -+ Us, B

Then choose points u§, -+, u% , vi, -, vi, of P (e )N(e X [0, 1JUO(IMD]))
and the retraction r:Esz(L, n) A\ A{ug, -, ug,, vf, -, v, 0L, dimo=2}—
| L] induced by the compositions of the radial projections of B>\ {uj} or
B*<{v9} onto S!' and the natural projection of ¢’ X [0, 1] onto ¢V X {0} & |L ¥ |.
Now we define a map ¢': |[M®|—|L®| by ¢'=r-f.

Let 7 be a 2-simplex of M and let §: |LV|—=K(Z,, 1) be a map. If ¢'(z)
SEWg (L, n)®=|L?], then we have the map §-¢’|. as an extension of §-¢|s..

Otherwise, we choose finite PL 2-balls D,, -+, D,, in 7~dr such that

(34) UkiInt D, 207 '({uf, ---, us,, v§, -, vi,: 0€L, dimoz2})N7,

(35) 6(D;)S B*™0agX[0, 1] for some simplex ¢ of dim ¢=2.
Considering the map #|..un, ;wpy as a homotopy, we have that

(36) [01s:1=L61up ap,]
=[0lsop,J* --- *[0 |op,, ]
=[r@lop 1% =+ x[r0lop,]
=[r-0lum, ap,;]
=[r<015]
=[¢'5:] In m(EWZ (L, n)®).
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Moreover, by the property (5) in Lemma 2.1, for every /=1, ---, m,

(37) [r<@lsp,] is the p-th power of an element of =x,(|L]), or

[re@|sp,] is a commutator of m,(¢‘V) for some simplex a.
On the other hand, by the property (vi) of Lemma 2.1, there exists a continuous
extension &: EWZP(L, n)®»—K(Z, 1) of & Since #n,(K(Z,, 1))=Z, is abelian,
by [(36), (37) and [38), we have

[$°¢'|a:]=[§°0|af]
(39) =[&or@lop ]+ -+ +[E701sp,]
=0 in ©,(K(Z,, 1)).

Thus, &-¢|;. can be extended over r.
Therefore, in any cases, we have the map ¢’: |M™ |—| L | such that
(40) for any map &: | L™ |—K(Z,, n), §-¢’ admits a continuous extension
over |M@™+b|,
Now, for any point ye | M|, let take a simplex ¢ of L such that

(41) yEPr(a).

Then, by and [(24), we see

(42) 0(y)E gz (@)D .
Moreover, by the construction in any cases, we have
(43) P (N=r-b(y)€a™<a.
Hence, by [(13), we obtain that

(44) d((y), ¢'(y)<diam (¢)<¢.
Therefore ¢’ is a (Z,, n, ¢)-approximation of ¢. It completes the proof of
Claim and it follows the implication of the only if. d

4. Characterizations for metrizable spaces

Let us establish definitions. Let K be a simplicial complex and f, g: X—
|K| be maps. We say that g is a K-manification of f if for each x=X and
oK, f(x)eo implies g(x)eo. Let U be an open cover of X. Then a map
b: X—|3(v)| is called WU-normal map if b~ (st(<U>, 1(VU)))=U for each UcsU
and b is essential on each simplex of (V) (i.e. bly-10: b7 (6)—0 is a essential
map for each o¢=J1(U)). Note that if U is a locally finite, then ¥U-normal map
exists.
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4.1. DEFINITION. Let @, P be polyhedra, G be an abelian group, U be an
open cover of P and »n be a natural number. We say that a map ¢: Q—P is
(G, n, U)-approximable if there exists a triangulation L of P such that for any
triangulation M of Q there is a PL-map ¢’': |[M ™ |—| L™ | satisfying the fol-
lowing conditions:

D (¢, dliwm)=U,

(ii) for any map a: | L™ |—K(G, n), there exists an extension 8: |[M D]

—K(G, n) of a-¢’.

4.2. DEFINITION. Let G be an abelian group and n be a natural number.
A map f:X—P of a metrizable space X to a polyhedron P is called (G, n)-
cohomological if for any open cover U of P there exist a polyhedron @ and
maps ¢: X—Q, ¢: Q—P such that

(D (Pep, NH=EU,

(i) ¢ is (G, n, U)-approximable.

4.3. THEOREM. Let X be a metrizable space, p be a prime number and n be
a natural number. Then X has cohomological dimension with respect to Z, of
less than and equal to n if and only if every map f of X to a polyhedron P is
(Z,, n)-cohomological.

PROOF OF NECESSITY. Suppose that c-dimzp X<n. Let f:X—P be a map
of X to a polyhedron P and €U be an open cover of P. Then take a star refine-
ment U, of U.

First, we show that there exist a simplicial complex K and maps ¢: X—
|K|, ¢: |K|—P such that

(1) if o=K, there exists U, with ¢(a)EU,

(2) for each xeX if ¢(x)sInteg, oK, there exists U=V, with ¢(g)U

{f(x)} U,
(3) there exist a triangulation L of P and a PL-map ¢’: |[K‘™|—|L™|
such that
D) (¢, dlixkamw)=U,
(ii) for any map a: |L™|—-K(Z,, n)there is an extension 8: |K"*1|
—K(Z,, n) of a-¢’.
By J.H.C. Whitehead’s theorem [25], take a triangulation L of P such that
4) st{stv, L): ve LO}<LU,.
We will construct a map c: X-»Esz(L, n) such that

() C’f—mLcnm:fJf-luz,cn)m
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6) c(f o)) S¢zi' (o) for s L, where ¢.: Esz(L, n)— L is the map con-
structed in Lemma 2.1.

We define the map ¢,=f|,;-1amn: fTUL™ )= L™ SEW, (L, n). Induc-
tively, suppose that for n<%, we have defined the function c¢,: f!(JL®|)—
EWz, (L, n) such that cils-10: fa)—¢1(e)SEW, (L, n) is continuous and
Cel p-1y=Cils-1, On fN@)N\f(z) for o, e L®. Now, let &L with dimeg
=k+1. By the construction of ¢, and Esz(L, n), Cxlr-160: 00—¢z'(0) is
continuous. Hence by c-dimzp f“(o)gc-dimzp X=<n and (i) in Lemma 2.1, we
we have an continuous extension ¢,: f (¢)—¢z'(e) of cils-160). Define ¢, to
be ¢, on f~(o) for s L with dimoc=*%k+1. Finally, we define ¢ to be \Ui-x ce.
Then since X is compactly generated, the function ¢ is continuous.

We define an open cover 8={B,: gL} in the following way:

B,,EEWZP(L, nN\U {¢gri(n): aNnt=0}.

Then note that we have

(7 ¢r'(e)= B,

(8) if x&B, and x=¢z'(r), then eNr+0.

Since EWZP(L, n) is LC", for a star refinement &, of &, there exists an open
refinement @, of @B, such that if K is a simplicial complex of dim K<n+1,
then every partial realization of K in EWZP(L, n) relative to ®, extended to a
full realization relative to @, [2]. Select a star refinement #; of 8,.

Then by [21, Lemma 9.6], there exist an open cover <V of X refining
U UHACH(Bs) and maps ¢: X—|IN(V)|, ¢: |T(V)|—P such that

(9) ¢ is V-normal,

¢-¢ is L-modification of f,

(11) if c=3(<V), the exists UsU, with f(¢ ' (ae)Ua)SU.

Then these JU(V), ¢ and ¢ satisfy the conditions (1)-(3).

It is easily seen that implies (1) and (2). It remain to prove that (3)
holds.

We shall construct a map ¢,: ISJZ(CV)‘"“’I—>EWZP(L, n) in the following
way: note that if <U)>eJu(cV)**V, there exists Bye B; with USc ' (By). ¢
on |M(V)®| is defined by an element ¢,(KU>)< By for each <U>& (V). Let
U, -+, Uppeq(@)»*v. Then by 0+UN - NUnSc (By )N - Nec™(By,,),
we have

Go({KUo>, -+, <Und})Sst(By,, B)SB  for some BE B, .

It show that ¢, is a partial realization of J(<V)"*V in EWZP(L, n) relative to
B,. Therefore, by the construction of #., we may define ¢, to be a full
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realization relative to ®,. Then by the same way in [21, p. 245 (8)] we can
show that
if te|q(cV)**| with ¢@)Intd and ¢()edz'(t) for d, r= L, then
there exist ¢, A& L such that 0<¢ and gNA+0+2AN7.
Now, by the property (v) in Lemma 2.1, we can choose
a cellular map ¢, : |FUWV) ™V [-EWg (L, n)**" such that for each
te|q() 0] if Po(t)edzi(r), then ¢()edri(n) "D,
By the simplicial approximation theorem, we assume that ¢, is PL.
If n=2, by the properties (4) and (1) in Lemma 2.1, we have

EWz (L, )™V =1L™[UU{do X[0, 11U,, Bi*': e L, dimo=n+1},

where a,: 0B}*'—ds is a map of degree p. For each (n+1)-simplex ¢ of L,
choose a point z,=B?*'\dB?*!, and take the retraction

r: EWZP(L, n) "W\ {z,: 6L, dimoe=n+1} —> | L™

induced by the compositions of the radial projection of BZ?*!\{z,} onto do X {1}
and the natural projection of 0o X[0, 1] onto daX {0} S |L™]|.

If n=1, for every simplex ¢ of dime=2, ¢7'(¢‘®) may be represented as
the form (5) in Lemma 2.1:

gbz‘(a)(z’:o“’x[(), 1]Ua1 BzUaz e Ua,-d Bzuﬁl Bzuﬁz U‘Bka- B®.

Then choose points ug, -+, u% , v{, -+, vi, of ¢r'(eV)®\e X [0, 1] for each B?

and the retraction r: EWZP(L, )P~ A{ug, -, us , i, -, vi, €L, dimoe=2}—

| L' | induced by the compositions of the radial projections of B*\{u3} or

B {v3} onto S' and the natural projection of ¢ X [0, 1] onto ¥ X {0} S| L™ ].
In both cases, we put

&'=red | inevym || —> | L],

Then the map ¢’ holds the conditions (i), (ii). First, we show the condition (i).
Let te|31(cv)™|. By [(12), there exist g, 4, r= L such that ¢N\A#0+AN7 and
Pt)eo, ¢t)edz'(r). Then since ¢,(¢) is an element of ¢r'(7)'™, we have
¢'(t)yer. Hence, we have @), ¢'(t)est(X, L)YSU for some UsU, (see (4)).
Next, we must show the condition (ii). But, this is similar to the proof of
Theorem 3.3.3. Hence, we omitted it here.

Now, we shall show that f is (Z,, n)-cohomological. By (2), we can easily
see that (¢o¢, /)SU. So, we show that ¢ is (Z,, n, U)-approximable.

Let M be a triangulation of |K|. Note that for a simplicial approximation
jof idy : |IM|=|K|—|K| with respect to K, we have that
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HAM DS K@ D] and  j(IM™DSIK ™.

Then by (1) and (3), we can easily see that the map
gr=¢/eit IM®|—> L™

holds the conditions. O

The reverse implication is proved by the standard way [21]. First, we
need some notations.

We may assume that the Eilenberg-MaclLane space K(Z,, n) is a metrizable,
locally compact separable space. Then by the Kuratowski-Wojdyslawski’s theo-
rem, we can consider that K(Z,, n) is a closed subset of a convex subset C of
a normed linear space E. Note that C is AR(metrizable spaces). Since K(Z,, n)
is ANR, there exist a closed neighborhood F in C and a retraction r: F—
K(Z,, n). Further, we can choose an open cover %, of Intc F such that

(1) for any space Z and any maps «, 8: Z—F with (a, B)<%,, the maps

rea, rof: Z—K(Z,, n) are homotopic in K(Z,, n).
Then we take an open, convex cover 9 of C such that

(2) if Wew with WNK(Z,, n)+0, there exists U9, with st(W, Ww)cU.
Select a star refinement &V of W.

Let hy: C—|31(<V)| be a Kuratowski’s map wilh respect to €V and define a
map h,: |J(V)|—C in the following way: a map h, on |JI(V)®| is defined
by an element h,(<V>)eV for each <V)>& |q(<V)®|. Next, by using the con-
vexity of C, we extend h, linearly on each simplex |7(<V)|. Let =<V, -+, V>
e|n(<v)|. Then by Vi - NV #0.

h({KV >, -, Vo Est(Vy, V)EW,  for some W,eW.

Thus, by the construction of h,, we have h,(¢)SW,.

Let 91, be a subcomplex N({VeV: VNK(Z,, n)+0}) of 31(<V). Let 3, be
a simplicial neighborhood of J7;, in JI(<V) such that if <V,>=J,, there exists
KVypedn, with Vi V,#0. Then we can easily see the followings:

(3) for each xK(Z,, n), there exists We with x, h,ch(x)eW,

@) h(138,) Sst(K(Zp, n), W)EF,

B) ho(K(Zp, n)S |91 S|

PROOF OF SUFFICIENCY. Let A be a closed subset of X and h: A—K(Z,, n)
be a map. We consider the above-mentioned nerve J1(<V) and maps h,, h,.
We take an open cover U of |J1(<V)| such that

(6) st*(|90,], VIS |T,],
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(7 st(U<hT(W),
and choose a subdivision 77 of (V) such that if ¢ there exists UsU with
c=U.

Since C is AE, there is an extension H: X—C of h. Then by the assump-
tion, the map A, H: X—|91(<V)| is (Z,, n)-cohomological. Hence, there exist a
polyhedron Q and maps ¢: X—Q, ¢: Q—|J(<V)| such that

®) (pop, hooH)=V,

9) ¢ is (Z,, n, U)-approximable.

By using the simplicial approximation theorem, we obtain a triangulation M of
Q and a simplicial approximation ¢*: M—3 of ¢. Then by (8), (9), we have

(P*e, hooH)<st U,

¢* is (Zp, n, st U)-approximable.

Now, by with respect to M, there exist a triangulation L and a PL-map
¢ IM™|—|L™| such that

(¢, o*| 1wy ))<st U,

for any map a: | L™ |—K(Z,, n), there exists an extension f: | M +D |

—K(Z,, n) of a-¢’.

CLAIM. There exists a map &:Q—K(Z,, n) such that Elgr-1amgy =7ehye
¥l gr-101221)-

Construction of &. First, we shall see that

for each x=D=¢* (|91, )N|M ™|, there exists U9, such that

hiop*(x), hyod/(x)eU.

By [(1Z), there exist U,, U,, Use<U such that U,NU,#0+U,NU; and ¢*(x)eU,,
¢'(x)eU,. Then by (7), we have Weaw with h,(U, VU, VU)SW. Since ¢*(x)
€|7,|, by (4), there exists W9 such that h,-¢*(x)eW and W NK(Z,, n)
+0. Hence by (2), we obtaimn U9, such that hA,¢*(x), ho¢'(x)sst(W’, W)SU.

Therefore by and (1), we see the followings:

hio¢/(D)SF,

(16) 7ohiep*|p=roh,o¢/|p in K(Z,, n).

Since D is a subpolyhedron of |M ™| and ¢’ is PL, ¢’(D) is subpolyhedron
of |[L™]. Hence, from n(K(Z,, n))=0 for g<n (if n=1, the path-connected-
ness of K(Z,, n)), there exists an extension

a: |L™| —> K(Z,, n)

of 7’°h1f¢'<D)3 ' (D)—K(Z,, n).
Then by [1I3), we have an extension

B: IM™D | —> K(Z,, n)
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of a-¢'.
Now, put

R=\M"v|\\U{lnteo: eeM, dimo=n+1, aS¢* (| T 1)}.
Then since for each x&DZS R we have B(x)=a-¢/(x)=reh,o¢/(x),
(17) Bp=rehie¢/(x)|p=rehyo*|p  in K(Zp, n).

By the homotopy extension theorem, there exists an extension £z: R—K(Z,, n)
of reh,e¢h*|p.

Since for eM with dime=n+1 and oeS¢*'(|T,]), we have &rla=
rohyo¢)* |5, there exists an extension &n,,: |[M**V|—K(Z,, n) of &g such that
Enitlgr-1aaghnia e =7 hie* | pum1ampn Aty

Hence, we can define a map & : ¢* '(|J, )V MV | —-K(Z,, n) by the fol-
lowing :

&' =(rohio*| gr-10201)\SEn 41 -

Therefore from = (K(Z,, n))=0 for ¢>n, we obtain an extension {£: Q—K(Z,, n)
of & such that &|ge-r1am,,=rch1o¢*|ys-103,,. It completes the construction.
Now, we put
h=ép: X —> K(Z,, n).

Then to complete the proof it suffices to prove
(18) h'|s=h in K(Z,, n).
First, we shall see that
@*e @A) |90, ].
Let ac A. By [10), there exist U,, U,, UsevU such that
(19) U,NU,#0+U,NU,; and ¢*-p(a)cU,, hooH(a)EU,.

Then since hocH(a)=hooh(a)eh(K(Z,, n))S|91,|, we have ¢*.pla)s|T,| by
(6).

Hence, by Claim, we have for each ac€A h'(a)=&-¢p(a)=r-h,o¢d*-¢(a).
Therefore, by (1), it suffices to see that

there exists U, such that h,~¢*-¢(a), h(a)eU.

Let U,, U,, UseU with the property (19). By (7), there exists W% such
that U, U, JU,Sh7'(W). By (3) we choose W e such that h(a), h,°hy°h(a)
eW’. Therefore, since h(a)eK(Z,, n), there exists U=, such that

hiop*op(a), h(a)esstW’, W)SU .

It completes the proof. O
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5. Approximable dimension

5.1. DEFINITION. A space X has approximable dimension with respect to a
coefficient group G of less than and equal to n (abbreviated, a-dims X<n) pro-
vided that for every polyhedron P, map f: X—P and open cover U of P, there
exist a polyhedron Q and maps ¢: X—Q, ¢: Q—P such that

1) (Peo, )=V,

(ii) ¢ is (G, n, U)-approximable.

If X is compact, we use compact polyhedron and positive number ¢ instead of
above-mentioned polyhedron and open cover, respectively.

First, we state fundamental inequalities of a-dimg.

5.2. THEOREM. For a compact Hausdorff or metrizable space X and an
arbitrary abelian group G, we hold the following inequalities:

c-dimg X< a-dimg X<dim X .

Proor. The second inequality is trivial. We can see the first inequality
by the strategy similar to the proof of the sufficiency in Theorem 3.3, 4.3. O

As we will show in latter sections, our approach of a-dims gives useful
applications. In general, a-dimg is different from c-dims (see section 8). How-
ever, in special cases of coefficient group G, a-dimg coincides with ¢-dimg.

5.3. THEOREM. If G=Z or Z,, where pis a prime number, for every com-

pact Hausdorff or metrizable space X,
a-dimg X=c-dimg X .

PROOF. From Theorem 3.3, 4.3, 5.2, we see the fact. O

We will use the new notion, approximate (inverse) systems and their limits,
instead of usual inverse systems and inverse limits. They were introduced by
S. Mardesi¢ and L.R. Rubin [17] and took an important role in [18]. We quote
their basic definitions.

5.4. DEFINITION. An approximate (inverse) system of metric compacta X =
(Xa, €a, Pa.ar, A) consists of the followings: A directed ordered set (4, <); a
compact metric space ¥, with a metric d and a real number ¢,>0; for each
pair a<a’ from A, a map pq o : Xq—X,., satisfying the following conditions:

(Al) d(Pay ar°Pagag Pajag)=Ca;, 150250a3; Paa=1tdx,,
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(A2) for every ac A and >0, there exists a’=a such that d(pq.a,°Pa,a,
Paay,)<7 for every a,=a,=a’,

(A3) for every acA and >0, there exists a’=a such that for every
a”=a’ and every pair of points x, x’ of X,, if d(x, x’)<e&.., then
d(Paar(X), Paar(x ).

We refer to the number ¢, as the meshs of the approximate system 2.
If 7a: aca Xe—X., a€ A, denote the projections, we define the [imit space
X=lim & and the natural projections p,: X—X, as follows:

5.5. DEFINITION. A point x=(x4)E1lecs X, belongs to X=1im ¥ provided
that for every a= A,

xa=lim paa,(%a,).
1

The projections p,: X—X, are given by p,=r,|x.
Next we quote results from [17] and [18] needed in this note. The proofs
may be found in them.

5.6. PROPOSITION. Let X=(X,, €4, Paa’, A) be an approximate system. Then
we have the following properties:
(i) if every X, is non-empty, then X=Ilim X is a non-empty compact Haus-
dorff space,

(ii) for each a€A, lim, d(pa, Paa,°Pa,)=0, where d(f, g)=sup{d(f(x),
g(x)): xeX},

(iili) for each open cover U of X=lim X, there is a=A such that for
every a,za, there exists an open cover <V of X, for which pgi(V)
refines U,

(iii’) if dimX,<n for all ac A, then dim X<n,

(iv) for every >0, every compact ANR P and every map h:X—P, there
is acA such that for every a,=a, there is a map f: X,—P which
satisfies d(fopa,, R)=Z2e.

5.7. PROPOSITION. Let X=(X,, €4, Paa’, A) be an approximate system. If
for every a,€A, every compact ANR P, and every map h: X, —P, there ts
ai=a, such that for every a,=aj, there is as=a, such that for every as=as,,

h°pala2°paga3:0 ’

then every map from X=1lim X to P is null-homotopic.
Namely, under the above assumptson, the set [ X, P] is trivial.
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In the proof of our main result we need the following characterization of
a-dimg by approximate systems.

5.8. THEOREM. Let X=(X,, €4, Daa’, A) be an approximate system of com-
pact polyhedra with the limit X=1im ¥ and p be a prime number. Then X has
approximable dimension with respect to G<n if and only if for every ac A and
every >0, there 1s a’=a such that for every a”=a’, the map paar: Xo—Xa s
(G, n, e)-approximable.

PROOF. Suppose that a-limg; X<n. Take any a= A and any positive num-
ber ¢>0. By (A2), there is a,=a such that

(1) d(paa"’pa’a”, paa")§5/7 ’ alé (Z'__<:(1” .
Specially,
(l/) d(paa’°pa’a”°pa.”, paa”"pa”)ée/?’ a,<a’'Za”.

Hence, by Definition 5.5, we have that
(2) d(paa"’pa', pa)§5/7y a,=aq .

By the assumption, there is a compact polyhedron @ and maps ¢:X—Q,
¢: Q—X, such that |

(3) d(gep, pa)=e/7,

4) ¢ is (G, n, ¢/7)-approximable.
Let take a positive number >0 such that

(5) if x, ’€Q and d(x, x)<5, then d(d(x), (x")=<e/T.

By Proposition 5.6 (iv), there exists a’=a, and a map g: X, —@Q such that

(6) d(p, gepa)<0.

Then, (6), (5), (3) and (2), we see

(1) d(Pegedar, Paaropa)Sd(pogepar, Po@)td(ep, pa)+d(pa, PaarePar)
<3¢/7.

Hence we have a neighborhood U of p,.(X) in X, such that

) d(¢-glu, Paarlv)=4e/T.

Then there exists a;=a’ such that

9 DararXan)SU for every a”=aj.

By (8) and (1), we have that for every a”=a;i,
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(10) d(¢’°g°pa’a”a paa”).S_Ss/?-

Now we show that p..- is (G, n, ¢)-approximable. By (4), take a triangula-
tion T, of X, which realizes the (G, n, ¢/7)-approximability of ¢. Let us take
triangulations T, of X, and M of Q with mesh(M)<4. Then we have a
subdivision of T4, of T, and a simplicial approximation h: |Ta.|—|M| of
g°Daar sSuch that

(11) d(h, goparer)Smesh(M)<0 .
Hence, by [II), (5) and [(10), we have
(12) d(oh, paa)<d(Poh, Pegoparan)+d(Pogeparar, Paar)=6e/7.

On the other hand, by the property of T,, there exists a map ¢': |[M™|—
| T | such that
a’, ¢limam)=e/7,
for every map &:|T{|—K(G, n), the map §&-¢’: |IM™|—K(G, n)
admits a continuous extension over .
By h(| T NDSh((T(W NS IM™]|, we can define the composition ¢’<h| ¢
| T | —| T |. Then, by and [1I3), we have that

(15) A hlirm, Paarlirgy)Se.

Moreover, by [14), for every map &: | T |—K(G, n), the map §¢’<h|ir¢m,:
| T | —K(G, n) admits a continuous extension over X,.. That is, the map paa-
is (G, n, &)-approximable.

Conversely, we assume that the condition of Theorem 5.8 is satisfied.
Take a map f: X—P of X to a compact polyhedron P and a positive number
¢>0. By Proposition 5.6 (iv), there exists acA and a map g: X,—P such
that

(16) d(f, g°pa)<e/2.

Let 6>0 be a positive number such that

a7 if x, x’X, and d(x, x’)<0, then d(g(x), g(x")<e/2.

By the same way in the first part of the proof, we can find a’=a such that
(18) d(paaroPar, Pa)=0 for every a’=a’.

Then we take a”=a’ such that

(19) the map poo-: Xow — Xo is (G, n, d)-approximable

By [18), (I7) and (16},
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(20) d(f, 8°PaarePa)=d(f, gopa)+d(g°Pa, &oDaarPar)
<eg/2+e/2<c¢.

Hence it suffices to show that gop.q.. is (G, n, ¢)-approximable. Let M be a
triangulation of P with mesh(M)<e/2. Let T, be a triangulation of X, which
realizes the (G, n, §)-approximability of pg... Then for any triangulation of
Ton of X0, there is a map ¢: [T§|—|T¢”| such that

@D d(@, bawrlrign)SF,

(22) for any map &: [T |—K(G, n), the map §-¢ admits a continuous

extension over Xg,..

On the other hand, we have a subdivision 7; of T, and a simplicial map
h: X,—P with respect to T, and M such that

(23) d(h, g)=e/2.

From o(|T¢» NS |TE S (To)™ ] and A(|(To)™ D&M ™|, we have the map
¢: | TGP |—|M™| defined by ¢(z)=h-¢(z). Then by (21), and [(23),

(24) d(g°paar, P=d(goPaar, gop)+d(gep, hop)<e/2+ce/2=c¢.

For any map &: |M™ | —-K(G, n), consider the map §ohiriv,: | T | — K(G, n).
Then, by (22), there is a map {: Xq..—K (G, n) such that

(25) Clhirgi=&(hlirim )|z .
Namely, the map &-¢) has a continuous extension over X,.. It follows that
g°Dad” is (G, n, ¢)-approximable. Therefore, we have a-dimg X<n. O

5.9. COROLLARY. Let X =(X,, €4, Paa’, A) be an approximate system of
compact polyhedra with the limit X=lim X. Let G=Z or Z,. Then c-dimgX
<n if and only if for every ac A and every e>0, there exists a’=a such that
for every a”=a’, the map porar: Xo—Xa is (G, n, €)-approximable.

In the latter we need the following property.

5.10. THEOREM. Let X be a compact space of a-dimg X=n=1. Then there
is an approximate system X=(X,, €q, Paa’, A) with lim X=X such that for every
asA and every pair a<a’ from A,

(i) X, is a compact polyhedron with a metric d=d,=1,

(ii) dim X,=n,

(iii) paar: Xo—X, is a surjective PL-map, and

(iv) card(A)Zw(X).
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ProoF. By [18, Theorem 1, Proposition 12], it is known that every com-
pact space X admits an approximate system X=(X,, €4, Daa’, A) 0f compact
polyhedra with lim =X satisfying the conditions (i), (iii) and (iv). Suppose
that the subset A,={acsA:dim X,<n} is cofinal in A. Then for any ac A,
let take a’'=A, with a’=a. Then for any positive number ¢>0, the map
Daa : Xo—Xq is (G, n—1, ¢)-approximable. Hence for every a”=a’, the map
Paar: Xa—X, is (G, n—1, e)-approximable. By Theorem 5.8, a-dimg X<n—1.
But it is a contradiction. Thus, tne subset A, is not cofinal. Therefore it
suffices to consider the subsystem of % which is indexed by the set ANA,. [

6. Resolutions for compact spaces

We quote our main theorem as follows:

6.1. THEOREM. Let X be a compact space having approximable dimension
with respect to G of less than and equal to n. Then there exists a compact space
Z of dim Z<n and w(Z)Sw(X), and a surjective UN"* '\-map f:Z—X such that
for every x&X, the set [f~'(x), K(G, n)] of homotopy classes is trivial.

Our proof essentially depends on Mardesi¢-Rubin’s way [18]. First, we in-
troduce the notion of the n-dimensional core Z, and the stacked n-dimensional
core of a complex L from [18]. The detail is omitted here.

Let L be a finite complex and let n be a nonnegative integer. Let L, L’,
L”, ... L* -.. be the iterated subdivisions of L. For each £=0, choose a sim-
plicial approximation gg.,,: |L**'|—|L*| of the identity id,: |L|=|L**'|—|L*,
and let gre,;=qQres1° * °Grsjorr+sis | L¥Y|—=|L*|. Then g.,..; is also a simplicial
approximation of /d,. Hence we have

(1) d(gers+s, idL)Smesh(L*) for j=1,

(2)  grro((LEH™YS(LF)™ for j=1.

Therefore we have an inverse sequence of polyhedra

L=((L*)™], grr+1).
Then n-dimensional core of L is defined as the inverse limit
3) Z,=lim .
Clearly, we have
4) dim Z,.<n.

Let ¢x: Z,—|(L*)™| be the projections. They by the Sperner’s lemma,
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each g..., is surjective, and thereby, all of g,:,; and ¢, are surjective. More-
over, by (1),

() d(gs, qess)=mesh(L*)  for j=1in |L].

Hence {g:}:2: is a Cauchy sequence of map from Z, to |L|, because of
Iim mesh(L*¥)=0. Therefore we have the map f.: Z,—|L| given by

(6) fr=lim g .
Then by (3), we see
(7 d(fi, ge)Smesh(L*).

Moreover, g, is surjective and lim mesh(L*)=0. Hence f,(Z,.) is dense in |L|,
and thereby f. is surjective.

Next, in order to describe the stacked n-dimensional core of L, we define
a new inverse sequence as follows: for each £=0, 1, 2, -,

®) L =LDGLYDD - BLH™.
Hence
9) | L*** = | L** | D(L* )™ .

The bonding maps ¢¥..: | L***'|—| L**| are given by

x if xe|L**|,
(10) qr m(x)———{
: Gresr(x)  if xe[(LFH™].

We define the stacked n-dimensional core Z¥ as the inverse limit of the inverse
sequence L*=(| L**{, gk.1),

(11) Z*=lim .E*:(k@) [(LEY™ L)UZL,

and denote the natural projections by ¢F: Z¥—|L**|. Then
(12) dim Z¥<n .

Moreover we note the following properties:
Z.SZ% and |L**| <= Z¥ for every k=0,
¥l r+iyo 1 =qrs4; for j=1,
q;zklZLZQk- o

By [(15), (5) and the definition of g¥,,,

(16) d(gk, g¥v))=mesh(L*)  for j=1in |L|.

Hence {g¥} .., is a Cauchy sequence of maps from Z¥ to | L|, and therefore we
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have the map f¥: Z¥—|L| defined by
17 ft=lim g .

Then we know that

d(f¥, gf)y<mesh(L*),

(19) f¥| ey, is the inclusion of |(L*)™| into | L],

ff]zL’—:fL»

We note that if we have a metric d on |L| such that diam(]L}|)<1, then
we can choose metrics d* on Z¥ and d* in |L**| such that diam(Z})<1,
diam (| L**|)<1 and

(21) d*(g¥(x), gi(x'N=dXx, x)  for x, x’€Z%, k20.

PROOF OF THEOREM 6.1. Let take an approximate system X =(X,, €q, Paa’, 4)
with the limit lim 2¢=X which satisfies the conditions (i)-(iv) in Theorem 5.10.
Moreover, for each a= A, we may choose a triangulation L, of X, such that

(v) 6-mesh(L,)<e, .

As the proof as in [18], we will define a new ordering <’ in A. We con-
sider the following three conditions for a,<a, and any integer 2=0:

(1) d(pajar°Parar, Pajar)=mesh(Ly)) for a.<a’'<a”, ,

(2) if d(x, x")<eqr for x, x’€Xqn, then for a.=a”, d(pa a(x), pa,a(x')=

mesh(L%,)

(3) the map p,,q~ is (G, n, mesh(L%,))-approximable for a.<a”.
Now we put a,<’a, provided that a,<a, and the conditions (1)-(3) hold for
k=0. Then the ordering <’ on A satisfies the following conditions:

4) if a,<’a,, then a,<a,,

(5) if a,<’a, and a,<a;, then a,<’a,,

(6) for any ac= A, there is a’= A such that a<’a’.
Hence A’=(A, <’) is a directed set with no maximal element. We note that
by Theorem 5.8, for any a,= A and integer =0, there exists a, ">>a, such that
the conditions (1)-(3) hold. Moreover,

(7) if a,<’a,, then the set of all integers =0, which satisfy the condition

(2), is finite.

Hence, for each pair a,<’a,, by (7), there is a maximal integer such that the
conditions (1)-(3) hold. We denote the integer by k(a,, a,). Clearly we have
the following properties:

8 if a:<’as, d(pajarchar, Pa)Smesh(LE1%?) for a’=a,,

9) if a,<’a, and a.<as;, k(a,, a,)<k(a,, a,),
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for any a,= A and integer £=0, there is a, '>a, such that k(a,, a,)=k.
For each pair a,<’a., by (6) and the definition of %(a,, a.), we have a map
Zajays | L1 —=(LE)™ |, where k=k(a,, a.), such that
d(ga,ay Pala2|l(L’leMn)l)éz'meSh(L’él),
for any map &: [(L%)™|—K(G, n), the map §°gq,q, admits a con-
tinuous extension over |L,,|=X,,.
Now, for each a=A’, we define

(13) Z¥=7%, .

For a,<a,, the maps rq,q,: Z%,—Z%, are given by

(14) ralazzga1a2°q5ka2 ,
where ¢, : ZfaZH[Lf{;)I is the map ¢¥: ZI%—»lL,&’;) . Note that
(15) Ya,a(Z8)S I(LED™, k=k(a,, a,).

By the same way as in [18, Lemma 7], we have that

Z=(Z% &4, ¥qa, A’) is approximate system of non-empty metric com-

pacta Z¥ of dim Z¥<n.

Therefore, by Proposition 5.6 (i), (iii’), the limit Z=1im £ is a non-empty com-
pact space of dimZ<»n and of w(Z)<card(A)=<w(X). Let r,: Z—Z¥ be the
projections.

For each a= A, by f¥ we denote the map f¥,: Z¥=Z%,—|L,|=X,. Then
by the same way as in [18], we can find the map f: Z—X such that

f¥org=pacf for each a=A.

Next we show that the map f satisfies the required condition. Let take a
given point x=X. For each a= A4, put
(18) x.=pa(x)
(19) No=Ny(x)={yeX,: d(x,, y)=ea},
M,=M,(x)=fE(No).
Then, by [18, Lemma 12 and 14], we can see that
(21) 91(x)=(N,, €4, Paa’, A’) is an approximate system of non-empty com-
pact spaces with the limit {x}, and
(22) M(x)=(M,, &4, ¥aar, A’) is an approximate system of non-empty com-
pact spaces with the limit f~(x).

CLAamM 1. f is a UV* Lmap.

PrROOF OF CLAIM 1. For any a,, let take a, ">a,. Since N, is a neighbor-
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hood of x,, in the polyhedron X,,, there is a closed polyhedral neighborhood U
of x4, in N,, such that

U is contractible.

Hence we may assume that
U=|T|, where T is a subcomplex of the j-th barycentric subdivision
Li, of L., for sufficiently large ;.
Then, by the proof of [18, Lemma 17], there is a; '>a, such that

(25) Fagay(Ma)S 1T

By (9), taking a sufficiently large a; if necessary, we may assume that for some
/=0, the I-th barycentric subdivision 7' of T is a subcomplex of L%z ?¥.

Hence,

(26) Y N (LA e ™ | = [(TH™| for every m=0.
Moreover, by and [(24),

27 Tl (TH® N=r,(|T])=0 if m<n.

For any map a:S™—M,, 1=sm=<n—1, by [25), [(14) and [26),
(28) a(S™SITIN[(LEF2 )™ S(TH™ | S| T| SN, .
By [27),

(29) Tagagea=0  in [(TH™].
Considering [(TH™| S |(LEgze0) ™| S Z%,, by [18, Lemma 17],
(30) Zagao{ [ (TH™VNEM,, .

By and [30), we have that

31 Yajas°agaz°@=0 in M,, .

It follows that f~(x) is UV™-connected for m=<n—1. We complete the proof
of Claim 1.

CLAIM 2. The set [ f~Y(x), K(G, n)] is trivial for every xX.

Proor orF CLAIM 2. By Proposition 5.7, it suffices to show that for every
a,A’ and every map §: M, —K(G, n),
(32) £o7 0 a,° aga, =0.

Here we use the same notation as in the proof of Claim 1, so indexes a, and
a, are taken as in the proof of Claim 1.
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By [12), we can find a continuous extension &: | La,| —K(G, n) of §°8a,ay
Since goq, | RACLLINY is the restriction of a simplicial approximation ¢ a,. oy *
| L2 29| —| L,,| of id, Loyt by the homotopy extension theorem, the restriction
§oTaya,| 1rty 1 =8°8a,a,°qda, | 171y, admits a continuous extension %: (TH|=
U—K(G, n). Then by [23), we have =~0. Particularly, since by the same
way as in [28), we can see that 74,q4,(Mq,)S |(TH™|, by (34), we have that

(32) £oTa,a,°" aga; =0 .

It complete the proof of Claim 2 and it follows Theorem. O

7. Resolutions for metrizable spaces

By a polyhedron we mean the space |K| of a simplicial complex K with
the Whitehead topology (denoted by |K|,). We may define a topology for |K|
by means of a uniformity in [Appendix, 22] (denoted by |K]|,).

7.1. THEOREM. Let X be a metrizable space having approximable dimension
with respect to an abelian group G of less than and equal to n. Then there exist
an n-dimensional metrizable space Z and a perfect UV™! -surjection m: Z—X
such that for xeX, the set [m7'(x), K(G, n)] of homotopy classes is trivial.

PROOF. The strategy is like the construction of Walsh-Rubin-Schapiro [24,
22].

Let d be a metric for X and let {U;:i=N\U{0}} be a sequence of open
covers of X, where each €U, consists of all 1/(+1)-neighborhoods.

First, we shall construct the followings:

Open covers <V; of X whose nerves J1(¢V;) are locally finite dimensional,
maps b;: X—|J(<V;)| for i=0, f¥, fi|T(V)|—|T(V;_,)| for i=1 and sequences
74, j&e N\U {0} of subdivisions of 7(<V;) for /=0 such that

(1) 3i'<*xsi for j=0,

(2) b, is normal with respect to b7%(S%) and 37} for ;=0,

(3) fi: NI—I:i_, is simplicial for i=1,

(4) fiob; is F_,-modification of b;_;, 0<7<3 for i=1,

(5) f; maps each compact set in |J;|, onto a compact set in |7;_,|, which

is contained in a finite union of simplexes of J1,_,,

6) SI<f7USEy) for i=1,

(7)) S5<f7H(SHD for k=1 and Si<f¥ (84D for k=4,

8) Wi<U;AbTL(ST-DADTZA(SE )N -+ ADTH(SE),
where we regard |J1;|, as the uniform space with the uniform topology induced



274 Akira KovyAMA and Katsuya YOKOI

by the uniform base {S}} 3.

Further, we shall construct continuous (w. r.t. the Whitehead topology), uni-
formly continuous (w. r. t. the uniform topology) PL-maps g;: [(713)™ | — | (:3_,)™]
such that

(9) for each t= |(MH™|, there exist g, €N, such that f;(t)ee, g:it)ET
and oNrt#0,

(10 for any map a: [(%7i.)™],—K(G, n), there exists an extension

B: (@)D" | ,—K(G, n) of aog: [(ND™ | w— [0 |w—K(G, n),

(11) for each x&|:;|, gist(x, SHN|(MH)H™]) is a Whitehead (i.e. finite)

compact polyhedral subset of |72;_,].

Let us start the construction. We take an open refinement <V, of U, in X
whose nerve J(<V,) is locally finite dimensional and ¢V,-normal map b,: X—
|7(cV,)|. We define 774 to be a subdivision of Sd.;7(<V,) for ;=0, 1, 2 with
3i<S8i'. By using [22, Proposition A.3], for the cover &,={st(x, 8): x&
[71(<V,) |}, we obtain an open cover B, of |71(V,)| and a PL, Ji-modification
ro: || —1JE| of the identity such that

(12), 7,(Cl B) is compact for B B,,

Cl BUr(Cl B)YSE for some E<é&,.

Since b, is (G, n)-cohomological, from the similar argument to the proof of
the necessity in Theorem 4.3 we can take the followings:

Subdivision 71} of Sd., 77, locally finite open cover <V, of X and maps
by: X— UV, f¥: |91(cv)|—|35] such that

1 SI<*SEN B,,

(A5}, W.<*U,Abz'(Sh),

(16), b, is <V,-normal,

(A7), f*eb, is MN-modification of by,

(18), for each ¢=J(<V,), there exists Uest S§ such that by(b7'(a))U f¥ o)

cu,

(19), for any triangulation M of |71(¢V,)|, there exists a PL-map p’: |[M ™|

[(:H™ | such that
(D) (', Ay )= {SEQ, T8): A€T3},
(i) for any map a: |(:1})™|—K(G, n), there exists an extension
B: IM™* V| SK(G, n) of a-p’.

Let 973*! denote a subdivision of Sd, 7} with 33*'<<*S] for j=3.

Now, let |J13|, denote |73 with the metric topology [19, p. 301]. Then
there is a 73-modification j,: |723|,—|723| ., of the identity function [19, p. 302].
By the simplicial approximation theorem, we obtain a subdivision 91, of J(<V,)
and a simplicial approximation f,: 3,—J15 of j,of*. Let 9% denote 9,. Then
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by the simpliciality of f, and [(17),, we have

SI<FTHSY),

(21) fi°b, is F§-modification of b,.

We take a subdivisions 92{** of 99 for =0, 1 such that

(22) 3i*'<*8f for j=0, 1,

(23) 3{<f1Ysi*?) for j=1, 2,

Tj<Sd,; 919 for j=1, 2.

By using Lemma [22, Proposition A.3], for the cover &,={st(x, 3%): x&
|71}, we obtain an open cover @B, of |J1(V,)| and a PL, 713 -modification
ri: | 72| —|922| of the identity map such that

(12), r.(Cl B) is compact for B 38,,

(13), CiBuUr,(Cl B)YSE for some E<é&,.

Since b, is (G, n)-cohomological, from the similar argument to the proof of
the necessity in Theorem 4.3 we can take the followings:

Subdivision 73 of Sd, 7%, locally finite open cover <V, of X and maps
by: X— | U(Vy)|, f¥:|9(Vy)|— || such that

(14), SI<*SIA B A fTY(SD),

Vp<*U, AbT (SHADT(SP),

(16, b, is <V,-normal,

f¥ob, is J13-modification of b,

(18), for each o¢=J1(cV,), there exists Uest St such that b, (b3 (o)) fi(a)

cu,

(19), for any triangulation M of |J1(%V,)|, there exists a PL-map p’: |M™)]

—[(:H™ ] such that
D) @, fEliwaw)S{SE(4, T1}): A€Tf},
(ii) for any map a: [(9)™|—K(G, n), there exists an extension
B: | M™Y|-K(G, n) of acp’.

Now, by using (19), about the triangulation 973 of |92(<V,)|, we obtain a
PL-map g¥: [(:)™ | —|(73)™ | such that

25) (g%, filianm)< {88, :3): Aemi},

(26), for any map a: |[(713)™| — K(G, n), there exists an extension

B 1(H V| —-K(G, n) of a-g¥*.
Consider the inclusion map 7,: (93)™ |, |923| and the composition

oedoo @ (D™ | —= (T ™ | = [T = | TUV o) | —> | TUV) .

The image A of the PL-map ry°7,og*% has dimension <n. Then we can take a
Js-modification s,: A—|(713)™ | of the inclusion map AcC,|T§|. Let g,: |(:)™ |
—[(J13)™ | denote the composition map seer,0i,°g¥.
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Then this has the following properties:

CLAIM 1.

9); for each te |[(M)™ |, there exist ¢, t=TE such that f,(t)so, g.()ET
aud eN\t+#0,

10}, for any map a: ()™ | —K(G, n) there exist an extension B : |(713)"*V|
—K(G, n) of a-g,,

11} for each x& |3, |, g.(st(x, SHN|(T)™|) is a Whitehead (i.e. finite)
compact polyhedral subset of |T,|.

PrROOF OF CLAIM 1. We show the property (9),. Letis|(315)™]|. By (25),,
there exist g, 4, r€J1} such that f¥t)eo, g¥t)er and eNA#=P+AiNr. We may
assume that A=|v,, v,|, vo=0c and v,E7.

Since j, is 9J13-modification of the identity function, we have j,° f¥{¢)=o.
Since f, is simplicial approximation of j,ef*, we have f,(t)Ea.

Select 73 with 7S#%. Since 7, is J13-modification of the identity map, we
have r,ei,cg¥(t)=Z. Further since s, is J73-modification of A<, |313| and J73<38,
we have g,(t)=syorgoioeg¥t)E7.

CASE 1. v, €@ (i.e. v,EF™),

By 713<Sd, 712, we have v,&(912). Hence, there exists yeJ% such that
lve, v1| E7 and vocInty. Then if 63N} with ¢ =4, we have y<a. Therefore
we have ¢N\T+0, f,(t)eé and g,(t)E7.

CASE 2. v, & (32,

If v,&(?12), the proof is similar to Case 1. Let v,&(:2). By 313<Sd, 712,
there exist 7,, 7,32 such that vo&Inty,, v,€Inty, and 7,<r, or 7,<7,. Then
if 63} with ¢ <4, we have 7,<g. Similarly, we have 7,<#. Therefore we
have ¢N\T+0, f,(t)€é and g,(t)E7.

By g¥~g,, we can see the property (10), by the homotopy extension theo-
rem and (26),.

We show the property (11),. First, we shall see that

(27) g¥st(x, IHN|(TH™|)SB  for some BEB,.

Let st(x, 3%) be represented by U {St(v,, 712): ac A}. There exists ¢, 0}
with xeInt g..

For each a= A, we choose ¢,=3?% such that ¢.<0, and v,=0,. Further
we select minimum and maximal dimensional simplexes 7., 7,9 with 7.<7,
respectively such that ¢.S7; and ¢,S7,.

If ¢.ZSInt ., we have st(v,, )<, from v,Intz,. Then there exists a
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vertex ve? such that \J, 7,E8t(v, N19). Since f, is the simplicial map from
719 to 71§, we have [,(\U. 7.)E f1(SEw, NY)SSE(f1(v), J1§). By the nearness be-
tween f, and g% (see proof of (9),) and [14),, we obtain

(28) g¥(st(x, SHNI@D™ ) SstSUf1(v), T15), SHSB  for some Be B,.

If 6.MN07.#0 and a.NInt 7,+#0, we choose a face 7, with #,=<r, such that
6.MN0t,S7%,. Then there exists a vertex v<%, such that \U, st(v,, 31?)Sst(v, T19).
Hence we have in the same way.

Since st(x, SHN|(NH™| is a subpolyhedron of |J1;| and g¥ is a PL-map,
we see that g¥*(st(x, SHN(TH™ ) is a subpolyhedron of |7,|. Then by
and [(12),, 7reoioeg¥(st(x, SHN| ()™ |) is a subpolyhedron of [J7,] and a compact
set of |9]». Since s, is a PL-map, we have see the property [(11);.

Now, we shall take a base for a uniformity for |J7,|. We choose a sub-
divisions 914 for j=4 of 7, such that

29) {*'<Sd, 7{ for j=3,

30) 3iti<<*s] for j=3,

SIN<LFTUSPHIANEFUSITONT{* for j=3,
where Fi{** is defined as follows. g7(Si**N|(T})™|) is the open cover of
(7)™ |,. Extend it to an open cover Fi{** of |9,|». Then clearly the uni-
formity make f,, f¥ and g, uniformly continuous.

We shall show that f, holds the property (5). First, note that the com-
position

Joctde fY1 [Ty —> Tl u —> Tl —> | Tlo | w ,

where id: || w— || » is the identity map, is continuous.

Let K be a compact set of |J7,|,. There exist a,, -, 6,7, such that
Joe fXK)=Jpeido fHK)S 6, --- Ua,;. Since f, is a simplicial approximation of
Joo f¥, we have f(K)So,\U - \Ug,. By the continuity of f,, f,(K)is a compact
set of |J,] ..

As we proceed in this work, we have <V;, /¥ f,, 1} and g; with the pro-
perties (1)-(11).

From now on, we consider X to be the uniform space with the uniformity
generated by the sequence {V;}5, of open covers of X and |J2;] to be the
uniform space with the uniformity generated by the sequence {S’}%,. Then by
the construction, the topology induced by {<V;}$., and the original metric topo-
logy are identical.

We shall construct the resolution of X. The construction essentially de-
pends on Rubin-Schapiro’s way [22]. Hence, the detail is omitted here.



278 Akira KovyaMa and Katsuya YOKOI

For =0, let f; ; denote the identity on 97; and let f;; denote the com-
position f; .o -+ of;: [T —|91;] for i>7.
The functions
bt (X, {Vi}im) —> (13141, {S{}?;o)
and
Fivn s Uil {ST41} F=0) —> (19141, {S{};‘;o)

are uniformly continuous for 7=0. Then since the sequence {f; job;}7-, is
Cauchy in the uniform space C(X, |J1;|.) with the uniformity of uniform con-
vergence, we have a uniformly continuous, limit map

fo s= lL‘B fa.i°bg: (X, (Vi i=0) —> (17151, {55}?;0),

such that

fw.j is T3-modification of b,

(feo, 3 D=3,

(34) f.; is a topological irreducible (i.e. surjective) map relative to 7,

(35)  firri°fw is1=Ffw 1 for i=0.

We consider T1%%,|72:|. to be the uniform space by the product uniformity.
Note that lim{|J;|., fis1.:} is a non-empty subspace by the property (34).

Then by (35), there exist a uniformly continuous map f,:X—lim|J;]|,
with fe,;=pr:°fw» and especially the map f, is a uniformly embedding onto a
dense subset f,(X) in lim|7;|,, where pr;: ITi,|3;|,—|7;|. is the natural
projection.

Let Z denote the limit of the inverse sequence {|(73)™|,, g:+1.:}. Then
we consider Z to be the sub-uniform space of the uniform space TI&o! 7.
Note that Z has dimension <n.

We begin with a description of the map m. For ;=0, a uniformly con-
tinuous map 7;: Z—TI70! 7|, is defined by

Ti2)=(f1.0z5), f1.1025), =, [1.5-1(25), 25, 2541, =)

for z=(z;,)€Z and let =z, be the inclusion map. Then since the sequence {m;} %,
is Cauchy in C(Z, II, |7:].), there is a uniformly continuous, limit map
w: Z—T1%0|7:|.. Then the map m is proper from Z into Um{|J%;|y, fis1 4}
([22, p. 239]). We must show that #7'(x) is a UV"~'-set and the set [7 !(x),
K(G, n)] is trivial for xelim{|J2;|., fi14-

For x=(x,)elim{|7;|4, fi.1.:}, let N(x;) and eN(x;) denote st(x; S?) and
st(x;, S?%), respectively. Then we have the following properties [22]: for x=
(x)eim{| Tl v, fiad,

g1, 121 ON(x )N [(TIH™ ) S eN(x4_0),
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(37) UmA{eN(x)INI(TH™ 1, gs ol =77 ()= UM {IN(x JN (T ™, &4,1-1]. .
By S§i<*Si, there exists F;=S) such that st(x;, S$HESF;. Further, by $i<S9,
there is a SS9 such that F;&S. Hence we have the contractible set F; such

that
(38) eN(x,))EF;SdN(x;).

CLAM 2. z7Y(x) ¢s a UV lset for for x=(x,)elim{| |, fiir -

PrROOF OF CLAIM 2. It suffices to show that the map
Zisr, il t ON(Ie e DN (TL31)™ | —> ON(x )N | (T1)™ |
induces a zero homomorphism of homotopy group of dimension less than n. By
(36) and (38), we have
i1, ON(xX )N (T5) ™ DEFN (D™ | SON(x )N (T ™ 1.
Since F; is contractible, we have
m(FEN(@D™[)=0  for k<n.

Therefore g;,,.:].. induces a zero homomorphism of homotopy group of dimen-

sion less than n.
CLAIM 3. [z~ Yx), K(G, n)]=H"(x"Y(x); G) is trivial for x&lim {|I2;]y, fien 4} -

PrROOF OF CLAIM 3. By (11), (36), (37) and the continuity of Cech cohomo-

logy, we have
HY(z ™ (x) ; G)=lim {H™(gi, i o (eNxIN[(TD™ ] 0) 5 G), g e-1|¥}.
Hence it suffices to show that

gi,i-1l%1 H™(g4, im1(eN(XIN@D ™) 5 &) = H™(Zis1, (eN(x 02 )N(T13,:0)™)) 5 G)

is the zero homomorphism.

Let Gy, denotes gy i (eN(x)IN|(TH™]|,). Then by the subspace
Gi i1 of (7)™, and the subspace G, ;_, of [(J13_)™ |, is identical. Hence
from now on, we may consider that G, ;_, is the subspace of |(F1}_,)™|,.

Let [a]e[Gy -1, K(G, n)]. Then from 7 (K(G, n))=0 for ¢<n, there exists
an extension a: [(:i.)™],—K(G, n) of a. By [10), we have an extension
B: (@D, —K(G, n) of @°gsi-1leyiy

Since F; is the contractible set, F; \|(:1H® |, is contractible in F,N
[(nH"*v|,. Hence, there exists a homotopy H: (FN(F)™ | ,)XI—-F;N
[(H+ ], such that H, is the inclusion map and H, is a constant map. Since
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Gisr.iSeNXIN(IADM | L, S FN (™|, we can define the following composi-
tions :

A=Beiye Hoii: Giarix 1 s (FN (D™ | W)X T —> BN (T,

- l(m%)(n-ﬂ) l w > K(G; 71),

where 7, and 7, are the inclusion maps.
Then we have ﬁ0:ﬁ|6i+l’i:a°gi,i—llG
the proof of Claim 3. Then the map

1. and H,=a constant. It completes

Ty =T |11 T H(X)—> X

is a desired one for Theorem. O

8. Summary

From Theorem 6.1, 7.1, we have the following theorem.

8.1. THEOREM. Let X be a compact Hausdorff or metrizable space and n be
a natural number. Then the following conditions are equivalent, respectively :

(i) X has cohomological dimension with respect to Z, of less than and equal
to n,

(ii) X is a continuous or perfect image of an n-dimensional compact Haus-
dorff or metrizable space Z under an acyclic map m in the sense of
cohomology with coefficient in Z,,

(iii) there exists an n-dimensional compact Hausdorff or metrizavle space Z
and a continuous or perfect UV '-surjection = :Z—X such that for
xeX, HYz \(x); Z,) is trivial.

PROOF. We can easily see the implication (iii)=(ii). The implication (ii)=
(i) is a corollary to the classical Vietoris-Begle’s theorem. We have the impli-
cation (i)=>(iii) from Theorem 6.1, 7.1. O

Although cohomological dimension with respect to Z or Z, is characterized
by the existence of acyclic resolutions, we have an unexpected fact about co-
homological dimension with respect to Q.

8.2. THEOREM (SHCHEPIN). Let X be a compact space of c-dimg X<1. If X
admits an acyclic resolution, that is, there exists a compact space Z of dim Z<1
and a map f:Z—X such that H*(f~'(x); Q)=0 for all xX, then dim X<1.

PrROOF. By dim f(x)<dim Z<1, H(f (x); Z) is torsion free. Hence, by
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the universal coefficient theorem for Cech cohomology groups, we have that
HY(f Yx): Z)=0. Therefore we have H*(f~(x); Z)=0 for all x&€X. It follows
that ¢-dimy X<c¢-dimz; Z=dim Z=1. Particularly, we have dim X=1. O

8.3. COROLLARY. For each n=2, 3, ---, oo, there exists an n-dimensional com-
pact metric space X(n) such that

1=c-dimqy X(n)<a-dimg X(n).

PrROOF. For each n=2, 3, ---, o, by [6, Theorem 2.1], there exists an n-
dimensional compact metric space X(n) of ¢-dimgy X(n)=1. If a-dimg X(n)<1,
by Theorem 6.1, there exists a compact metric space Z of dim Z<1 and a map
f: Z—X such that A*(f(x); Q=0 for all x&X. Then by Theorem 8.2, we
have dim X(n)<1. But it is a contradiction. Therefore a-dimg, X(n)>1. O
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