# IDEMPOTENT RINGS WHICH ARE EQUIVALENT TO RINGS WITH IDENTITY 

By<br>J. L. Garcia ${ }^{1}$

Let $A$ be a ring such that $A=A^{2}$, but which does not necessarily have an identity element. In studying properties of the ring $A$ through properties of its modules, it is pointless to consider the category $A$-MOD of all the left $A$ modules: for instance, every abelian group -with trivial multiplication- is in $A$-MOD. The natural choice for an interesting category of left $A$-modules seems to be the following: if a left $A$-module ${ }_{A} M$ is unital when $A M=M$, and is $A$-torsionfree when the annihilator ${ }_{\imath_{M}}(A)$ is zero, then $A$-mod will be the full subcategory of $A$-MOD whose objects are the unital and $A$-torsionfree left $A$-modules. The category $A$-mod appears in a number of papers (for instance, [7-9]) and when $A$ has local units [1,2] or is a left $s$-unital ring [6, 12], then the objects of $A$-mod are the unital left $A$-modules. $A$-mod is a Grothendieck category and we study here the question of finding necessary and sufficient conditions on the ring $A$ for $A$-mod to be equivalent to a category $R$-mod of modules over a ring with 1 . This was already considered for rings with local units in [1], [2] or [3], and for left $s$-unital rings in [6]. Our situation is therefore more general.

In this paper, all rings will be associative rings, but we do not assume that they have an identity. $A$ ring $A$ has local units [2] when for every finite family $a_{1}, \cdots, a_{n}$ of elements of $A$ there is an idempotent $e \in A$ such that $e a_{j}=$ $a_{j}=a_{j} e$ for all $j=1, \cdots, n$. $A$ left $A$-module $M$ is said to be unital if $M$ has a spanning set (that is, if $A M=M$ ); and $M$ has a finite spanning set when $M=\sum A x_{i}$ for a finite family of elements $x_{1}, \cdots, x_{n}$ of $M$. The module ${ }_{A} M$ will be called $A$-torsionfree when $\tau_{M}(A)=0$. $A$ ring $A$ is said to be left nondegenerate if the left module ${ }_{A} A$ is $A$-torsionfree, and $A$ is nondegenerate when it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with local units is nondegenerate. The ring $A$ will be called (left) $s$-unital [12] in case for each $a \in A$ (equivalently, for every finite family $a_{1}, \cdots, a_{n}$ of elements

[^0]of $A$ ) there is some $u \in A$ such that $u a=a$ (respectively, $u a_{i}=a_{i}$, for all i): see [12, Theorem 1]. Any left $s$-unital ring is idempotent and left nondegenerate.

We will say that a ring $A$ is generated by the element $a \in A$ in case $A=$ Aa A. The above mentioned results of Abrams and Ánh-Márki [1], [2], and Komatsu [6] may be stated as follows: if $A$ has local units, then $A$-mod is equivalent to a category of modules over a ring with 1 if and only if $A$ is generated by an idempotent $e$ [2, Proposition 3.5]; if $A$ is left $e$-unital and $A$-mod is equivalent to the category of left modules over a ring with 1 , then $A$ is generated by some element $a$ [6, Proposition 4.7].

In the sequel, we will be dealing with left modules, and so we follow the convention of denoting the composition $g \circ f$ of two module homomorphisms as the product $f g$. On the other hand, if $R$ is a ring with $1,{ }_{R} M$ is a left $R$ module and $E=\operatorname{End}\left({ }_{R} M\right)$ is its endomorphism ring, then we will denote by $E_{0}=f \operatorname{End}\left({ }_{R} M\right)$ the following subring -in general, without identity- of $E: E_{0}=$ $\{f \in E \mid f: M \rightarrow M$ factors through a finitely generated free module .

We now state and prove the following result.
Theorem. Let $A$ be an idempotent ring. Then the category $A$-mod is eqivalent to the category $R$-mod of left modules over a ring $R$ with 1 if and only if there is some integer $n \geqq 1$ such that the matrix ring $M_{n}(A)$ is generated by an idempotent.

Proof. We divide the proof in several steps.
Step 1. For any idempotent ring $A$, let us put $\operatorname{ann}(A)=\{x \in A \mid A x A=0\}$ and $A^{\prime}:=A / \operatorname{ann}(A)$. Then $A^{\prime}$ is a nondegenerate idempotent ring and $A$-mod and $A^{\prime}-\bmod$ are equivalent categories.

The fact that $A^{\prime}$ is nondegenerate is easy to verify. On the other hand, if $\varepsilon: A \rightarrow A^{\prime}$ is the canonical projection, then one may see that the restriction of scalars functor $\varepsilon_{*}$ gives indeed a functor from $A^{\prime}$-mod to $A$-mod. Now, if ${ }_{A} M$ belongs to $A$-mod and $a \in \operatorname{ann}(A)$, then $A a M=A a A M=0$, so that $a M \subseteq$ ${ }_{{ }^{2} M}(A)$, and $a M=0$, because $M$ is $A$-torsionfree. As a consequence, there is a functor $F: A$-mod $\rightarrow A^{\prime}-\bmod$ which views each ${ }_{A} M$ of $A$-mod as a left $A^{\prime}$-module. Then $F$ and $\varepsilon_{*}$ are inverse equivalences and hence $A$-mod and $A^{\prime}$-mod are equivalent categories.

Step 2. For each $n \geqq 1$, let $\Delta$ be the matrix ring $M_{n}(A)$. Then $A$-mod and $\Delta$-mod are also equivalent categories.

To see this, consider the bimodules $A_{A}\left(A^{n}\right)_{\Delta}$ and ${ }_{\Delta}\left(A^{n}\right)_{A}$, and the natural mappings $\Phi: A^{n} \otimes_{A} A^{n} \rightarrow \Delta, \Psi: A^{n} \bigotimes_{\Delta} A^{n} \rightarrow A$. It is clear that they are bimodule homomorphisms which give a Morita context between $A$ and $\Delta$ (if we represent
elements in ${ }_{A}\left(A^{n}\right)_{\Delta}$ in row form, and elements of ${ }_{\Delta}\left(A^{n}\right)_{A}$ in column form, then $\Phi$ and $\Psi$ are induced by products of matrices). Also, the fact that $A$ is idempotent allows us to deduce that $\Phi$ and $\Psi$ are surjective. Then, by [7, Theorem], $A$-mod and $\Delta$-mod are equivalent categories.

Step 3. We prove now the sufficiency of the condition of the Theorem. Assume that $\Delta=M_{n}(A)$ is generated by an idempotent. By step $1, \Delta$ is equivalent to $\Delta^{\prime}=\Delta / \operatorname{ann}(\Delta)$. But $\Delta=\Delta e \Delta$ for the idempotent $e$ implies that $\Delta^{\prime}=$ $\Delta^{\prime} e^{\prime} \Delta^{\prime}$ for the idempotent $e^{\prime}=e+\operatorname{ann}(\Delta)$; so, we can assume that $\Delta$ is a nondegenerate ring. Then $\Delta$ belongs to the category $\Delta$-mod and is a generator of this category. But $\Delta(\Delta e)$ generates $\Delta$, so that it is also a generator of $\Delta$-mod. $\Delta e$, being finitely spanned, is clearly a finitely generated object of $\Delta$-mod [11, p. 121]. Finally, let $p: Y \rightarrow X$ be an epimorphism in $\Delta$-mod, and put $U=\operatorname{Im} p$, $V=X / U, W=V /{ }_{r_{V}}(A)$. Then $W$ belongs to $\Delta-\bmod$ and hence the canonical projection from $X$ to $W$ must be 0 ; thus, $\Delta V=0$ and $X=U$, so that $p$ is a surjective homomorphism. If $f: \Delta e \rightarrow X$ is now a homomorphism, then $f(e)=e a$ for some $a \in X$, and $\alpha(e):=e y$, with $y$ such that $p(y)=e a$, gives a morphism $\alpha$ with $f=\alpha \cdot p$. This shows that $\Delta e$ is projective. It follows that $\Delta$-mod is equivalent to the category of left modules over the ring End ${ }_{\Delta}(\Delta e) \cong e \Delta e$. By step $2, A$ is equivalent to a ring with 1 .

Step 4. Let us now suppose that $A$ is an idempotent and left nondegenerate ring and that there is an equivalence $F: A$-mod $\rightarrow R$-mod, $R$ being a ring with 1. We are to show that $M_{n}(A)$ is generated by an idempotent, for some $n \geqq 1$.

By [4, Theorem 2.4], there exists a generator ${ }_{R} M$ of $R$-mod with the property that, if $E=\operatorname{End}\left({ }_{R} M\right)$, and $E_{0}=f \operatorname{End}\left({ }_{R} M\right)$, then $A$ is isomorphic to some right ideal $T$ of $E_{0}$ such that $E_{0} T=E_{0}$.

We now point out that we can further assume that there is an epimorphism of left $R$-modules $\pi: M \rightarrow R$. Indeed, this is true for some $M^{k}$, and we put $S:=\operatorname{End}\left({ }_{R} M^{k}\right), S_{0}:=f \operatorname{End}\left({ }_{R} M^{k}\right)$, so that there is an isomorphism $S \cong M_{k}(E)$. We assert that, in this isomorphism, $S_{0} \cong M_{k}\left(E_{0}\right)$; in fact, the inclusion $S_{0} \cong$ $M_{k}\left(E_{0}\right)$ is obvious, and the inclusion $M_{k}\left(E_{0}\right) \subseteq S_{0}$ depends on the easily verified fact that morphisms $M^{r} \rightarrow M$ or $M \rightarrow M^{s}$ factor through free modules of finite type whenever they are induced by endomorphisms of ${ }_{R} M$ belonging to $E_{0}$. By substituting $M^{k}, S$ and $S_{0}$ for $M, E$ and $E_{0}$, we have that the matrix ring $M_{k}(A)$ is still (isomorphic to) a right ideal of $S_{0}$ in such a way that -assuming the obvious identification- $S_{0} \cdot M_{k}(A)=S_{0}$. So, by replacing $A$ by $M_{k}(A)$ if necessary (note that $M_{k}(A)$ is again idempotent and left nondegenerate), we may indeed assume that $\pi: M \rightarrow R$ is an epimorphism.

Let $x \in M$ be such that $\pi(x)=1$. Since $E_{0} A=E_{0}$ and $\sum_{\sigma \in E_{0}} \operatorname{Im} \sigma=M$ we
deduce that $\sum_{\sigma \in A} \operatorname{Im} \sigma=M$. Therefore there exists a homomorphism $\alpha: M^{n} \rightarrow$ $M$ such that $x \in \operatorname{Im} \alpha$; and each component $\alpha_{j}:=\mu_{j} \cdot \alpha$, with $\mu_{j}: M \rightarrow M^{n}$ being the canonical inclusion, satisfies $\alpha_{j} \in A$. So we have that $\alpha \cdot \pi: M^{n} \rightarrow R$ is an epimorphism and hence there is $g: R \rightarrow M^{n}$ with $g \alpha \pi=1_{R}$ and $\alpha \pi g=e$ an idempotent in the ring $\operatorname{End}\left({ }_{R} M^{n}\right) \cong M_{n}(E)$. Moreover, each of the components of $e$, when considered as a matrix, consists of $\mu_{j} \alpha \pi g p_{k}=\alpha_{j}\left(\pi g p_{k}\right) \in \alpha_{j} E \subseteq A$ (where the $p_{k}$ are the canonical projections $M^{n} \rightarrow M$ ). This means that $e \in M_{n}(A)$.

As before, we may put $S:=\operatorname{End}\left({ }_{R} M^{n}\right) \cong M_{n}(E), S_{0}:=f \operatorname{End}\left({ }_{R} M^{n}\right) \cong M_{n}\left(E_{0}\right)$ so that $M_{n}(A)$ is an idempotent right ideal in $S_{0}$ which satisfies $S_{0} M_{n}(A)=S_{0}$. Thus, $e$ is an idempotent element in $M_{n}(A) \subseteq S_{0}$ and is an endomorphism of $M^{n}$ such that $\operatorname{Im} e$ is a direct aummand of $M^{n}$ isomorphic to $R$. Consequently, $\operatorname{Im} e$ generates $M^{n}$ and hence, if we let $t$ range over all the elements in $e S_{0}$, we have $\Sigma_{t} \operatorname{Im} t=M^{n}$. This shows that $e S_{0}$ is a right ideal of $S$ which satisfies $M^{n} \cdot\left(e S_{0}\right)=M^{n}$. If we apply now [5, Proposition 2.5], we see that this implies $S_{0} e S_{0}=S_{0}$.

Since $A=A^{2}, M_{n}(A) \cdot S_{0}=M_{n}(A)$ and so we have: $M_{n}(A) \cdot e \cdot M_{n}(A)=M_{n}(A)$. $S_{0} e \cdot S_{0}=M_{n}(A) \cdot S_{0}=M_{n}(A)$. This proves that $M_{n}(A)$ is generated by an idempotent element.

Step 5. Now we complete the proof of the Theorem. Let $A$ be an idempotent ring (but not necessarily left nondegenerate), and assume that there is an equivalence of categories between $A$-mod and $R-\bmod$ for $R$ a ring with 1 . Put ${ }_{{ }^{A}}(A)=\{a \in A \mid A a=0\}$, and $A^{*}=A /{ }_{\imath_{A}}(A)$. In a way analogous to that of Step 1, we may show that $A$ and $A^{*}$ are equivalent rings, so that we can deduce from stea 4 , that for some $n \geqq 1$, the matrix ring $M_{n}\left(A^{*}\right)$ is generated by an idempotent. Thus, all that is left to show is that this property can be lifted from $M_{n}\left(A^{*}\right)$ to $M_{n}(A)$. But we have that $M_{n}\left(A^{*}\right)=M_{n}\left(A / r_{A}(A)\right) \cong\left(M_{n}(A)\right) /$ $\left(M_{n}\left({ }_{2} A(A)\right)\right.$, and this last quotient is nothing else than $M_{n}(A) /{ }_{{ }^{M}}{ }_{n}(A)\left(M_{n}(A)\right)$, that is, $\left(M_{n}(A)\right)^{*}$. Therefore, it will suffice to prove that if a ring of the form $A^{*}=A /{ }_{{ }_{A}}(A)$ is generated by an idempotent, then so is the ring $A$.

So, let us assume that $A^{*}=A^{*} \cdot e \cdot A^{*}$ for some idempotent $e$. There is $u \in$ $A$ with $u+\imath_{A}(A)=e$, and then $u^{2}-u \in_{z_{A}}(A)$, from which we see that $u^{3}=u^{2}=u^{4}$. Therefore, $w=u^{2}$ is an idempotent of $A$ such that $w+r_{A}(A)=e$. Now, let $a$, $b \in A$; by hypothesis, $b+{ }_{{ }_{A}}(A)=\sum \alpha_{j} \cdot e \cdot \beta_{j}$ in the ring $A^{*}$, so that $b-\Sigma a_{j} \cdot w \cdot b_{j} \in$ ${ }_{2}(A)$, for some $a_{j}$ and $b_{j}$ in $A$. Then $a b=\sum a a_{j} w b_{j}$ and $a b \in A w A$. But since $A$ is idempotent, we have finally that $A=A w A$ and $A$ is generated by an idempotent.

Remarks. 1) It follows from the Theorem that an idempotent ring $A$
which is equivalent to a ring with 1 must be finitely generated as a bimodule over $A$ : the coordinates of the idempotent matrix $e$ in the adequate $M_{n}(A)$ give the family of generators. When $A$ is left $s$-unital this gives as a consequence the already mentioned result of Komatsu [6, Proposition 4.7]. If $A$ has local units, we get [2, Proposition 3.5].
2) However, the condition that $A$ be finitely generated as a bimodule over itself is not sufficient for $A$ to be equivalent to a ring with 1 . To see this, take a ring $A$ such that $A=A^{2}, A$ is finitely generated as an $A-A$-bimodule, is nondegenerate and coincides with its Jacobson radical (Sasiada's example [10, p. 314] of a simple radical ring fulfills these requirements). It is not difficult to show that the Jacobson radical of such a ring is the intersection of all the subobjects of $A$ in $A$-mod which give a simple quotient of $A$ in $A$-mod, so that $A$ has no simple quotients in $A$-mod. Suppose that the category $A$-mod were equivalent to $R$-mod for $R$ a ring with 1 . Then, if ${ }_{R} M$ corresponds to $A$ in this equivalence, we would have that ${ }_{R} M$ is a generator of $R$-mod without simple quotients. But this is absurd, since $R$ is isomorphic to a summand of some $M^{k}$.
3) It may happen that $A$ be an idempotent ring such that $A$-mod is equivalent to a category $R$-mod for a ring $R$ with 1 but, nevertheless, $A$ is not generated by an idempotent. For instance, let $R$ be a simple domain which is not a division ring and let $I$ be a right ideal of $R$ such that $I \neq 0, I \neq R$. Then $R I=R, I=I R=I^{2}$ and $I$ is a faithful right ideal of $R$, so that we can view $I$ as a left nondegenerate and idempotent ring contained in $R=f \operatorname{End}\left({ }_{R} R\right)$. By [4, Theorem 2.4], we see that $I$-mod is equivalent to the category $R$-mod. But $I$ contains no idempotent other than 0 , so that $I$ is not generated by an idempotent.

## References

[1] G.D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), 801-837.
[2] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16.
[3] M. Beattie, A generalization of the smash product of a graded ring, J. Pure Appl. Algebra 52 (1988), 219-226.
[4] J. L. García, The characterization problem for endomorphism rings, J. Austral. Math. Soc. (Series A), 50 (1991), 116-137.
[5] J. L. García and M. Saorín, Endomorphism rings and category equivalences, J. Algebra 127 (1989), 182-205.
[6] H. Komatsu, The category of $s$-unital modules, Math. J. Okayama Univ. 28 (1986), 65-91.
[7] S. Kyuno, Equivalence of module categories, Math. J. Okayama Univ. 28 (1986), 147-150.
[8] N. Nobusawa, $\Gamma$-Rings and Morita equivalence of rings, Math. J. Okayama Univ. 26 (1984), 151-156.
[9] M. Parvathi and A. Ramakrishna Rao, Morita equivalence for a larger class of rings, Publ. Math. Debrecen 35 (1988), 65-71.
[10] L. H. Rowen, Ring Theory, Vol. 1, Academic Press, Boston, 1988.
[11] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin/Heidelberg/New York, 1975.
[12] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

## Departamento de Matemáticas <br> Universidad de Murcia <br> 30001 Murcia, Spain


[^0]:    Received March 25, 1991, Revised November 1, 1991.
    ${ }^{1}$ With partial support from the D.G.I.C.Y.T. of Spain (PB 87-0703)

