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IDEMPOTENT RINGS WHICH ARE EQUIVALENT
TO RINGS WITH IDENTITY

By

J. L. GARCIA1

Let $A$ be a ring such that $A=A^{2}$ , but which does not necessarily have an
identity element. In studying properties of the ring $A$ through properties of
its modules, it is pointless to consider the category A-MOD of all the left A-
modules: for instance, every abelian group -with trivial multiplication- is in
A-MOD. The natural choice for an interesting category of left A-modules
seems to be the following: if a left A-module $AM$ is unital when $AM=M$, and
is A-torsionfree when the annihilator $tM(A)$ is zero, then A-mod will be the
full subcategory of A-MOD whose objects are the unital and A-torsionfree left
A-modules. The category A-mod appears in a number of papers (for instance,

[7-9]) and when $A$ has local units $[1, 2]$ or is a left s-unital ring $[6, 12]$ , then
the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck
category and we study here the question of finding necessary and sufficient
conditions on the ring $A$ for A-mod to be equivalent to a category R-mod of
modules over a ring with 1. This was already considered for rings with local
units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is
therefore more general.

In this paper, all rings will be associative rings, but we do not assume
that they have an identity. $A$ ring $A$ has local units [2] when for every finite
family $a_{1},$ $\cdots$ . $a_{n}$ of elements of $A$ there is an idempotent $e\in A$ such that $ea_{j}=$

$a_{j}=a_{j}e$ for all $j=1,$ $\cdots$ , $n$ . $A$ left A-module $M$ is said to be unital if $M$ has
a spanning set (that is, if $AM=M$); and $M$ has a finite spanning set when
$M=\Sigma Ax_{i}$ for a finite family of elements $x_{1},$ $\cdots,$ $x_{n}$ of $M$. The module $AM$

will be called A-torsionfree when $tM(A)=0$ . $A$ ring $A$ is said to be left nonde-
generate if the left module $AA$ is A-torsionfree, and $A$ is nondegenerate when
it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with
local units is nondegenerate. The ring $A$ will be called (left) s-unital [12] in
case for each $a\in A$ (equivalently, for every finite family $a_{1},$ $\cdots,$ $a_{n}$ of elements
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of $A$) there is some $u\in A$ such that $ua=a$ (respectively, $ua_{i}=a_{i}$ , for all i): see
[12, Theorem 1]. Any left s-unital ring is idempotent and left nondegenerate.

We will say that a ring $A$ is generated by the element $a\in A$ in case $A=$

$AaA$ . The above mentioned results of Abrams and \’Anh-M\’arki [1], [2], and Koma-
tsu [6] may be stated as follows: if $A$ has local units, then A-mod is equivalent
to a category of modules over a ring with 1 if and only if $A$ is generated by an
idempotent $e$ [ $2$ , Proposition 3.5]; if $A$ is left e-unital and A-mod is equivalent
to the category of left modules over a ring with 1, then $A$ is generated by some
element $a$ [ $6$ , Proposition 4.7].

In the sequel, we will be dealing with left modules, and so we follow the
convention of denoting the composition $g\circ f$ of two module homomorphisms as
the product $fg$ . On the other hand, if $R$ is a ring with 1, $RM$ is a left R-
module and $E=End(RM)$ is its endomorphism ring, then we will denote by
$E_{0}=fEnd(RM)$ the following subring -in general, without identity-of $E:E_{0}=$

{ $f\in E|f:M\rightarrow M$ factors through a finitely generated free module}.
We now state and prove the following result.

THEOREM. Let $A$ be an idempotent ring. Then the category A-mod is eqi-
valent to the category R-mod of left modules over a ring $R$ with 1 if and only

if there is some integer $n\geqq 1$ such that the matrix ring $M_{n}(A)$ is generated by
an idempotent.

PROOF. We divide the proof in several steps.

Step 1. For any idempotent ring $A$ , let us put $ann(A)=\{x\in A|AxA=0\}$

and $A^{\prime}:=A/ann(A)$ . Then $A^{\prime}$ is a nondegenerate idempotent ring and A-mod
and $A^{\prime}$ -mod are equivalent categories.

The fact that $A^{\prime}$ is nondegenerate is easy to verify. On the other hand,

if $\epsilon;A\rightarrow A^{\prime}$ is the canonical projection, then one may see that the restriction
of scalars functor $\epsilon_{*}$ gives indeed a functor from A’-mod to A-mod. Now, if
$AM$ belongs to A-mod and $a\in ann(A)$ , then $AaM=AaAM=0$ , so that $ aM\subseteqq$

$tM(A)$ , and $aM=0$ , because $M$ is A-torsionfree. As a consequence, there is a
functor $F:A- mod\rightarrow A^{\prime}$-mod which views each $AM$ of A-mod as a left A’-module.
Then $F$ and $\epsilon_{*}$ are inverse equivalences and hence A-mod and A’-mod are
equivalent categories.

Step 2. For each $n\geqq 1$ , let $\Delta$ be the matrix ring $M_{n}(A)$ . Then A-mod and
$\Delta$-mod are also equivalent categories.

To see this, consider the bimodules $A(A^{n})_{\Delta}$ and $\Delta(A^{n})_{A}$ , and the natural
mappings $\Phi$ : $A^{n}\otimes_{A}A^{n}\rightarrow\Delta,$ $\Psi:A^{n}\otimes_{\Delta}A^{n}\rightarrow A$ . It is clear that they are bimodule
homomorphisms which give a Morita context between $A$ and $\Delta$ (if we represent
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elements in $A(A^{n})_{\Delta}$ in row form, and elements of $\Delta(A^{n})_{A}$ in column form, then
$\Phi$ and $\Psi$ are induced by products of matrices). Also, the fact that $A$ is idem-
potent allows us to deduce that $\Phi$ and $\Psi$ are surjective. Then, by [7, Theorem],

A-mod and $\Delta$-mod are equivalent categories.
Step 3. We prove now the sufficiency of the condition of the Theorem.

Assume that $\Delta=M_{n}(A)$ is generated by an idempotent. By step 1, $\Delta$ is equi-
valent to $\Delta^{\prime}=\Delta/ann(\Delta)$ . But $\Delta=\Delta e\Delta$ for the idempotent $e$ implies that $\Delta^{\prime}=$

$\Delta^{\prime}e^{\prime}\Delta^{\prime}$ for the idempotent $e^{\prime}=e+ann(\Delta)$ ; so, we can assume that $\Delta$ is a nonde-
generate ring. Then $\Delta$ belongs to the category $\Delta$-mod and is a generator of
this category. But $\Delta(\Delta e)$ generates $\Delta$ , so that it is also a generator of $\Delta- mod$ .
$\Delta e$ , being finitely spanned, is clearly a finitely generated object of $\Delta- mod [11$ ,

p. 121]. Finally, let $p:Y\rightarrow X$ be an epimorphism in $\Delta$-mod, and put $U={\rm Im} p$ ,

$V=X/U,$ $W=V/t\gamma(A)$ . Then $W$ belongs to $\Delta$-mod and hence the canonical
projection from $X$ to $W$ must be $0$ ; thus, $\Delta V=0$ and $X=U$ , so that $p$ is a
surjective homomorphism. If $f:\Delta e\rightarrow X$ is now a homomorphism, then $f(e)=ea$

for some $a\in X$ , and $\alpha(e):=ey$ , with $y$ such that $p(y)=ea$ , gives a morphism
$\alpha$ with $f=\alpha\cdot p$ . This shows that $\Delta e$ is projective. It follows that $\Delta$-mod is
equivalent to the category of left modules over the ring $End_{\Delta}(\Delta e)\cong e\Delta e$ . By

step 2, $A$ is equivalent to a ring with 1.
Step 4. Let us now suppose that $A$ is an idempotent and left nondegenerate

ring and that there is an equivalence $F:A- mod\rightarrow R- mod,$ $R$ being a ring with
1. We are to show that $M_{n}(A)$ is generated by an idempotent, for some $n\geqq 1$ .

By [4, Theorem 2.4], there exists a generator $RM$ of R-mod with the
property that, if $E=End(RM)$ , and $E_{0}=fEnd(pM)$ , then $A$ is isomorphic to
some right ideal $T$ of $E_{0}$ such that $E_{0}T=E_{0}$ .

We now point out that we can further assume that there is an epimorphism

of left R-modules $\pi;M\rightarrow R$ . Indeed, this is true for some $M^{k}$ , and we put

$S:=End(RM^{k}),$ $S_{0}$ $:=fEnd(RM^{k})$ , so that there is an isomorphism $S\cong M_{k}(E)$ .
We assert that, in this isomorphism, $S_{0}\cong M_{k}(E_{0})$ ; in fact, the inclusion $ S_{0}\subseteqq$

$M_{k}(E_{0})$ is obvious, and the inclusion $M_{k}(E_{0})\subseteqq S_{0}$ depends on the easily verified
fact that morphisms $M^{r}\rightarrow M$ or $M\rightarrow M^{s}$ factor through free modules of finite
type whenever they are induced by endomorphisms of $RM$ belonging to $E_{0}$ . By

substituting $M^{k},$ $S$ and $S_{0}$ for $M,$ $E$ and $E_{0}$ , we have that the matrix ring
$M_{k}(A)$ is still (isomorphic to) a right ideal of $S_{0}$ in such a way that -assuming

the obvious identification- $S_{0}\cdot M_{k}(A)=S_{0}$ . So, by replacing $A$ by $M_{k}(A)$ if

necessary (note that $M_{k}(A)$ is again idempotent and left nondegenerate), we
may indeed assume that $\pi:M\rightarrow R$ is an epimorphism.

Let $x\in M$ be such that $\pi(x)=1$ . Since $E_{0}A=E_{0}$ and $\Sigma_{\sigma\in E_{0}}{\rm Im}\sigma=M$ we
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deduce that $\Sigma_{\sigma\in A}{\rm Im}\sigma=M$. Therefore there exists a homomorphism $\alpha:M^{n}\rightarrow$

$M$ such that $ x\in{\rm Im}\alpha$ ; and each component $\alpha_{j};=\mu_{j}\cdot\alpha$ , with $\mu_{j}$ : $M\rightarrow M^{n}$ being
the canonical inclusion, satisfies $\alpha_{j}\in A$ . So we have that $\alpha\cdot\pi:M^{n}\rightarrow R$ is an
epimorphism and hence there is $g:R\rightarrow M^{n}$ with $g\alpha\pi=1_{R}$ and $\alpha\pi g=e$ an
idempotent in the ring End $(RM^{n})\cong M_{n}(E)$ . Moreover, each of the components
of $e$ , when considered as a matrix, consists of $\mu_{j}\alpha\pi gp_{k}=\alpha_{j}(\pi gp_{k})\in\alpha_{j}E\subseteqq A$

(where the $p_{k}$ are the canonical projections $M^{n}\rightarrow M$). This means that $e\in M_{n}(A)$ .
As before, we may put $S:=End(RM^{n})\cong M_{n}(E),$ $S_{0}$ $;=fEnd(RM^{n})\cong M_{n}(E_{0})$

so that $M_{n}(A)$ is an idempotent right ideal in $S_{0}$ which satisfies $S_{0}M_{n}(A)=S_{0}$ .
Thus, $e$ is an idempotent element in $M_{n}(A)\subseteqq S_{0}$ and is an endomorphism of $M^{n}$

such that $1me$ is a direct aummand of $M^{n}$ isomorphic to $R$ . Consequently, ${\rm Im} e$

generates $M^{n}$ and hence, if we let $t$ range over all the elements in $eS_{0}$ , we
have $\Sigma_{t}{\rm Im} t=M^{n}$ . This shows that $eS_{0}$ is a right ideal of $S$ which satisfies
$M^{n}\cdot(eS_{0})=M^{n}$ . If we apply now [5, Proposition 2.5], we see that this implies
$S_{0}eS_{0}=S_{0}$ .

Since $A=A^{2},$ $M_{n}(A)\cdot S_{0}=M_{n}(A)$ and so we have: $M_{n}(A)\cdot e\cdot M_{n}(A)=M_{n}(A)$ .
$S_{0}e\cdot S_{0}=M_{n}(A)\cdot S_{0}=M_{n}(A)$ . This proves that $M_{n}(A)$ is generated by an idem-
potent element.

Step 5. Now we complete the proof of the Theorem. Let $A$ be an idem-
potent ring (but not necessarily left nondegenerate), and assume that there is
an equivalence of categories between A-mod and R-mod for $R$ a ring with 1.
Put $tA(A)=\{a\in A|Aa=0\}$ , and $A^{*}=A/t_{A(A)}$ . In a way analogous to that of
Step 1, we may show that $A$ and $A^{*}$ are equivalent rings, so that we can
deduce from stea 4, that for some $n\geqq 1$ , the matrix ring $M_{n}(A^{*})$ is generated by
an idempotent. Thus, all that is left to show is that this property can be lifted
from $M_{n}(A^{*})$ to $M_{n}(A)$ . But we have that $M_{n}(A^{*})=M_{n}(A/tA(A))\cong(M_{n}(A))/$

( $M_{n}(t_{A(A)))}$ , and this last quotient is nothing else than $M_{n}(A)/t\kappa_{n^{(A)}}(M_{n}(A))$ ,

that is, $(M_{n}(A))^{*}$ . Therefore, it will suffice to prove that if a ring of the form
$A^{*}=A/\iota_{A(A)}$ is generated by an idempotent, then so is the ring $A$ .

So, let us assume that $A^{*}=A^{*}\cdot e\cdot A^{*}$ for some idempotent $e$ . There is $ u\in$

$A$ with $u+t_{A}(A)=e$ , and then $u^{2}-u\in t_{A}(A)$ , from which we see that $u^{3}=u^{2}=u^{4}$ .
Therefore, $w=u^{2}$ is an idempotent of $A$ such that $w+t_{A}(A)=e$ . Now, let $a$ ,
$b\in A$ ; by hypothesis, $b+t_{A}(A)=\Sigma\alpha_{j}\cdot e\cdot\beta_{j}$ in the ring $A^{*}$ , so that $ b-\Sigma a_{j}\cdot w\cdot b_{j}\in$

$t_{A}(A)$ , for some $a_{j}$ and $b_{j}$ in $A$ . Then $ab=\Sigma aa_{j}wb_{j}$ and $ab\in AwA$ . But since
$A$ is idempotent, we have finally that $A=AwA$ and $A$ is generated by an
idempotent.

REMARKS. 1) It follows from the Theorem that an idempotent ring $A$
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which is equivalent to a ring with 1 must be finitely generated as a bimodule
over $A$ : the coordinates of the idempotent matrix $e$ in the adequate $M_{n}(A)$ give
the family of generators. When $A$ is left s-unital this gives as a consequence
the already mentioned result of Komatsu [6, Proposition 4.7]. If $A$ has local
units, we get [2, Proposition 3.5].

2) However, the condition that $A$ be finitely generated as a bimodule over
itself is not sufficient for $A$ to be equivalent to a ring with 1. To see this,

take a ring $A$ such that $A=A^{2},$ $A$ is finitely generated as an $A-A$-bimodule,

is nondegenerate and coincides with its Jacobson radical (Sasiada’s example
[10, p. 314] of a simple radical ring fulfills these requirements). It is not
difficult to show that the Jacobson radical of such a ring is the intersection of
all the subobjects of $A$ in A-mod which give a simple quotient of $A$ in A-mod,

so that $A$ has no simple quotients in A-mod. Suppose that the category A-mod
were equivalent to R-mod for $R$ a ring with 1. Then, if $RM$ corresponds to
$A$ in this equivalence, we would have that $RM$ is a generator of R-mod without
simple quotients. But this is absurd, since $R$ is isomorphic to a summand of
some $M^{k}$ .

3) It may happen that $A$ be an idempotent ring such that A-mod is equi-

valent to a category R-mod for a ring $R$ with 1 but, nevertheless, $A$ is not
generated by an idempotent. For instance, let $R$ be a simple domain which
is not a division ring and let $I$ be a right ideal of $R$ such that $I\neq 0,$ $I\neq R$ .
Then $RI=R,$ $I=IR=I^{2}$ and $I$ is a faithful right ideal of $R$ , so that we can
view $I$ as a left nondegenerate and idempotent ring contained in $R=fEnd(RR)$ .
By [4, Theorem 2.4], we see that I-mod is equivalent to the category R-mod.
But $I$ contains no idempotent other than $0$ , so that $I$ is not generated by an
idempotent.
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