ONE CLASS OF REPRESENTATIONS OVER TRIVIAL EXTENSIONS OF ITERATED TILTED ALGEBRAS

By
Xiao Jie and Zhang Pu

Abstract

Let $T(A)=A \ltimes D(A)$ be the trivial extension of iterated tilted algebra A of type $\vec{\Delta}$. In this paper, we study the indecomposable $T(A)$-modules belonging to the components of form $\boldsymbol{Z} \vec{\Delta}$, which are called the modules on platform. Our main results are as follows: (1) The number of the modules on platform which have the same dimension vector is equal to or less than the number of simple A-modules. (2) The module on platform is uniquely determined by its top and socle. (3) The module on platform is uniquely determined by its Loewy factor and by its socle factor.

§ 1. Introduction.

Throughout this paper, we denoted by k an algebraically closed field, by A a basic, connected and finite-dimensional k-algebra, and by A - \bmod (mod- A, respectively) the category of all finitely generated left (right, respectively) modules over A. We write $D=\operatorname{Hom}_{k}(, k)$ for the usual dual functor between A-mod and mod- A, then $D(A)$ has a cononical $A-A$-bimodule structure. The trivial extension $T(A)=A \ltimes D(A)$ of A is defind as the k-algebra whose additive structure is that of $A \oplus D(A)$ and whose multiplication is given by $(a, \varphi) \cdot(b, \psi)$ $=(a b, a \psi+\varphi b)$ for $a, b \in A$ and $\varphi, \psi \in D(A)$. Note that $T(A)$ is a self-injective algebra, see [1].

Tilted and iterated tilted algebra are important in representation theory of algebra and are extesively studied. It is well known that the AR quiver of a tilted algebra must have a connecting component as well as preprojective and preinjective ones, see [2] and [3]. All of these components consist of directing modules, which enjoy very pleasant properties, for example, being uniquely determined by their composition factors and by their tops and socles.

On the other hand, as a special class of self-injective algebras, the trivial

[^0]extensions of iterated tilted algebra of type $\vec{\Delta}$ also enjoy some good properties, such as their stable module categories must have components of form $\boldsymbol{Z} \vec{\Delta}([4])$, but unfortunately, no indecompoable $T(A)$-module is directing ; the indecomposable $T(A)$-module is directing; the indecomposable $T(A)$-modules belonging to the components of form $\boldsymbol{Z} \vec{\Delta}$ are no longer determined by their composition factors. However, our results show that these modules still have some interesting properties.

For stating our results, we recall some notations. Let A be an iterated tilted algebra of type $\vec{\Delta}$, the repetitive algebra \hat{A} has the additive structure of $\left(\underset{i \in \boldsymbol{Z}}{\oplus} A_{i}\right) \oplus\left(\underset{i \in \boldsymbol{Z}}{\oplus} Q_{i}\right)$ with $A_{i}=A$ and $Q_{i}=D(A)$ for $i \in \boldsymbol{Z}$, whose multiplication is defined as follows

$$
\left(a_{i}, \varphi_{i}\right)_{i} \cdot\left(b_{i}, \psi_{i}\right)_{i}=\left(a_{i} b_{i}, a_{i+1} \psi_{i}+\varphi_{i} b_{i}\right)_{i}
$$

where $\left(a_{i}, \varphi_{i}\right)_{i},\left(b_{i}, \phi_{i}\right)_{i}, \in \hat{A}$ with $a_{i}, b_{i} \in A$, and $\varphi_{i}, \phi_{i} \in D(A)$ for $i \in \boldsymbol{Z}$. Note that \hat{A} is an infinite-dimensional and locally bounded self-injective algebra. Defining Nakayama automorphism $v: \widehat{A} \rightarrow \hat{A}$ as in [5], we know that $T(A)=\hat{A} / v$ and that the functor v induce Galois covering functor $\pi: \hat{A} \rightarrow T(A)$ and an automorphim of $\hat{A}-$ mod. By Happel's result in [4] we know that \hat{A} $\underline{\bmod } \simeq D^{b}(A)$ and $\Gamma_{s}(T(A)) \simeq \Gamma\left(D^{b}(k \vec{\Delta})\right) /\left\langle T^{2} \tau\right\rangle$, where $\hat{A}-\underline{\bmod }$ is the stable module category of \hat{A}-mod; $D^{b}(A)$ is the derived category of A and $T^{2} \tau$ is just the automorphism of \hat{A} induced by Nakayama functor v. In the following we still denote by π the covering functor from $\hat{A}-\bmod$ to $T(A)-\bmod$ induced by $\pi: \hat{A} \rightarrow$ $T(A)$.

Definition. Let A be an iterated tilted algebra of type $\vec{\Delta}$, the indecompoable $T(A)$-module M is said to be a module on platform, if there is $X \in \hat{A}$ mod such that $\pi(X)=M$ and that X as an object of \hat{A}-mod belongs to a component of form $\boldsymbol{Z} \vec{\Delta}$ of $\Gamma(\hat{A}-\underline{m o d}) \simeq \Gamma\left(D^{b}(k \vec{\Delta})\right)$.

Remark. (1) If $\vec{\Delta}$ is of Dynkin type, then any indecompoable $T(A)$-module is on platform.
(2) The module on platform is non-projective.

For a finite dimensional k-algebra Λ, we denote by Q the Gabriel quiver of Λ ([6]), by $P(x)(I(x), S(x)$ respectively) the indecomposable projective (injective, simple, respectively) module corresponding to the vertex $x \in Q$, i.e.. top $P(x) \cong \operatorname{soc} I(x)$. For $M \in \Lambda-\bmod$, we define its dimension vector as

$$
\begin{aligned}
\underline{\operatorname{dim} M} & =\left(\operatorname{dim}_{k} \operatorname{Hom}_{A}(P(x), M)\right)_{x \in Q_{0}} \\
& =\left(\operatorname{dim}_{k} \operatorname{Hom}_{A}(M, I(x))\right)_{x \in Q_{0}}
\end{aligned}
$$

is just the number of composion factors of form $S(a)$ in any fixed composition series. The Loewy factor of M is defined as the matrix

$$
\underline{\operatorname{dim}} M=\left(\begin{array}{c}
\operatorname{dim} M / \mathrm{rad} M \\
\operatorname{dimrad} M / \text { rad }^{2} M \\
\vdots \\
\underline{\operatorname{dimr} a d^{i}} \underset{\vdots}{M} / \mathrm{rad}^{i+!} M \\
\vdots
\end{array}\right)
$$

and the socle factor of M is the matrix

$$
\underline{\operatorname{Sim} M}=\left(\begin{array}{c}
\vdots \\
\frac{\operatorname{dims} o c^{i+1}}{}{ }^{\operatorname{dims}} o c^{2} \\
\vdots \\
\underline{\operatorname{dims}} \operatorname{soc} M
\end{array}\right)
$$

Now we can state our main results as follows:
ThEOREM 1. Let $T(A)$ be the trivial extension of an iterated tilted algebra A of type $\vec{\Delta}, X$ a $T(A)$-module on platform, then the number of isoclass of the $T(A)$-modules on platform which have the same dimension vector with X is at most n, where n is the number of vertices of $\vec{\Delta}$.

Theorem 2. If $T(A)$ is as above, X, Y are two $T(A)$-modules on platform, then $X \simeq Y$ if and only if $\operatorname{top} X \simeq t o p Y$ and $\operatorname{soc} X \simeq \operatorname{soc} Y$.

Theorem 3. If the assumptions are as in Theorem 2, then the following are equivalent
(1) $X \simeq Y$
(2) $L \underline{\operatorname{dim} X} X=L \operatorname{dim} Y$
(3) $\underline{\operatorname{Sdim} X}=\underline{\operatorname{Sim} Y}$

§ 2. Proof of Theorem 1.

Lemma 1 ([7] p. 15) Let A be locally bounded self-injective algebra.
(1) If M is indecomposable non-projective, $f: M \rightarrow N$ is epic, then \underline{f} is nonzero in A-mod.
(2) If N is indecomposable non-projective, $g: M \rightarrow N$ is mono, then g is nonzero in A-mod.

Lemma 2 ([7] p. 15). Assume that A is as above, M, N are indecomposable non-projective with $\operatorname{Hom}(M, N) \neq 0$, then there exists a A-module L such that
$\underline{\operatorname{Hom}}(M, L) \neq 0 \neq \underline{\operatorname{Hom}}(L, N)$.
Lemma 3. Let A be as above, then M is directing as A-module iff M is directing as object in A-mod.

Proof. Suppose that X is directing in A-mod. If X is not directing as A-module, then we get a chain of nonzero nonisomorphisms $X \rightarrow X_{1} \rightarrow X_{2} \cdots \rightarrow X_{r}$ $=X$ with $r \geqq 1$, If no X_{i} is projective, then X is not directing in A-mod by Lemma 2, so we may assume that $X_{i}=P(a)$ is projective, considering the AR sequence

$$
0 \longrightarrow \operatorname{rad} P(a) \longrightarrow(P(a) \oplus Y \longrightarrow P(a) / \operatorname{soc} P(a) \longrightarrow 0
$$

then we have

$$
\begin{gathered}
X \longrightarrow X_{1} \longrightarrow \cdots \longrightarrow X_{i-1} \longrightarrow \operatorname{radP}(a) \longrightarrow Y \longrightarrow \\
P(a) / \operatorname{soc} P(a) \longrightarrow X_{i+1} \longrightarrow \cdots \longrightarrow X,
\end{gathered}
$$

which doesn't contain the projective module X_{i}. Repeating this process if necessary, we finally get a chain which doesn't contain any projective module, a contradiction by Lemma 2.

Proof of Theorem 1. Assume that $\pi(M)=X$ with M lying on the component of form $\boldsymbol{Z} \vec{\Delta}$ of \hat{A}-mod. Choose a complete slice S of this component such that $M \in \boldsymbol{S}$, from the structure of $D^{b}(k \vec{\Delta})$ we know that \boldsymbol{S} is path-closed in \hat{A}-mod. Let B be the support algebra of $\hat{A} S$ in \hat{A}, where $\boldsymbol{S}=\operatorname{add}_{\hat{A}} S$.
(1) First we claim that ${ }_{B} M$ is directing. Since B-mod is full subcategory of \hat{A}-mod, it is enough to prove that M is directing in \hat{A}-mod. In the following we always identify \hat{A}-mod with $D^{b}(k \vec{\Delta})$. If there is a chain of nonzero nonisomorphims in \hat{A}-mod $M=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{r}=M$ with $r \geqq 1$, then by the structcre of $D^{b}(k \vec{\Delta})$ we have a chain in $D^{b}(k \vec{\Delta})$

$$
T^{i_{0}} Y_{0} \longrightarrow T^{i_{1}} Y_{1} \longrightarrow \cdots \longrightarrow T^{i} r Y_{r}=T^{i_{0}} Y_{0}
$$

with $Y_{i} \in k \vec{\Delta}-\bmod$ for $0 \leqq i \leqq r$, so $i_{0} \leqq i_{l} \cdots \leqq i_{r}=i_{0}$, therefore we have a chain in $k \vec{\Delta}-\bmod Y_{0} \rightarrow Y_{1} \rightarrow \cdots \rightarrow Y_{r}=Y_{0}$ which implies that Y_{0} is not directing. But since $M=T^{i_{0}} Y_{0} \in \boldsymbol{S}, Y_{0}$ must be preprojective or preinjective $k \vec{\Delta}$-module, which is a contradiction with above.
(2) Denoting by $Q_{\hat{A}}$ and Q_{B} the Gabriel quiver of \hat{A} and B respectively, we wish to prove that Q_{B} is path-closed in $Q_{\hat{A}}$. For this let $x \rightarrow \cdots \rightarrow y \rightarrow \cdots \rightarrow z$ be a path in Q_{B} with $x, z \in Q_{B}$, so we have

$$
P_{\hat{A}}(x) \longrightarrow \cdots \longrightarrow P_{\hat{A}}(y) \longrightarrow \cdots \longrightarrow P_{\hat{A}}(z)
$$

and

$$
I_{\hat{A}}(x) \longrightarrow \cdots \longrightarrow I_{\hat{A}}(y) \longrightarrow \cdots \longrightarrow I_{\hat{A}}(z) .
$$

Considering the chain

$$
P_{\hat{A}}(y) / \operatorname{soc} P_{\hat{A}}(y) \xrightarrow{f} S(y) \xrightarrow{g} \operatorname{rad}_{\hat{A}}(y),
$$

where $\operatorname{top} P_{\hat{A}}(y) \simeq S(y) \simeq \operatorname{soc} I_{\hat{A}}(y)$. It follows from Lemma 1 that $\underline{f} \neq 0 \neq g$ in $D^{b}(k \vec{\Delta})$. Since $x, z \in Q_{B}$, we have $P_{\hat{A}}(y) / s o c P_{\hat{A}}(y)<\boldsymbol{S}<\operatorname{rad} I_{\hat{A}}(y)$.

By the structure of $D^{b}(k \vec{\Delta})$ we know that $S(y)<S$ or $S<S(y)$. Assume that $S(y) \leqq S$ and that \boldsymbol{S} correspond to the all indecomposable projective $k \vec{\Delta}$-modules. Let $\operatorname{rad}_{I_{\hat{A}}}(y)=T^{i} Y^{\prime}$ with $Y^{\prime} \in k \vec{\Delta}$ - \bmod, since $\boldsymbol{S}<I_{\hat{A}}(y)$, we have $i \geqq 0$. If $i>0$, then from the isomorphism

$$
\operatorname{Hom}_{D b(k \vec{d})}\left(S(y), \operatorname{rad}_{\hat{A}}(y)\right) \cong \operatorname{Hom}_{D b(k \vec{d})}\left(T^{-1} \tau^{-1} \operatorname{rad} I_{\hat{A}}(y), S(y)\right)
$$

we get

$$
\boldsymbol{S}<T^{-1} \operatorname{rad} I_{\hat{A}}(y)=T^{i-1} Y^{\prime}<T^{-1} \tau^{-1} \operatorname{rad} I_{\hat{A}}(y)<S(y) \leqq \boldsymbol{S},
$$

hence $T^{-1} \operatorname{rad} I_{\hat{A}}(y), \tau^{-1} T^{-1} \operatorname{rad}_{\hat{A}}(y) \in \boldsymbol{S}$, which is a contradiction with \boldsymbol{S} being a complete-slice of the component. So $i=0$ and we have a chain in $\hat{A} \underline{-m o d} S \rightarrow$ $\operatorname{rad} I_{\hat{A}}(y)$ which implies $\operatorname{Hom}_{\hat{A}}\left(S, I_{\hat{A}}(y)\right) \neq 0$, i. e., $y \in Q_{B}$.

If $S<S(y)$, we may use $\underline{f} \neq 0$ and get dually the chain $P_{\hat{A}}(y) / \operatorname{soc} P_{\hat{A}}(y) \rightarrow S$.
(3) We now prove that Q_{B} is a complete v-slice of $Q_{\hat{A}}$ in the sense of [5]. For this it is enough to prove that for any $a \in Q_{\hat{A}}$ the v-orbit of a contains only one vertex in O_{B}. If it is not the case, we assume that $a, v^{m} a \in Q_{B}$, i. e., there are $S_{1}, S_{2} \in \boldsymbol{S}$ such that

$$
\operatorname{Hom}_{\hat{A}}\left(P_{\hat{A}}(a) / \operatorname{soc} P_{\hat{A}}(a), S_{1}\right) \neq 0 \neq \operatorname{Hom}_{\hat{A}}\left(P_{\hat{A}}\left(v^{m} a\right) / \operatorname{soc} P_{\hat{A}}\left(v^{m} a\right), S_{2}\right)
$$

then $P_{\hat{A}}(a) / s o c P_{\hat{A}}(a)=T^{i} X$ with $i=0$ or -1 . On the other hand,

$$
P_{\hat{A}}\left(v^{m} a\right) / \operatorname{soc} P_{\hat{A}}\left(v^{m} a\right)=v^{m}\left(P_{\hat{A}}(a) / \operatorname{soc} P_{\hat{A}}(a)\right)=\tau^{m} T^{2 m+i} X .
$$

Let $\tau^{m} T^{2 m+i} X=T^{j} Y$, then $j=0$ or -1 , this force $m=-1$, so we have

$$
\begin{gathered}
S_{2}<I_{\hat{A}}\left(v^{-1} a\right)=P_{\hat{A}}(a)<S_{1} \\
S_{2} \prec \operatorname{rad} P_{\hat{A}}(a)<P_{\hat{A}}(a) / \operatorname{soc} P_{\hat{A}}(a)<S_{1}
\end{gathered}
$$

and then $\operatorname{rad} P_{\hat{A}}(a), P_{\hat{A}}(a) / s o c P_{\hat{A}}(a)=\tau^{-1} r a d P_{\hat{A}}(a) \in S$ since \boldsymbol{S} being path-closed, this is a contradiction with S being a complete slice of the component of form $\boldsymbol{Z} \vec{\Delta}$. This shows that for any $a \in Q_{\hat{A}}$, the τ-orbit of v contains at most one vertex in Q_{B}, so it remains to prove that the number of vertices of Q_{B} is not less than n, where n is the number of vertices of $\vec{\Delta}$. For this purpose it is
enough to prove that ${ }_{B} S$ is partial tilting module. First we claim that p.d. ${ }_{B} S \leqq 1$, or equivalently that $\operatorname{Hom}_{B}\left(I, \tau_{B} I\right)=0$ for any indecomposable injective B-module I. Otherwise, there are $S_{1}, S_{2} \in \boldsymbol{S}$ with $S_{1} \rightarrow I \rightarrow \tau_{B} S_{2}<S_{2}$, by Lemma 2 we know this chain can occur in \hat{A}-mod, so we have $\tau_{B} S_{2}, I \in S$ and then the three terms of the $A R$ sequence of $B-\bmod 0 \rightarrow \tau_{B} S_{2} \rightarrow * \rightarrow S_{2} \rightarrow 0$ are in S, this contradicts with the fact that B is the support algebra of ${ }_{A} S$ and S is a complete slice. And then we may use Auslander-Reiten formula to show Ext ${ }_{B}^{1}(S, S)$ $=\operatorname{DHom}\left(S, \tau_{B} S\right)=0$, hence ${ }_{B} S$ is partial tilting and it follows that Q_{B} is a complete v-slice of $Q_{\hat{A}}$.
(4) Now suppose that Y is an arbitrary $T(A)$-module on platform with $\underline{\operatorname{dim} Y}=\underline{\operatorname{dim} X}$, then $Y=\pi(N)$ for some N lying on the component of form $\boldsymbol{Z} \vec{\Delta}$. We may assume that N and M lie in the same v-period. By the above analysis we know that N is a directing module over some finite-dimenional k-algebra D and Q_{D} is a complete v-reflections. By [5] (Lemma 2.10) we know that D can be obtained from B by a series of v-reflections. On the other hand, the indecomposable D-module which has the same dimension vector with N must be ${ }_{D} N$ itself, so the number of $T(A)$-modules on platform which the same dimension vector with X is at most m, where m is the number of all v-reflections from B within one v-period. Since within one v-period there are just n algebras which are obtained from B by a series of v-reflections, we have $m=n$, which finishes the proof of Theorem 1.

Remark, We have an example showing that the number of $T(A)$-modules on platform which have the same dimension vector is n, where n is the vertices of A.

§ 2. Proof of Theorems 2 and 3.

Let Λ be a locally bounded k-algebra and X, Y two Λ-modules. Define

$$
\begin{gathered}
R_{P}^{1}(X, Y)=\operatorname{Hom}_{A}(X, Y) \\
R_{P}^{1}(X, Y)=\left\{f \in \operatorname{Hom}_{A}(X, Y) / f=\sum_{i} f_{i 1} g_{i} \text { (for finite } i\right), \\
\text { where } \left.f_{i 1} \in R\left(X, P_{i 1}\right), P_{i 1} \text { is a projective } \Lambda \text {-module }\right\} .
\end{gathered}
$$

In general, for $m>1$, we define

$$
\begin{aligned}
R_{P}^{m}(X, Y)= & \left\{f \in \operatorname{Hom}_{\Lambda}(X, Y) / f=\sum_{i} f_{i 1} \cdots f_{i m} g_{i} \text { (for finite } i\right), \\
& \text { where } f_{i 1} \in R\left(X{ }^{\prime} P_{i 1}\right), \cdots, f_{i m} \in R\left(P_{i m-1}, P_{i m}\right), P_{i 1}, \cdots, \\
& \left.P_{i m} \text { are projective modules }\right\} .
\end{aligned}
$$

LEMMA 4 ([8]). For arbitrary non-negative integer m, there holds

$$
\mathrm{rad}^{m} X / \mathrm{rad}^{m+1} X \simeq \underset{x \in Q_{0}}{{ }_{x}} k_{x} \cdot S(x),
$$

where $k_{x}=\operatorname{dim}_{k} R_{P}^{m}(P(x), M) / R_{P}^{m+1}(P(x), M)$.
Lemma 5. Let Λ be a locally bounded selfjective k-algebra.
(1) If M is an indecomposable non-projective Λ-module and $\varepsilon: P \rightarrow M$ is the projective cover of M, then ker ε is indecomposable.
(2) If N is an indecomposable non-projective Λ-module and $i: N \rightarrow I$ is the injective envelope of N, then coker i is indecomposable.

Proof. (2) is the dual of (1), so we consider (1). Assume ker $\varepsilon=\bigoplus_{i=1}^{m} N_{i}, N_{i}$ indecomposable for all i. We see that every N_{i} is non-injective since $\varepsilon: P \rightarrow M$ is the projective cover. In fact, the natural embedding ker $\varepsilon \rightarrow P$ is the injective envelope, otherwise there is a proper direct summand of P isomorphic to the injective envelope $I($ ker ε) of ker ε, and hence M has a projective direct summand, a contradiction. However, the injective envelope of ker ε is isomorphic to the direct sum of thase of all N_{i}, so $M=\underset{i=1}{m} I\left(N_{j}\right) / N_{i}$. It follows from the indecomposability of M that $m=1$, which implies that $\operatorname{ker} \varepsilon$ is indecomposable.

The proof of Theorem 3. Let X and Y be $T(A)$-module on platform, then there are indecomposable non-projective \hat{A}-modules M, N such that $\pi(M)=$ $X, \pi(N)=Y$ with M, N belonging to the $Z \vec{\Delta}$-components of \hat{A}-mod (it is possible that M, N lie on distinct components). Suppose S is a complete slice of the $\boldsymbol{Z} \vec{\Delta}$-componemt of \hat{A}-mod such that $M \in \boldsymbol{S}$, without loss of generality, we would assume that $\boldsymbol{S} \leqq N<T^{2} \tau \boldsymbol{S}$. Now SuppN is divided into two parts, namely,
and

$$
\Delta_{1}=\left\{x \in \operatorname{Supp} N / P_{\hat{A}}(x) \leqq \boldsymbol{S}\right\}
$$

$$
\Delta_{2}=\left\{x \in S u p p N / P_{\hat{A}}(x)>\boldsymbol{S}\right\} .
$$

Let B be the full subcategory of \hat{A} whose object is

$$
\left\{x \in \hat{A} / T^{-2} \tau^{-1} \boldsymbol{S} \leqq P(x) \leqq \boldsymbol{S}\right\},
$$

then B is the support algebra of modules located in S. It follows from the proof of Theorem 1 that B is a tilted algebra with $\hat{B}=\hat{A}$ and $T(A)=T(B)$, moreover, we might assert that B is obtained from A by a series of reflections. Clearly $\operatorname{Sup} p N \subseteq B$, if $\Delta_{2}=\varnothing$, then $\operatorname{Sup} p N \cong B$. Since the covering functor π is induced by $T^{2} \tau, M$ and N as B-modules have the same Loewy factors, hence, the same composition factors. Because B is a tilted algebra and M is directing
as B-module, we see $M \simeq N$ by [2], therefore $X \simeq Y$. If $\Delta_{1}=\varnothing$, we would use $T^{-2} \tau^{-1} N$ to replace N, this amounts to the situation above.

If $\Delta_{1} \neq \varnothing, \Delta_{2} \neq \varnothing$, we try to get a contradiction. On account of SuppN being connected subcategory of \hat{A}, we can find $x_{0} \in \Delta_{1}, S y_{1} \equiv \Delta_{2}$ and an arrow $y_{1} \rightarrow x_{0}$ in the Gabriel quiver of SuppN. Assume that all arrows in the Gabriel quiver of \hat{A} ending at x_{0} are as follows:

where $P\left(x_{i}\right) \leqq \boldsymbol{S}, i=1, \cdots n, \quad P\left(y_{i}\right)>\boldsymbol{S}, i=i, \cdots m$. Therefore we have the following natural exact sequence

$$
P\left(x_{0}\right) \longrightarrow\left(\bigoplus_{i=1}^{m} P\left(x_{i}\right)\right) \oplus\left(\underset{i=1}{\oplus} P\left(y_{i}\right)\right) \longrightarrow \text { coker } \varepsilon \longrightarrow 0
$$

Noticing that $\operatorname{Im} \varepsilon$ is indecomposable for $P\left(x_{0}\right)$ is the projective cover of Ime; and that the natural embedding

$$
I m \varepsilon \longrightarrow\left(\underset{i=1}{\stackrel{m}{\oplus}} P\left(x_{i}\right)\right) \oplus\left({\left.\underset{i=1}{m} P\left(y_{i}\right)\right), ~}_{\text {in }}\right.
$$

is the injective envelope, we see that coker is indecomposable by Lemma 5, it follows that the sequence above is the minimal projective presentation of cokere. For M being directing, by [9] the morphism
is epic or mono, however $\operatorname{Hom}_{\hat{A}}\left(P\left(y_{i}\right), M\right)=0$ for $i=1, \cdots, m$, then
is either epic or mono.
For the same reason, the morphism
is either epic or mono.
 know by Lemma 4 that $S\left(x_{0}\right)$ is a direct summand of top M with multiplicity

$$
\begin{aligned}
t & =\operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right)-\sum_{i=1}^{n} \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right) \\
& >0 .
\end{aligned}
$$

Since there are not $T^{2} \tau$-conjugated vertices in Supp N and in SuppM, we see that $\operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right)=\operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{i}\right), N\right), \forall i=1, \cdots, n$. If the morphism (*) is epic, then $S\left(x_{0}\right)$ is not a direct summand of topN, which contradicts the fact that X and Y have the same Loewy factors. If (*) is mono, then $S\left(x_{0}\right)$ is a direct summand of top N with multiplicity

$$
\begin{aligned}
r= & \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right)-\sum_{i=1}^{m} \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{i}\right), N\right) \\
& -\sum_{i=1}^{m} \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(y_{i}\right), N\right) .
\end{aligned}
$$

However,

$$
\begin{aligned}
r & <\operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), N\right)-\sum_{i=1}^{n} \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{i}\right), N\right) \\
& =\operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right)-\sum_{i=1}^{n} \operatorname{dim}_{k} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{i}\right), M\right) \\
& =t,
\end{aligned}
$$

a contradiction.
2^{0} If $\bigoplus_{i=1}^{n} \operatorname{Hom}_{\hat{A}}\left(P\left(x_{i}\right), M\right) \rightarrow \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), M\right)$ is epic, considering the longest path in SuppN ending at x_{0} which is not a zero-relation

$$
y_{1}^{\prime} \longrightarrow \cdots \longrightarrow y_{1} \longrightarrow x_{0} .
$$

It follows from [9] that the natural morphism l :

$$
\begin{aligned}
\operatorname{Hom}_{\hat{A}}\left(P\left(y_{1}^{\prime}\right), N\right) & \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{\hat{A}}\left(P\left(y_{1}\right), N\right) \longrightarrow \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), N\right) \\
& \longrightarrow \operatorname{Hom}_{\hat{A}}\left(P\left(x_{0}\right), N\right)
\end{aligned}
$$

is non-zero. Hence there exists $f \in \operatorname{Hom}_{A}\left(P\left(y_{1}^{\prime}\right), N\right)$ satisfying $l(f) \neq 0$. Since this non-zero path is the longest one, f can be no longer factor through any projective \hat{A}-module. By Lemma 4, $S\left(y_{1}^{\prime}\right)$ is a direct summand of top N, hence we can conclude that $S\left(v y_{1}^{\prime}\right)$ is a direct summand of top M. We know by [9] that the natural morphism $\operatorname{Hom}_{A}\left(P\left(x_{0}\right), M\right) \rightarrow \operatorname{Hom}_{A}\left(P\left(v y_{1}^{\prime}\right), M\right)$ is mono or epic, therefore it must be non-isomorphic and mono by Lemma 4. Assume that the arrows in $\operatorname{Supp} N$ ending at y_{1}^{\prime} are as follows:

then $S\left(y_{1}^{\prime}\right)$ is a direct summand of $t o p N$ with multiplicity $\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(y_{1}^{\prime}\right), N\right)-$ $\sum_{i=1}^{q_{i=1}} \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(z_{i}\right), N\right)>0$. Owing to $x_{0} \in \Delta_{2} \subseteq \operatorname{Supp} N$, it bears $x_{0} \notin\left\{v z_{i}\right\}_{i=1}^{q_{i=1}}$. Similarly we can show that

$$
\left(\underset{i=1}{q} \operatorname{Hom}_{A}\left(P\left(v z_{i}\right), M\right)\right) \oplus \operatorname{Hom}_{A}\left(P\left(x_{0}\right), M\right) \longrightarrow \operatorname{Hom}_{A}\left(P\left(v y_{1}^{\prime}\right), M\right)
$$

is non-isomorphic and mono and $S\left(v y_{1}^{\prime}\right)$ is a direct summand of topN with multiplicity s :

$$
\begin{aligned}
s & <\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(v y_{1}^{\prime}\right), M\right)-\sum_{i=1}^{q} \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(v z_{i}\right), M\right) \\
& =\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(y_{1}^{\prime}\right), N\right)-\sum_{i=1}^{q} \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P\left(z_{i}\right), N\right)
\end{aligned}
$$

which contradicts the hypothesis that X and Y have the same Loewy factors. Up to now we finish the proof of $(2) \Rightarrow(1)$. The proof of $(3) \Rightarrow(1)$ is similar.

Proof of Theordm 2. Let X and Y be two $T(A)$-modules on platform with $\operatorname{top} X \simeq t o p Y$ and $\operatorname{soc} X \simeq \operatorname{soc} Y$. Suppose that M, N, B are same as above, from the proof of Theorem 3 we know that M and N are both B-modules, and as B-modules they have the same top and socle. Since both M and N are directing B-modules, we have $M \simeq N$ by [2], it follows that $X \simeq Y$.

Corollary. Let A be an iterated tilted algeba, X and $Y T(A)$-modules on platform, then the following are equivalent:

$$
\begin{equation*}
X \simeq Y \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} Y, & \text { to } p X \simeq t o p Y \\
\underline{\operatorname{dim}} X=\underline{\operatorname{dim}} Y, & \text { socs } X \simeq o c Y \tag{3}
\end{array}
$$

Remark. (1) We know that every non-projective indecomposable module over a representation-finite trivial extension algebra is a module on platform. So the conclusions of Theorems 2 and 3 in [10] are contained in the results of this article.
(2) At last we leave a space to explain the fact that no directing module exists over a finite-dimensional selfinjective algebra Λ. In fact, let P_{1} be a direct summand of the projective cover of an indecompossable module M and P_{2} be a direct summand of an injective envelope of M. It is not difficult to see that arbitrary two vertices in the Gabriel quiver Q_{Λ} of Λ belong to a cycle path of Q_{A}, therefore $P_{2}<P_{1}<M \prec P_{2}$, i. e., M is not directing.

Acknowledgements. We would like to thank Prof. Liu Shao-xue for his suggestions and encouragements. We are also indebted to Dr. D. Happel for his lecture in Beijing and inspiring discussions.

References

[1] Tachikawa, H., Repressntations of trivial extensions of hereditary algebras, Springer LNM 832 (1980), 579-599.
[2] Ringel, C.M., Tame algebras and integral quadratic forms, Springer LNM 1099 (1984).
[3] Strass, H., A reduction process with applications to tilts of wild hereditary algebras, Preprint.
[4] Happel, D., Triangulated categories in the representation theory of finite dimensional algebras, London LNS 119 (1988), Cambridge University Press.
[5] Hughes, D. and Waschbüch, J., Trivial extenssions of tilted algebras, Proc. London. Math. Soc. 46 (1983), 347-364.
[6] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Springer LNM 831 (1980), 1-71.
[7] Ringel, C. M., Representation theory of finite dimensional algebras, London LNS 116 (1986), 7-80.
[8] Xiao Jie, Guo Jinyun, Zhang Yingbo, Loewy factor of indecomposable module over self-injective algebra of class A_{n}, Science in China (Series A) Vol. 33:8 (1990), 897-908.
[9] Bongartz, K., On omnipresent modules in projective components, Comm. Algebra, 11 (1983), 2125-2128.
[10] Xiao Jie, On indecomposable modules over a representation-finite trivial extension algebra, Science in China (Series A), Vol. 34: 2 (1991), 129-137.

Xiao Jie
Current address
Department of Mathematics and Computer Science
Uhiversity of Ant Werp (UIA)
Universiteit spleinl, B-2610,
Antwerpen (Wilrijk) Belgium
Department of Mathematics
Beijing Normal University
Beijing, 100875, China

Zhang Pu

Department of Mathematics
University of Science and Technology of China
Hefei, 230026, Anhui, China

[^0]: Received July 9, 1991.
 Supported by the National Natural Science Foundation of China.

