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ONE CLASS OF REPRESENTATIONS OVER TRIVIAL
EXTENSIONS OF ITERATED TILTED ALGEBRAS

By

Xiao JIE and Zhang PU

Abstract. Let $T(A)=A\ltimes D(A)$ be the trivial extension of iterated
tilted algebra $A$ of type A. In this paper, we study the indecom-
posable $T(A)$ -modules belonging to the components of form $Z\vec{\Delta}$ ,

which are called the modules on platform. Our main results are
as follows: (1) The number of the modules on platform which
have the same dimension vector is equal to or less than the number
of simple A-modules. (2) The module on platform is uniquely
determined by its top and socle. (3) The module on platform is
uniquely determined by its Loewy factor and by its socle factor.

\S 1. Introduction.

Throughout this paper, we denoted by $k$ an algebraically closed field, by
$A$ a basic, connected and finite-dimensional k-algebra, and by A-mod (mod-A,

respectively) the category of all finitely generated left (right, respectively)

modules over $A$ . We write $D=Hom_{k}(, k)$ for the usual dual functor between
A-mod and mod-A, then $D(A)$ has a cononical A—4-bimodule structure. The
trivial extension $T(A)=A\ltimes D(A)$ of $A$ is defind as the k-algebra whose additive
structure is that of $A\oplus D(A)$ and whose multiplication is given by $(a, \varphi)\cdot(b, \psi)$

$=(ab, a\psi+\varphi b)$ for $a,$ $b\in A$ and $\varphi,$ $\psi\in D(A)$ . Note that $T(A)$ is a self-injective
algebra, see [1].

Tilted and iterated tilted algebra are important in representation theory of
algebra and are extesively studied. It is well known that the AR quiver of a
tilted algebra must have a connecting component as well as preprojective and
preinjective ones, see [2] and [3]. All of these components consist of directing
modules, which enjoy very pleasant properties, for example, being uniquely
determined by their composition factors and by their tops and socles.

On the other hand, as a special class of self-injective algebras, the trivial
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extensions of iterated tilted algebra of type $\vec{\Delta}$ also enjoy some good properties,

such as their stable module categories must have components of form $Z\vec{\Delta}([4])$ ,

but unfortunately, no indecompoable $T(.4)$ -module is directing; the indecomposable

$T(A)$ -module is directing; the indecomposable $T(A)$ -modules belonging to the

components of form $Z\vec{\Delta}$ are no longer determined by their composition factors.
However, our results show that these modules still have some interesting

properties.
For stating our results, we recall some notations. Let $A$ be an iterated

tilted algebra of type $\vec{\Delta}$ , the repetitive algebra $\hat{A}$ has the additive structure of
$(\bigoplus_{t\in Z}A_{i})\oplus(\bigoplus_{i\in Z}Q_{i})$ with $A_{i}=A$ and $Q_{i}=D(A)$ for $i\in Z$ , whose multiplication is

defined as follows

$(a_{i}, \varphi_{i})_{i}\cdot(b_{i}, \psi_{i})_{i}=(a_{i}b_{i}, a_{i+1}\psi_{i}+\varphi_{i}b_{i})_{i}$ ,

where $(a_{i}, \varphi_{i})_{i},$ $(b_{i}, \psi_{i})_{i},$
$\in\hat{A}$ with $a_{i},$ $b_{i}\in A$ , and $\varphi_{i},$ $\phi_{i}\in D(A)$ for $i\in Z$ . Note

that $\hat{A}$ is an infinite-dimensional and locally bounded self-injective algebra.

Defining Nakayama automorphism $v;\hat{A}\rightarrow\hat{A}$ as in [5], we know that
$T(A)=\hat{A}/v$ and that the functor $v$ induce Galois covering functor $\pi:\hat{A}\rightarrow T(A)$

and an automorphim of \^A-mod. By Happel’s result in [4] we know that $\hat{A}-$

$mod\simeq D^{b}(A)$ and $\Gamma_{s}(T(A))\simeq\Gamma(D^{b}(k\vec{\Delta}))/\langle T^{2}\tau\rangle$ , where $\hat{A}-\underline{mod}$ is the stable module
category of \^A-mod; $D^{b}(A)$ is the derived category of $A$ and $ T^{2}\tau$ is just the
automorphism of $\hat{A}$ induced by Nakayama functor $v$ . In the following we still
denote by $\pi$ the covering functor from \^A-mod to $T(A)$ -mod induced by $\pi:\hat{A}\rightarrow$

$T(A)$ .

DEFINITION. Let $A$ be an iterated tilted algebra of type $\vec{\Delta}$ , the indecom-
poable $T(A)$ -module $M$ is said to be a module on platform, if there is $X\in\hat{A}-$

mod such that $\pi(X)=M$ and that $X$ as an object of $\hat{A}$ -mod belongs to a com-
ponent of form $Z\vec{\Delta}$ of $\Gamma(\hat{A}- mod)\simeq\Gamma(D^{b}(k\vec{\Delta}))$ .

REMARK. (1) If A is of Dynkin type, then any indecompoable $T(A)$-module
is on platform.

(2) The module on platform is non-projective.
For a finite dimensional k-algebra $\Lambda$ , we denote by $Q$ the Gabriel quiver

of $\Lambda$ ([6]), by $P(x)(I(x), S(x)$ respectively) the indecomposable projective (injec-

tive, simple, respectively) module corresponding to the vertex $x\in Q,$ $i$ . $e.$ .
top $P(x)\cong socI(x)$ . For $ M\in\Lambda$ -mod, we define its dimension vector as

$dimM=(dim_{k}Hom_{A}(P(x), M))_{x\in Q_{0}}$

$=(dim_{k}Hom_{A}(M, I(x)))_{x\in Q_{0}}$
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is just the number of composion factors of form $S(a)$ in any fixed composition
series. The Loewy factor of $M$ is defined as the matrix

$L\underline{dim}M=[\underline{d^{\underline{dim}radM/rad_{l+!}M_{M}}im\underline{d}}riamd^{i}M\dot{M}//rraaddM_{2}]$

and the socle factor of $M$ is the matrix

$S\underline{dim}M=\left\{\begin{array}{l}\vdots\\\underline{dims}oc^{i+1}..M/soc^{i}M\\\underline{dims}oc^{2}\dot{M}/socM\\dimsocM\end{array}\right\}$

Now we can state our main results as follows:

THEOREM 1. Let $T(A)$ be the trivial extension of an iterated tilted algebra
$A$ of type $\vec{\Delta},$ $X$ a $T(A)$ -module on platform, then the number of isoclass of the
$T(A)$ -modules on platform which have the same $dimens\iota on$ vector with $X$ is at
most $n$ , where $n$ is the number of vertices of A.

THEOREM 2. If $T(A)$ is as above, $X,$ $Y$ are two $T(A)$ -modules on platform,
then $X\simeq Y$ if and only if $ topX\simeq$ topY and $socX\simeq socY$ .

THEOREM 3. If the assumptions are as in Theorem 2, then the following are
equivalent

(1) $X\simeq Y$

(2) $LdimX=LdimY$

(3) $SdimX=SdimY$

\S 2. Proof of Theorem 1.

LEMMA 1 ([7] p. 15) Let $A$ be locally bounded self-injective algebra.
(1) If $M$ is indecomposable non-projective, $f:M\rightarrow N$ is epic, then f- is nonzero

in A-mod.
(2) If $N$ is indecomposable non-projective, $g:M\rightarrow N$ is mono, then $\underline{g}$ is non-

zero in A-mod.

LEMMA 2 ([7] p. 15). Assume that $A$ is as above, $M,$ $N$ are indecomposable
non-projective with $Hom(M, N)\neq 0$ , then there exists $a$ A-module $L$ such that
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$Hom(M, L)\neq 0\neq Hom(L, N)$ .

LEMMA 3. Let $A$ be as above, then $M$ is directing as A-module iff $M$ is

directing as object in A-mod.

PROOF. Suppose that $X$ is directing in A-mod. If $X$ is not directing as
A-module, then we get a chain of nonzero nonisomorphisms $X\rightarrow X_{1}\rightarrow X_{2}\cdots\rightarrow X_{r}$

$=X$ with $r\geqq 1$ , If no $X_{i}$ is projective, then $X$ is not directing in A-mod by

Lemma 2, so we may assume that $X_{i}=P(a)$ is projective, considering the AR
sequence

$0-radP(a)-(P(a)\oplus Y-P(a)/socP(a)-0$

then we have

$X-X_{1}-\cdots-X_{i- 1}-radP(a)-Y-$

$P(a)/socP(a)-X_{i+1}-\cdots\rightarrow X$ ,

which doesn’t contain the projective module $X_{i}$ . Repeating this process if
necessary, we finally get a chain which doesn’t contain any projective module,

a contradiction by Lemma 2.

PROOF OF THEOREM 1. Assume that $\pi(M)=X$ with $M$ lying on the com-
ponent of form $Z\vec{\Delta}$ of $\hat{A}$ -mod. Choose a complete slice $S$ of this component

such that $M\in S$ , from the structure of $D^{b}(k\vec{\Delta})$ we know that $S$ is path-closed
in $\hat{A}$ -mod. Let $B$ be the support algebra of $\hat{A}S$ in $\hat{A}$ , where S=add\^AS.

(1) First we claim that $BM$ is directing. Since B-mod is full subcategory

of \^A-mod, it is enough to prove that $M$ is directing in $\hat{A}$ -mod. In the following
we always identify $\hat{A}$ -mod with $D^{b}(k\vec{\Delta})$ . If there is a chain of nonzero non-
isomorphims in $\hat{A}$ -mod $M=X_{0}\rightarrow X_{1}\rightarrow\cdots\rightarrow X_{r}=M$ with $r\geqq 1$ , then by the structcre
of $D^{b}(k\vec{\Delta})$ we have a chain in $D^{b}(k\vec{\Delta})$

$T^{i_{0}}Y_{0}-T^{i_{1}}Y_{1}-\cdots-T^{i_{\Gamma}}Y_{r}=T^{i_{0}}Y_{0}$

with $Y_{i}\in k\vec{\Delta}$-mod for $0\leqq i\leqq r$ , so $i_{0}\leqq i_{l}\cdots\leqq i_{r}=i_{0}$ , therefore we have a chain in
$k\vec{\Delta}$-mod $Y_{0}\rightarrow Y_{1}^{r}\rightarrow\cdots\rightarrow Y_{r}=Y_{0}$ which implies that $Y_{0}$ is not directing. But since
$M=T^{i_{0}}Y_{0}\in S,$ $Y_{0}$ must be preprojective or preinjective $k\vec{\Delta}$-module, which is a
contradiction with above.

(2) Denoting by $Q_{\hat{A}}$ and QB the Gabriel quiver of $\hat{A}$ and $B$ respectively,
we wish to prove that $Q_{B}$ is path-closed in $Q_{\hat{A}}$ . For this let $x\rightarrow\cdots\rightarrow y\rightarrow\cdots\rightarrow z$

be a path in QB with $x,$ $z\in Q_{B}$ , so we have
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$P_{\hat{A}}(x)-\cdots-P_{\hat{A}}(y)-\cdots-P_{\hat{A}}(z)$

and
$I_{\hat{A}}(x)-\cdots-I_{\hat{A}}(y)-\cdots-I_{\hat{A}}(z)$ .

Considering the chain
$f$ $g$

$P_{\hat{A}}(y)/socP_{\hat{A}}(y)-S(y)-radI_{\hat{A}}(y)$ ,

where $topP_{\hat{A}}(y)\simeq S(y)\simeq socI_{\hat{A}}(y)$ . It follows from Lemma 1 that $\underline{f}\neq 0\neq\underline{g}$ in
$D^{b}(k\vec{\Delta})$ . Since $x,$ $z\in Q_{B}$ , we have $P_{\hat{A}}(y)/socP_{\hat{A}}(y)\prec S\prec radI_{\hat{A}}(y)$ .

By the structure of $D^{b}(k\vec{\Delta})$ we know that $S(y)\prec S$ or $S\prec S(y)$ . Assume that
$S(y)\leqq S$ and that $S$ correspond to the all indecomposable projective $k\vec{\Delta}$-modules.
Let $radI_{\hat{A}}(y)=T^{i}Y^{\prime}$ with $Y^{\prime}\in k\vec{\Delta}$-mod, since $S\prec I_{\hat{A}}(y)$ , we have $i\geqq 0$ . If $i>0$ ,

then from the isomorphism

$Hom_{Db(k\vec{\Delta})}(S(y), radI_{\hat{A}}(y))\cong DHom_{D^{b}(k\vec{\Delta})}(T^{-1}\tau^{-1}radI_{\hat{A}}(y), S(y))$

we get

$S\prec T^{-1}radI_{\hat{A}}(y)=T^{i-1}Y^{\prime}\prec T^{-1}\tau^{-1}radI_{\hat{A}}(y)\prec S(y)\leqq S$ ,

hence $T^{-1}radI_{\hat{A}}(y),$ $\tau^{-1}T^{-1}radI_{\hat{A}}(y)\in S$ , which is a contradiction with $S$ being a
complete-slice of the component. So $i=0$ and we have a chain in $\hat{A}$ -mod $ S\rightarrow$

$radI_{\hat{A}}(y)$ which implies $Hom_{\hat{A}}(S, I_{\hat{A}}(y))\neq 0,$ $i$ . $e.,$ $y\in Q_{B}$ .
If $S\prec S(y)$ , we may use $\underline{f}\neq 0$ and get dually the chain $P_{\hat{A}}(y)/socP_{\hat{A}}(y)\rightarrow S$ .
(3) We now prove that $Q_{B}$ is a complete v-slice of $Q_{\hat{A}}$ in the sense of [5].

For this it is enough to prove that for any $a\in Q_{\hat{A}}$ the v-orbit of $a$ contains
only one vertex in $O_{B}$ . If it is not the case, we assume that $a,$ $v^{m}a\in Q_{B},$ $i$ . $e.$ ,

there are $S_{1},$ $S_{2}\in S$ such that

$Hom_{\hat{A}}(P_{\hat{A}}(a)/socP_{\hat{A}}(a), S_{1})\neq 0\neq Hom_{\hat{A}}(P_{\hat{A}}(v^{m}a)/socP_{\hat{A}}(v^{m}a), S_{2})$

then $P_{\hat{A}}(a)/socP_{\hat{A}}(a)=T^{i}X$ with $i=0$ or $-1$ . On the other hand,

$P_{\hat{A}}(v^{m}a)/socP_{\hat{A}}(v^{m}a)=v^{m}(P_{\hat{A}}(a)/socP_{\hat{A}}(a))=\tau^{m}T^{2m+i}X$ .

Let $\tau^{m}T^{2m+i}X=T^{j}Y$ , then $j=0$ or $-1$ , this force $m=-1$ , so we have

$S_{2}\prec I_{\hat{A}}(v^{-1}a)=P_{\hat{A}}(a)\prec S_{1}$

$S_{2}\prec radP_{\hat{A}}(a)\prec P_{\hat{A}}(a)/socP_{\hat{A}}(a)\prec S_{1}$

and then $radP_{\hat{A}}(a),$ $P_{\hat{A}}(a)/socP_{\hat{A}}(a)=\tau^{-1}radP_{\hat{A}}(a)\in S$ since $S$ being path-closed,

this is a contradiction with $S$ being a complete slice of the component of form
$Z\vec{\Delta}$ . This shows that for any $a\in Q_{\hat{A}}$ , the $\tau$-orbit of $v$ contains at most one
vertex in $Q_{B}$ , so it remains to prove that the number of vertices of $Q_{B}$ is not

less than $n$ , where $n$ is the number of vertices of $\vec{\Delta}$ . For this purpose it is
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enough to prove that $BS$ is partial tilting module. First we claim that $p.d$ .
$BS\leqq 1$ , or equivalently that $Hom_{B}(I, \tau_{B}I)=0$ for any indecomposable injective
B-module I. 0therwise, there are $S_{1},$ $S_{2}\in S$ with $S_{1}\rightarrow I\rightarrow\tau_{B}S_{2}\prec S_{2}$ , by Lemma 2
we know this chain can occur in $\hat{A}$ -mod, so we have $\tau_{B}S_{2},$ $I\in S$ and then the
three terms of the $AR$ sequence of B-mod $0\rightarrow\tau_{B}S_{2}\rightarrow*\rightarrow S_{2}\rightarrow 0$ are in $S$ , this
contradicts with the fact that $B$ is the support algebra of $\hat{A}S$ and $S$ is a com-
plete slice. And then we may use Auslander-Reiten formula to show $Ext_{B}^{1}(S, S)$

$=DHom(S, \tau_{B}S)=0$ , hence $BS$ is partial tilting and it follows that $Q_{B}$ is a com-
plete v-slice of $Q_{\hat{A}}$ .

(4) Now suppose that $Y$ is an arbitrary $T(A)$ -module on platform with
$dimY=dimX$ , then $Y=\pi(N)$ for some $N$ lying on the component of form $Z\vec{\Delta}$ .
We may assume that $N$ and $M$ lie in the same v-period. By the above analysis
we know that $N$ is a directing module over some finite-dimenional k-algebra $D$

and $Q_{D}$ is a complete v-reflections. By [5] (Lemma 2.10) we know that $D$ can
be obtained from $B$ by a series of v-reflections. On the other hand, the in-
decomposable D-module which has the same dimension vector with $N$ must be
$DN$ itself, so the number of $T(A)$-modules on platform which the same dimen-
sion vector with $X$ is at most $m$ , where $m$ is the number of all v-reflections
from $B$ within one v-period. Since within one v-period there are just $n$ algebras
which are obtained from $B$ by a series of v-reflections, we have $m=n$ , which
finishes the proof of Theorem 1.

REMARK, We have an example showing that the number of $T(A)$-modules on
platform which have the same dimension vector is $n$ , where $n$ is the vertices
of $A$ .

\S 2. Proof of Theorems 2 and 3.

Let $\Lambda$ be a locally bounded k-algebra and $X,$ $Y$ two $\Lambda$ -modules. Define

$R_{P}^{1}(X, Y)=Hom_{\Lambda}(X, Y)$ ,

$R_{P}^{1}(X, Y)=\{f\in Hom_{\Lambda}(X, Y)/f=\sum_{i}f_{i1}g_{i}$ (for finite $i$),

where $f_{i1}\in R(X, P_{i1}),$ $P_{i1}$ is a projective $\Lambda$ -module}.

In general, for $m>1$ , we define

$R_{P}^{m}(X, Y)=\{f\in Hom_{\Lambda}(X, Y)/f=\sum_{i}f_{i1}\cdots f_{im}g_{i}$ (for finite $i$),

where $f_{i1}\in R(XP_{i1}),$ $\cdots,$ $f_{im}\in R(P_{im-1}, P_{im}),$ $P_{i1},$ $\cdots$ ,

$P_{im}$ are projective modules}.
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LEMMA 4 ([8]). For arbitrary non-negative integer $m$ , there holds

$rad^{m}X/rad^{m+1}X\simeq\bigoplus_{x\in Q_{0}}k_{x}\cdot S(x)$ ,

where $k_{x}=dim_{k}R_{P}^{m}(P(x), M)/R_{P}^{m+1}(P(x), M)$ .

LEMMA 5. Let $\Lambda$ be a locally bounded $selfject\iota ve$ k-algebra.

(1) If $M$ is an $\iota$ ndecomposable non-projective $\Lambda$ -module and $\epsilon;P\rightarrow M$ is the

projective cover of $M$, then $ ker\epsilon$ is indecomposable.

(2) If $N$ is an indecomposable non-projective $\Lambda$ -module and $i:N\rightarrow I$ is the

injective envelope of $N$, then coker $i$ is mdecomposable.

PROOF. (2) is the dual of (1), so we consider (1). Assume $ker\epsilon=\bigoplus_{i=1}^{m}N_{i},$ $N_{i}$

indecomposable for all $i$ . We see that every $N_{i}$ is non-injective since $\epsilon;P\rightarrow M$

is the projective cover. In fact, the natural embedding $ker\epsilon\rightarrow P$ is the injective

envelope, otherwise there is a proper direct summand of $P$ isomorphic to the

injective envelope $I(ker\epsilon)$ of $ker\epsilon$ , and hence $M$ has a projective direct summand,

a contradiction. However, the injective envelope of $ker\epsilon$ is isomorphic to the

direct sum of thase of all $\lambda^{T_{i}}$ , so $M=\bigoplus_{i\Leftarrow 1}^{m}I(N_{j})/N_{i}$ . It follows from the in-

decomposability of $M$ that $m=1$ , which implies that $ker\epsilon$ is indecomposable.

THE PROOF OF THEOREM 3. Let $X$ and $Y$ be $T(A)$-module on platform,

then there are indecomposable non-projective \^A-modules $M,$ $N$ such that $\pi(M)=$

$X,$ $\pi(N)=Y$ with $M,$ $N$ belonging to the $Z\vec{\Delta}$-components of \^A-mod (it is possible

that $M,$ $N$ lie on distinct components). Suppose $S$ is a complete slice of the
ZA-componemt of $\hat{A}$ -mod such that $M\in S$ , without loss of generality, we would

assume that $S\leqq N\prec T^{2}\tau S$ . Now SuppN is divided into two parts, namely,

$\Delta_{1}=\{x\in SuppN/P_{\hat{A}}(x)\leqq S\}$

and
$\Delta_{2}=\{x\in SuppN/P_{\hat{A}}(x)\succ S\}$ .

Let $B$ be the full subcategory of $\hat{A}$ whose object is

$\{x\in\hat{A}/T^{-2}\tau^{-1}S\leqq P(x)\leqq S\}$ ,

then $B$ is the support algebra of modules located in $S$ . It follows from the
proof of Theorem 1 that $B$ is a tilted algebra with $\hat{B}=\hat{A}$ and $T(A)=T(B)$ ,

moreover, we might assert that $B$ is obtained from $A$ by a series of reflections.
Clearly $SuppN\subseteqq B$ , if $\Delta_{2}=\emptyset$ , then $SuppN\subseteqq B$ . Since the covering functor $\pi$

is induced by $T^{2}\tau,$ $M$ and $N$ as B-modules have the same Loewy factors, hence,

the same composition factors. Because $B$ is a tilted algebra and $M$ is directing
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as B-module, we see $M\simeq N$ by [2], therefore $X\simeq Y$ . If $\Delta_{1}=\emptyset$ , we would use
$T^{-2}\tau^{-1}N$ to replace $N$ , this amounts to the situation above.

If $\Delta_{1}\neq\emptyset,$ $\Delta_{2}\neq\emptyset$ , we try to get a contradiction. On account of SuppN
being connected subcategory of $\hat{A}$ , we can find $x_{0}\in\Delta_{1},$ $Sy_{1}\in\Delta_{2}$ and an arrow
$y_{1}\rightarrow x_{0}$ in the Gabriel quiver of SuppN. Assume that all arrows in the Gabriel
quiver of $\hat{A}$ ending at $x_{0}$ are as follows:

where $P(x_{i})\leqq S,$ $i=1,$ $\cdots n$ , $P(y_{i})\succ S,$ $i=i,$ $\cdots m$ . Therefore we have the follow-
ing natural exact sequence

$P(x_{0})-(\bigoplus_{i=1}^{m}P(x_{i}))\oplus(\bigoplus_{i=1}^{m}P(y_{i}))-coker\epsilon-\Rightarrow 0$ .

Noticing that $ Im\epsilon$ is indecomposable for $P(x_{0})$ is the projective cover of $ Im\epsilon$ ;
and that the natural embedding

$Im\epsilon-(\bigoplus_{i=1}^{m}P(x_{i}))\oplus(\bigoplus_{i=1}^{m}P(y_{i}))$

is the injective envelope, we see that $ coker\epsilon$ is indecomposable by Lemma 5, it
follows that the sequence above is the minimal projective presentation of $ coker\epsilon$ .
For $M$ being directing, by [9] the morphism

$(\bigoplus_{i=1}^{n}Hom_{\hat{A}}(P(x_{i}), M))\oplus(\bigoplus_{i=1}^{m}Hom_{\hat{A}}(P(y_{i}), M))Hom_{\hat{A}}(P(x_{0})\underline{\epsilon^{*}}M)$

is epic or mono, however $Hom_{\hat{A}}(P(y_{i}), M)=0$ for $i=1,$ $\cdots$ , $m$ , then

$\bigoplus_{i=1}^{n}Hom(P(x_{i}), M)-Hom_{\hat{A}}(P(y_{0}), M)$

is either epic or mono.
For the same reason, the morphism

$(^{*})$ $(\bigoplus_{i=1}^{n}Hom_{\hat{A}}(P(x_{t}), N))\oplus(\bigoplus_{i=1}^{m}Hom_{\hat{A}}(P(y_{i}), N))-Hom_{\hat{A}}(P(x_{0}), N)$

is either epic or mono.
$1^{0}$ If $\bigoplus_{i=1}^{n}Hom_{\hat{A}}(P(x_{i}), M)\rightarrow Hom_{\hat{A}}(P(x_{0}), M)$ is non-isomorphic and mono, we

know by Lemma 4 that $S(x_{0})$ is a direct summand of topM with multiplicity
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$t=dim_{k}Hom_{\hat{A}}(P(x_{0}), M)-\sum_{i=1}^{n}dim_{k}Hom_{\hat{A}}(P(x_{0}), M)$

$>0$ .

Since there are not $ T^{2}\tau$-conjugated vertices in SuppN and in SuppM, we see
that $dim_{k}Hom_{\hat{A}}(P(x_{0}), M)=d\iota m_{k}Hom_{\hat{A}}(P(x_{i}), N),$ $\forall i=1,$

$\cdots,$ $n$ . If the morphism
$(*)$ is epic, then $S(x_{0})$ is not a direct summand of topN, which contradicts the
fact that $X$ and $Y$ have the same Loewy factors. If $(*)$ is mono, then $S(x_{0})$

is a direct summand of topN with multiplicity

$r=dim_{k}Hom_{\hat{A}}(P(x_{0}), M)-\sum_{i=1}^{m}dim_{k}Hom_{\hat{A}}(P(x_{i}), N)$

$-\sum_{i=1}^{m}dim_{k}Hom_{\hat{A}}(P(y_{i}), N)$ .
However,

$r<dim_{k}Hom_{\hat{A}}(P(x_{0}), N)-\sum_{i=1}^{n}dim_{k}Hom_{\hat{A}}(P(x_{i}), N)$

$=dim_{k}Hom_{\hat{A}}(P(x_{0}), M)-\sum_{i=1}^{n}dim_{k}Hom_{\hat{A}}(P(x_{i}), M)$

$=t$ ,

a contradiction.
$2^{0}$ If $\bigoplus_{i=1}^{n}Hom_{\hat{A}}(P(x_{i}), M)\rightarrow Hom_{\hat{A}}(P(x_{0}), M)$ is epic, considering the longest

path in SuppN ending at $x_{0}$ which is not a zero-relation

$y_{1}^{\prime}-\rightarrow\cdots->y_{1}-\rightarrow x_{0}$ .

It follows from [9] that the natural morphism 1:

$Hom_{\hat{A}}(P(y_{1}^{\prime}), N)-\cdots-Hom_{\hat{A}}(P(y_{1}), N)-Hom_{\hat{A}}(P(x_{0}), N)$

$-Hom_{\hat{A}}(P(x_{0}), N)$

is non-zero. Hence there exists $f\in Hom_{A}(P(y_{1}^{\prime}), N)$ satisfying $1(f)\neq 0$ . Since
this non-zero path is the longest one, $f$ can be no longer factor through any
projective \^A-module. By Lemma 4, $S(y_{1}^{\prime})$ is a direct summand of topN, hence
we can conclude that $S(vy_{1}^{\prime})$ is a direct summand of topM. We know by [9]

that the natural morphism $Hom_{A}(P(x_{0}), M)\rightarrow Hom_{A}(P(vy_{1}^{\prime}), M)$ is mono or epic,
therefore it must be non-isomorphic and mono by Lemma 4. Assume that the
arrows in SuppN ending at $y_{1}^{\prime}$ are as follows:
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then $S(y_{1}^{\prime})$ is a direct summand of topN with multiplicity $dim_{k}Hom_{A}(P(y_{1}^{\prime}), N)-$

$\Sigma^{q_{i=1}}dim_{k}Hom_{A}(P(z_{i}), N)>0$ . Owing to $x_{0}\in A_{?}\subseteqq SuppN$, it bears $x_{0}\not\in\{vz_{i}\}^{q_{i=1}}$ .
Similarly we can show that

$(\bigoplus_{i=1}^{q}Hom_{A}(P(vz_{i}), M))\oplus Hom_{A}(P(x_{0}), M)-Hom_{A}(P(vy_{1}^{\prime}), M)$

is non-isomorphic and mono and $S(vy_{1}^{\prime})$ is a direct summand of topN with mul-
tiplicity $s$ :

$s<dim_{k}Hom_{A}(P(vy_{1}^{\prime}), M)-\sum_{i=1}^{q}dim_{k}Hom_{A}(P(vz_{i}), M)$

$=dim_{k}Hom_{A}(P(y_{1}^{\prime}), N)-\sum_{ir1}^{q}dim_{k}Hom_{A}(P(z_{i}), N)$ ,

which contradicts the hypothesis that $X$ and $Y$ have the same Loewy factors.
Up to now we finish the proof of (2) $\Rightarrow(1)$ . The proof of (3) $\Rightarrow(1)$ is similar.

PROOF OF THEORDM 2. Let $X$ and $Y$ be two $T(A)$-modules on platform

with $topX\simeq topY$ and $socX\simeq socY$ . Suppose that $M,$ $N,$ $B$ are same as above,

from the proof of Theorem 3 we know that $M$ and $N$ are both B-modules, and
as B-modules they have the same top and socle. Since both $M$ and $N$ are
directing B-modules, we have $M\simeq N$ by [2], it follows that $X\simeq Y$ .

COROLLARY. Let $A$ be an iterated tilted algeba, $X$ and Y $T(A)$-modules on
platform, then the following are equivalent;

(1) $X\simeq Y$

(2) $dimX=dimY$ , to $pX\simeq topY$

(3) $dimX=dimY$ , $socsX\simeq ocY$

REMARK. (1) We know that every non-projective indecomposable module

over a representation-finite trivial extension algebra is a module on platform.
So the conclusions of Theorems 2 and 3 in [10] are contained in the results of
this article.

(2) At last we leave a space to explain the fact that no directing module
exists over a finite-dimensional selfinjective algebra $\Lambda$ . In fact, let $P_{1}$ be a
direct summand of the projective cover of an indecompossable module $M$ and
$P_{2}$ be a direct summand of an injective envelope of $M$ . It is not difficult to see
that arbitrary two vertices in the Gabriel quiver $Q_{\Lambda}$ of $\Lambda$ belong to a cycle

path of $Q_{\Lambda}$ , therefore $P_{2}\prec P_{1}\prec M\prec P_{2},$ $i$ . $e.,$ $M$ is not directing.
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