IDEMPOTENT RINGS WHICH ARE EQUIVALENT TO RINGS WITH IDENTITY

By

J. L. GARCIA¹

Let A be a ring such that $A=A^2$, but which does not necessarily have an identity element. In studying properties of the ring A through properties of its modules, it is pointless to consider the category A-MOD of all the left Amodules: for instance, every abelian group -with trivial multiplication- is in A-MOD. The natural choice for an interesting category of left A-modules seems to be the following: if a left A-module $_{A}M$ is unital when AM = M, and is A-torsionfree when the annihilator $r_{M}(A)$ is zero, then A-mod will be the full subcategory of A-MOD whose objects are the unital and A-torsionfree left A-modules. The category A-mod appears in a number of papers (for instance, [7-9] and when A has local units [1, 2] or is a left s-unital ring [6, 12], then the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck category and we study here the question of finding necessary and sufficient conditions on the ring A for A-mod to be equivalent to a category R-mod of modules over a ring with 1. This was already considered for rings with local units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is therefore more general.

In this paper, all rings will be associative rings, but we do not assume that they have an identity. A ring A has local units [2] when for every finite family a_1, \dots, a_n of elements of A there is an idempotent $e \in A$ such that $ea_j = a_j = a_j e$ for all $j=1, \dots, n$. A left A-module M is said to be unital if M has a spanning set (that is, if AM=M); and M has a finite spanning set when $M=\sum Ax_i$ for a finite family of elements x_1, \dots, x_n of M. The module $_AM$ will be called A-torsionfree when $_{M}(A)=0$. A ring A is said to be left nondegenerate if the left module $_AA$ is A-torsionfree, and A is nondegenerate when it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with local units is nondegenerate. The ring A will be called (left) s-unital [12] in case for each $a \in A$ (equivalently, for every finite family a_1, \dots, a_n of elements

Received March 25, 1991, Revised November 1, 1991.

¹ With partial support from the D.G.I.C.Y.T. of Spain (PB 87-0703)

of A) there is some $u \in A$ such that ua = a (respectively, $ua_i = a_i$, for all i): see [12, Theorem 1]. Any left s-unital ring is idempotent and left nondegenerate.

We will say that a ring A is generated by the element $a \in A$ in case A = AaA. The above mentioned results of Abrams and Ánh-Márki [1], [2], and Komatsu [6] may be stated as follows: if A has local units, then A-mod is equivalent to a category of modules over a ring with 1 if and only if A is generated by an idempotent e [2, Proposition 3.5]; if A is left e-unital and A-mod is equivalent to the category of left modules over a ring with 1, then A is generated by some element a [6, Proposition 4.7].

In the sequel, we will be dealing with left modules, and so we follow the convention of denoting the composition $g \circ f$ of two module homomorphisms as the product fg. On the other hand, if R is a ring with 1, $_{R}M$ is a left R-module and $E = \text{End}(_{R}M)$ is its endomorphism ring, then we will denote by $E_{0} = f \text{End}(_{R}M)$ the following subring -in general, without identity- of $E: E_{0} = \{f \in E \mid f: M \to M \text{ factors through a finitely generated free module}\}$.

We now state and prove the following result.

THEOREM. Let A be an idempotent ring. Then the category A-mod is eqivalent to the category R-mod of left modules over a ring R with 1 if and only if there is some integer $n \ge 1$ such that the matrix ring $M_n(A)$ is generated by an idempotent.

PROOF. We divide the proof in several steps.

Step 1. For any idempotent ring A, let us put $ann(A) = \{x \in A | AxA = 0\}$ and A' := A/ann(A). Then A' is a nondegenerate idempotent ring and A-mod and A'-mod are equivalent categories.

The fact that A' is nondegenerate is easy to verify. On the other hand, if $\varepsilon: A \rightarrow A'$ is the canonical projection, then one may see that the restriction of scalars functor ε_* gives indeed a functor from A'-mod to A-mod. Now, if $_AM$ belongs to A-mod and $a \in \operatorname{ann}(A)$, then AaM = AaAM = 0, so that $aM \subseteq$ $_{M}(A)$, and aM = 0, because M is A-torsionfree. As a consequence, there is a functor F: A-mod $\rightarrow A'$ -mod which views each $_AM$ of A-mod as a left A'-module. Then F and ε_* are inverse equivalences and hence A-mod and A'-mod are equivalent categories.

Step 2. For each $n \ge 1$, let Δ be the matrix ring $M_n(A)$. Then A-mod and Δ -mod are also equivalent categories.

To see this, consider the bimodules ${}_{A}(A^{n})_{\mathcal{A}}$ and ${}_{\mathcal{A}}(A^{n})_{\mathcal{A}}$, and the natural mappings $\Phi: A^{n}\otimes_{\mathcal{A}}A^{n}\rightarrow \Delta, \Psi: A^{n}\otimes_{\mathcal{A}}A^{n}\rightarrow A$. It is clear that they are bimodule homomorphisms which give a Morita context between A and Δ (if we represent

elements in ${}_{A}(A^{n})_{\Delta}$ in row form, and elements of ${}_{\Delta}(A^{n})_{A}$ in column form, then Φ and Ψ are induced by products of matrices). Also, the fact that A is idempotent allows us to deduce that Φ and Ψ are surjective. Then, by [7, Theorem], A-mod and Δ -mod are equivalent categories.

Step 3. We prove now the sufficiency of the condition of the Theorem. Assume that $\Delta = M_n(A)$ is generated by an idempotent. By step 1, Δ is equivalent to $\Delta' = \Delta/\operatorname{ann}(\Delta)$. But $\Delta = \Delta e \Delta$ for the idempotent e implies that $\Delta' = \Delta' e' \Delta'$ for the idempotent $e' = e + \operatorname{ann}(\Delta)$; so, we can assume that Δ is a nondegenerate ring. Then Δ belongs to the category Δ -mod and is a generator of this category. But $_d(\Delta e)$ generates Δ , so that it is also a generator of Δ -mod. Δe , being finitely spanned, is clearly a finitely generated object of Δ -mod [11, p. 121]. Finally, let $p: Y \to X$ be an epimorphism in Δ -mod, and put $U = \operatorname{Im} p$, V = X/U, $W = V/_{W}(A)$. Then W belongs to Δ -mod and hence the canonical projection from X to W must be 0; thus, $\Delta V = 0$ and X = U, so that p is a surjective homomorphism. If $f: \Delta e \to X$ is now a homomorphism, then f(e) = ea for some $a \in X$, and $\alpha(e) := ey$, with y such that p(y) = ea, gives a morphism α with $f = \alpha \cdot p$. This shows that Δe is projective. It follows that Δ -mod is equivalent to the category of left modules over the ring $\operatorname{End}_d(\Delta e) \cong e\Delta e$. By step 2, A is equivalent to a ring with 1.

Step 4. Let us now suppose that A is an idempotent and left nondegenerate ring and that there is an equivalence $F: A \text{-mod} \rightarrow R \text{-mod}$, R being a ring with 1. We are to show that $M_n(A)$ is generated by an idempotent, for some $n \ge 1$.

By [4, Theorem 2.4], there exists a generator $_{R}M$ of R-mod with the property that, if $E = \text{End}(_{R}M)$, and $E_{0} = f \text{End}(_{R}M)$, then A is isomorphic to some right ideal T of E_{0} such that $E_{0}T = E_{0}$.

We now point out that we can further assume that there is an epimorphism of left *R*-modules $\pi: M \to R$. Indeed, this is true for some M^k , and we put $S:=\operatorname{End}_{R}M^k$, $S_0:=f\operatorname{End}_{R}M^k$, so that there is an isomorphism $S\cong M_k(E)$. We assert that, in this isomorphism, $S_0\cong M_k(E_0)$; in fact, the inclusion $S_0\subseteq M_k(E_0)$ is obvious, and the inclusion $M_k(E_0)\subseteq S_0$ depends on the easily verified fact that morphisms $M^r \to M$ or $M \to M^s$ factor through free modules of finite type whenever they are induced by endomorphisms of $_RM$ belonging to E_0 . By substituting M^k , S and S_0 for M, E and E_0 , we have that the matrix ring $M_k(A)$ is still (isomorphic to) a right ideal of S_0 in such a way that -assuming the obvious identification- $S_0 \cdot M_k(A) = S_0$. So, by replacing A by $M_k(A)$ if necessary (note that $M_k(A)$ is again idempotent and left nondegenerate), we may indeed assume that $\pi: M \to R$ is an epimorphism.

Let $x \in M$ be such that $\pi(x)=1$. Since $E_0A=E_0$ and $\sum_{\sigma \in E_0} \text{Im } \sigma = M$ we

deduce that $\sum_{\sigma \in A} \operatorname{Im} \sigma = M$. Therefore there exists a homomorphism $\alpha \colon M^n \to M$ such that $x \in \operatorname{Im} \alpha$; and each component $\alpha_j \coloneqq \mu_j \cdot \alpha$, with $\mu_j \colon M \to M^n$ being the canonical inclusion, satisfies $\alpha_j \in A$. So we have that $\alpha \cdot \pi \colon M^n \to R$ is an epimorphism and hence there is $g \colon R \to M^n$ with $g\alpha\pi = 1_R$ and $\alpha\pi g = e$ an idempotent in the ring $\operatorname{End}(_R M^n) \cong M_n(E)$. Moreover, each of the components of e, when considered as a matrix, consists of $\mu_j \alpha \pi g p_k = \alpha_j (\pi g p_k) \in \alpha_j E \subseteq A$ (where the p_k are the canonical projections $M^n \to M$). This means that $e \in M_n(A)$.

As before, we may put $S := \operatorname{End}_{\mathbb{R}} M^n) \cong M_n(E)$, $S_0 := f \operatorname{End}_{\mathbb{R}} M^n) \cong M_n(E_0)$ so that $M_n(A)$ is an idempotent right ideal in S_0 which satisfies $S_0 M_n(A) = S_0$. Thus, e is an idempotent element in $M_n(A) \subseteq S_0$ and is an endomorphism of M^n such that Im e is a direct aummand of M^n isomorphic to R. Consequently, Im egenerates M^n and hence, if we let t range over all the elements in eS_0 , we have $\sum_t \operatorname{Im} t = M^n$. This shows that eS_0 is a right ideal of S which satisfies $M^n \cdot (eS_0) = M^n$. If we apply now [5, Proposition 2.5], we see that this implies $S_0 eS_0 = S_0$.

Since $A=A^2$, $M_n(A) \cdot S_0 = M_n(A)$ and so we have: $M_n(A) \cdot e \cdot M_n(A) = M_n(A) \cdot S_0 e \cdot S_0 = M_n(A) \cdot S_0 = M_n(A)$. This proves that $M_n(A)$ is generated by an idempotent element.

Step 5. Now we complete the proof of the Theorem. Let A be an idempotent ring (but not necessarily left nondegenerate), and assume that there is an equivalence of categories between A-mod and R-mod for R a ring with 1. Put ${}_{i_A}(A) = \{a \in A | Aa = 0\}$, and $A^* = A/{}_{i_A}(A)$. In a way analogous to that of Step 1, we may show that A and A^* are equivalent rings, so that we can deduce from stea 4, that for some $n \ge 1$, the matrix ring $M_n(A^*)$ is generated by an idempotent. Thus, all that is left to show is that this property can be lifted from $M_n(A^*)$ to $M_n(A)$. But we have that $M_n(A^*) = M_n(A/{}_{i_A}(A)) \cong (M_n(A))/(M_n({}_{i_A}(A)))$, and this last quotient is nothing else than $M_n(A)/{}_{i_M}{}_{n(A)}(M_n(A))$, that is, $(M_n(A))^*$. Therefore, it will suffice to prove that if a ring of the form $A^* = A/{}_{i_A}(A)$ is generated by an idempotent, then so is the ring A.

So, let us assume that $A^* = A^* \cdot e \cdot A^*$ for some idempotent e. There is $u \in A$ with $u + \iota_A(A) = e$, and then $u^2 - u \in \iota_A(A)$, from which we see that $u^3 = u^2 = u^4$. Therefore, $w = u^2$ is an idempotent of A such that $w + \iota_A(A) = e$. Now, let a, $b \in A$; by hypothesis, $b + \iota_A(A) = \sum \alpha_j \cdot e \cdot \beta_j$ in the ring A^* , so that $b - \sum a_j \cdot w \cdot b_j \in \iota_A(A)$, for some a_j and b_j in A. Then $ab = \sum a a_j w b_j$ and $ab \in AwA$. But since A is idempotent, we have finally that A = AwA and A is generated by an idempotent.

REMARKS. 1) It follows from the Theorem that an idempotent ring A

which is equivalent to a ring with 1 must be finitely generated as a bimodule over A: the coordinates of the idempotent matrix e in the adequate $M_n(A)$ give the family of generators. When A is left s-unital this gives as a consequence the already mentioned result of Komatsu [6, Proposition 4.7]. If A has local units, we get [2, Proposition 3.5].

2) However, the condition that A be finitely generated as a bimodule over itself is not sufficient for A to be equivalent to a ring with 1. To see this, take a ring A such that $A=A^2$, A is finitely generated as an A-A-bimodule, is nondegenerate and coincides with its Jacobson radical (Sasiada's example [10, p. 314] of a simple radical ring fulfills these requirements). It is not difficult to show that the Jacobson radical of such a ring is the intersection of all the subobjects of A in A-mod which give a simple quotient of A in A-mod, so that A has no simple quotients in A-mod. Suppose that the category A-mod were equivalent to R-mod for R a ring with 1. Then, if $_RM$ corresponds to A in this equivalence, we would have that $_RM$ is a generator of R-mod without simple quotients. But this is absurd, since R is isomorphic to a summand of some M^* .

3) It may happen that A be an idempotent ring such that A-mod is equivalent to a category R-mod for a ring R with 1 but, nevertheless, A is not generated by an idempotent. For instance, let R be a simple domain which is not a division ring and let I be a right ideal of R such that $I \neq 0$, $I \neq R$. Then RI=R, $I=IR=I^2$ and I is a faithful right ideal of R, so that we can view I as a left nondegenerate and idempotent ring contained in $R=f \operatorname{End}(_RR)$. By [4, Theorem 2.4], we see that I-mod is equivalent to the category R-mod. But I contains no idempotent other than 0, so that I is not generated by an idempotent.

References

- [1] G.D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), 801-837.
- [2] P.N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16.
- [3] M. Beattie, A generalization of the smash product of a graded ring, J. Pure Appl. Algebra 52 (1988), 219-226.
- [4] J.L. García, The characterization problem for endomorphism rings, J. Austral. Math. Soc. (Series A), 50 (1991), 116-137.
- [5] J.L. García and M. Saorín, Endomorphism rings and category equivalences, J. Algebra 127 (1989), 182-205.
- [6] H. Komatsu, The category of s-unital modules, Math. J. Okayama Univ. 28 (1986), 65-91.

J. L. GARCIA

- [7] S. Kyuno, Equivalence of module categories, Math. J. Okayama Univ. 28 (1986), 147-150.
- [8] N. Nobusawa, *l'*-Rings and Morita equivalence of rings, Math. J. Okayama Univ. 26 (1984), 151-156.
- [9] M. Parvathi and A. Ramakrishna Rao, Morita equivalence for a larger class of rings, Publ. Math. Debrecen 35 (1988), 65-71.
- [10] L. H. Rowen, Ring Theory, Vol. 1, Academic Press, Boston, 1988.
- [11] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin/Heidelberg/New York, 1975.
- [12] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

Departamento de Matemáticas Universidad de Murcia 30001 Murcia, Spain