A CLASS OF MULTIVALENT FUNCTIONS

By
Mamoru Nunokawa

1. Introduction.

Let $A(p)$ be the class of functions of the form

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in N=1,2,3, \cdots)
$$

which are analytic in $U=\{z| | z \mid<1\}$.
A function $f(z) \in A(p)$ is said to be p-valently starlike iff

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } U
$$

We denote by $S(p)$ the subclass of $A(p)$ consisting of functions which are p-valently starlike in U. Further, a function in $A(p)$ is said to be p-valently convex iff

$$
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { in } U
$$

Also we denote by $C(p)$ the subclass of $A(p)$ consisting of all p-valently convex functions in U.

MacGregor [2] investigated the class of functions which are analytic in U, $f(0)=f^{\prime}(0)-1=0$ and satisfy the condition

$$
\left|f^{\prime}(z)-1\right|<1 \quad \text { in } U
$$

Let F denote the class of functions which satisfy the above conditions.
MacGregor [2, Theorem 6] obtained the following result:
Theorem A. If $f(z) \in F$, then $f(z)$ is starlike in $|z|<\sqrt{4 / 4} \doteqdot 0.894$.
Nunokawa [4] and Nunokawa, Fukui, Owa, Saitoh and Sekine [6] improved Theorem A. Mocanu [3] showed that there is a function $f(z) \in A(1)$ which is a member of F but not starlike in $|z|<1$.

Theorem B. If $f(z) \in F$, then $f(z)$ is starlike in $|z|<r_{1}<1$, where r_{1} is the Received March 6, 1991, Revised January 27, 1992.
root of the equation

$$
\log \left(9-4 r^{2}+4 r^{3}-r^{4}\right)-\log 9\left(1-r^{2}\right)+\sin ^{-1} r=\pi
$$

that is $r_{1} \doteqdot 0.934$.
A proof of Theorem B can be found in [6, Corollary].

2. Main theorem.

In this paper, we need the following lemmata.
Lemma 1. Let $w(z)$ be analytic in the unit disk U, with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r$ at a point z_{0}, then we can write

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where k is a real number and $k \geqq 1$.
A proof can be found in [1].
Applying Lemma 1, we can obtain the following lemma.
Lemma 2. Let $p(z)$ be analytic in $U, p(0)=1$ and suppose that
(1)

$$
\left|p(z)+z p^{\prime}(z)-1\right|<\sqrt{2} \quad \text { in } U .
$$

Then we have

$$
|p(z)-1|<\frac{\sqrt{2}}{2} \quad \text { in } U
$$

and

$$
|\arg p(z)|<\frac{\pi}{4} \quad \text { in } U
$$

Proof. Putting

$$
p(z)=1+\frac{\sqrt{2}}{2} w(z)
$$

then $w(z)$ is analytic in U and $w(0)=0$. If there exists a point $z_{0} \in U$ such that

$$
\max _{|z| \leqq \mid z_{0}}|w(z)|=\left|w\left(z_{0}\right)\right| \geqq 1
$$

then from Lemma 1, we nave

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), \quad(k \geqq 1) .
$$

Then w have

$$
\begin{aligned}
& \left|p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right)-1\right|=\frac{\sqrt{2}}{2}\left|w\left(z_{0}\right)+k w\left(z_{0}\right)\right| \\
& \quad=\frac{\sqrt{2}}{2}\left|w\left(z_{0}\right)\right|(1+k) \geqq \frac{\sqrt{2}}{2}(1+k) \geqq \sqrt{2} .
\end{aligned}
$$

This contradicts (1). Therefore we have

$$
|w(z)|<1 \quad \text { in } U
$$

This shows that

$$
|p(z)-1|<\frac{\sqrt{2}}{2} \quad \text { in } U
$$

and therefore we have

$$
|\arg p(z)|<\frac{\pi}{4} \quad \text { in } U
$$

This completes our proof.
Applying the same method as in the proof of [5, Lemma 6 and Theorem 5], we can easily obtain the following lemma.

Lemma 3. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies the condition

$$
\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } U
$$

then we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } U
$$

Main theorem. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies the condition

$$
\begin{equation*}
\left|f^{(p)}(z)-p!\right|<\sqrt{2}(p!) \quad \text { in } U, \tag{2}
\end{equation*}
$$

then $f(z)$ is p-valently starlike in U.
Proof. Let us put

$$
\begin{equation*}
p(z)=\frac{f^{(p-1)}(z)}{p!z}, \quad(p(0)=1) . \tag{3}
\end{equation*}
$$

Then we have

$$
p(z)+z p^{\prime}(z)-1=\frac{f^{(p)}(z)}{p!}-1
$$

and from the hypothesis (2), we have

$$
\left|p(z)+z p^{\prime}(z)-1\right|<\sqrt{2} \quad \text { in } U .
$$

Then, from Lemma 2 and (3), we have

$$
\begin{equation*}
|\arg p(z)|=\left|\arg \frac{f^{(p-1)}(z)}{p!z}\right|=\left|\arg \frac{f^{(p-1)}(z)}{z}\right|<\frac{\pi}{4} \quad \text { in } U \tag{4}
\end{equation*}
$$

Applying the same idea as in the proof of [7, Theorem 1] and integrating on the line segment from 0 to z, we have

$$
\begin{align*}
\frac{f^{(p-2)}(z)}{z^{2}} & =\frac{1}{z^{2}} \int_{0}^{z} f^{(p-1)}(t) d t \tag{5}\\
& =\frac{1}{r^{2}} \int_{0}^{r} \frac{f^{(p-1)}(t)}{t} \rho d \rho
\end{align*}
$$

where $z=r e^{i \theta}, 0<r<1, t=\rho e^{i \theta}$ and $0 \leqq \rho \leqq r$.
From (4), we have

$$
\begin{equation*}
\left|\arg \frac{f^{(p-1)}(t)}{t} \rho\right|=\left|\arg \frac{f^{(p-1)}(t)}{t}\right|<\frac{\pi}{4} \quad \text { in } U . \tag{6}
\end{equation*}
$$

Applying the same idea as in the proof of [8, Lemma 1] and since $s=$ $f^{(p-1)}(t) / t$ lies in the convex sector $\{|\arg s|<\pi / 4\}$, then from (5) and (6), the same is true of its integral mean value of (5).

Therefore, we have

$$
\begin{align*}
& \left|\arg \frac{f^{(p-2)}(z)}{z^{2}}\right|=\left|\arg \frac{1}{r^{2}} \int_{0}^{r} \frac{f^{(p-1)}(t)}{t} \rho d \rho\right| \tag{7}\\
& \quad=\left|\arg \int_{0}^{r} \frac{f^{(p-1)}(t)}{t} \rho d \rho\right|<\frac{\pi}{4} \quad \text { in } U .
\end{align*}
$$

From (4) and (7), we have

$$
\begin{aligned}
& \left|\arg \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}\right|=\left|\arg \frac{f^{(p-1)}(z)}{z} \frac{z^{2}}{f^{(p-2)}(z)}\right| \\
& \quad \leqq\left|\arg \frac{f^{(p-1)}(z)}{z}\right|+\left|\arg \frac{f^{(p-1)}(z)}{z^{2}}\right|<\frac{\pi}{2} \quad \text { in } U .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } U \tag{8}
\end{equation*}
$$

From Lemma 3 and (8), we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } U
$$

This completes our proof.
From the main theorem, we easily have the following corollary.
Corollary 1. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies the condition

$$
\begin{equation*}
\left|z f^{(p+1)}(z)+p f^{(p)}(z)-p(p!)\right|<\sqrt{2} p(p!) \quad \text { in } U \tag{9}
\end{equation*}
$$

then $f(z)$ is p-valently convex in U.
Proof. Putting

$$
g(z)=\frac{z f^{\prime}(z)}{p}
$$

then $g(z)$ is a function of $A(p)$.
From the hypothesis (9) and the main theorem, we have that $g(z)$ is p valently starlike in U. Therefore, $f(z)$ is p-valently convex in U.

This completes our proof.

Corollary 2. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies the condition

$$
\begin{equation*}
\left|f^{(p+1)}(z)\right|<\sqrt{2}(p!) \quad \text { in } U \tag{10}
\end{equation*}
$$

then, $f(z)$ is p-valently starlike in U.
Proof. By an easy calculation and from (10), we have

$$
\begin{aligned}
& \left|f^{(p)}(z)-p!\right|=\left|\int_{0}^{z} f^{(p+1)}(t) d t\right| \\
& \quad \leqq \int_{0}^{r}\left|f^{(p+1)}(t)\right| d \rho<\sqrt{2}(p!)|z|<\sqrt{2}(p!)
\end{aligned}
$$

where $|z|=r<1$ and $0 \leqq|t|=\rho<r$.
From the main theorem, $f(z)$ is p-valently starlike in U.
This completes our proof.

Remark 1. It is easily confirmed that the function

$$
f(z)=z^{p}+\frac{p!e^{-\alpha}}{\alpha^{p}} \sqrt{2}\left\{e^{\alpha z}-\sum_{k=0}^{p} \frac{(\alpha z)^{k}}{k!}\right\}
$$

satisfies the conditions (2) and (10), therefore $f(z)$ is p-valently starlike in U. On the other hand, the function

$$
g(z)=z^{p}+\int_{0}^{z} \frac{p!e^{-\alpha}}{t \alpha^{p}}\left(e^{\alpha t}-\sum_{k=0}^{p} \frac{(\alpha t)^{k}}{k!}\right) d t
$$

satisfies the condition (9), therefore $g(z)$ is p-valently convex in U.
Remark 2. To prove the main theorem, we have to obtain

$$
\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } U
$$

Therefore we have to suppose $p \geqq 2$.
On the other hand, it is easily confirmed that the function

$$
f(z)=z+\frac{\sqrt{2}}{2} z^{2} \in A(1)
$$

satisfies the condition

$$
\left|f^{\prime}(z)-1\right|<\sqrt{2} \quad \text { in } U,
$$

but $f(z)$ is not starlike in U.
This shows that the main theorem does not hold good for the case $p=1$.

Acknowledgement. The author appreciates the helpful comments made by the referee.

References

[1] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971) 469-474.
[2] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[3] P.T. Mocanu, Some starlikeness conditions for analytic functions, Rev. Roumaine Math. Pures Appl., 33 (1988), 117-124.
[4] M. Nunokawa, On the radius of starlikeness of a class of univalent functions (Japanese), Sugaku, 31 (1979), 255-256.
[5] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math., 11(2) (1987), 273-286.
[6] M. Nunokawa, S. Fukui, S. Owa, H. Saitoh and T. Sekine, On the starlikeness bound of univalent functions, Math. Japonica, 33(5) (1988), 763-767.
[7] M. Nunokawa, S. Owa and H. Saitoh, On certain p-valently starlikeness conditions for analytic functions, Research Institute for Mathematical Sciences, Kyoto Univ. Kokyuroku, 714 (1990), 133-136.
[8] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc., 114 (1965), 176-186.

> Department of Mathematics University of Gunma
> Aramaki, Maebashi 371
> Japan

