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1. Introduction.

This paper deals with the Dirichlet problem

(1) $-\sum_{i.j=n}^{n}D_{j}(a_{ij}(x, u)D_{i}u)+c(x)u=b(x, u, Du)$ in $Q$ ,

(2) $u(x)=\phi(x)$ on $\partial Q$ ,

in a bounded domain $Q\subset R_{n}$ with the boundary $\partial Q$ of class $C^{2}$ and a function
$\phi$ which, in general, is not a trace of an element from the space $W^{1.2}(Q)$ . We
consider two cases: $\phi\in L^{\infty}(\partial Q)$ (Section 3 and 4) and $\phi\in L^{2}(\partial Q)$ (Section 5).

In case where $\phi\in L^{\infty}(\partial Q)$ we establish some existence theorems for the
problem (1), (2) under the assumption that the nonlinearity $b(x, u, p)$ grows
quadratically in $p$ . In recent years the problem (1), (2), with the nonlinearity
$b$ growing quadratically in $p$ , has attracted some interest (see [1], [2], [7] and
the references given there). In paper [1] the existence result was established
in the space $\mathring{W}^{1.2}(Q)\cap L^{\infty}(Q)$ (that is, $\phi\equiv 0$ on $\partial Q$ ). The results of [2] show
that under suitable assumptions on $b(x, u, p)$ one can also obtain unbounded
solutions in $\mathring{W}^{1.2}(Q)$ . The use of a weighted Sobolev space in [7] allowed one
to obtain an existence theorem for the problem (1), (2) with $\phi\in L^{\infty}(\partial Q)$ . In the
case where $\phi\in L^{2}(\partial Q)$ , we assume that the nonlinearity has a linear growth in
$p$ . The present paper is a generalization of [7].

The paper is organized as follows. In Section 2 we assemble definitions,
assumptions and some terminology adopted in this work. Lemma 1, proved in
this section, justifies our approach to the problem (1), (2) with the nonlinearity
growing quadratlcally in $p$ . Section 3 contains the main existence result of
this paper which is closely related to Theorem 2.1 in [1] and Theorem 2 in
[7]. The existence result in [1] was proved for more general quasilinear
elliptic equations under the assumption of the existence of bounded sub and
supersolutions but it can be applied only to the boundary data from $H^{1/2}(\partial Q)$ .
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The paper [7] contains some generalizations of this result for the problem (1),

(2) with $\phi$ in $L^{\infty}(\partial Q)$ . The method used in this paper requires the existence
of bounded sequences of sub and supersolutions. The aim of this section is to
relax this hypothesis by requiring the local boundedness of sequences of sub
and supersolutions. In Section 4 we briefly discuss the existence of positive
solutlons of the problem (1), (2) with $a_{ij}$ depending also on a gradient of $u$ .
In the final Sectlon 5, we solve the Dirichlet problem with the $L^{2}$-boundary
data. Finally, we point out that the methods used in this paper are not new
and have appeared in [1], [2], [7], [8] and [12].

2. Preliminaries.

Throughout this paper we make the following assumptI.ons:
(A) There exists a constant $\gamma>0$ such that

$\gamma^{-1}|\xi|^{2}\leqq\sum_{i.j=1}^{n}a_{ij}(x, t)\xi_{i}\xi_{j}\leqq\gamma|\xi|^{2}$

for all $\xi\in R_{n}$ and $(x, t)\in Q\times R$ . We also assume that $a_{ij}\in C(\mathfrak{H}\times R),$ $a_{ij}=a_{ji}$

( $i,$ $j=1,$ $\cdots$ , n) and that $a_{ij}(\cdot, t)\in C^{1}(\overline{Q})$ for each $t\in R$ with bounded partial

derivatives $D_{i}a_{if}(x, t)$ on $\overline{Q}\times R(i, j=1, \cdots, n)$ . Moreover, we assume that
ce $L^{\infty}(Q)$ .

(B) The nonlinearity $b(x, t, p)$ satisfies the Carath\’eodory conditions, $i.e$ .
(i) for each $(t, p)\in R\times R_{n}$ , the function $x\rightarrow b(x, t, p)$ is measurable on $Q$ .
(ii) for $a.e$ . $x\in Q$ , the function $(t, p)\rightarrow b(x, t, p)$ is continuous on $R\times R_{n}$ .
We also assume there exlst a constant $B>0$ and a non-negative function

$f\in L^{\infty}(Q)$ such that

(3) $|b(x, t, p)|\leqq f(x)+B(|t|^{r}+|p|^{2})$

for all $(x, t, p)\in Q\times R\times R_{n}$ and some $0\leqq r<1$ .
We briefly recall that a function $u\in W_{1\dot{o}c}^{12}(Q)$ is said to be a weak solution

of (1) if $u$ satisfies

(4) $\int_{Q}(\sum_{i.j\Rightarrow 1}^{n}a_{ij}(x, u)D_{i}uD_{j}v+c(x)uv)dx=\int_{Q}b(x, u, Du)vdx$

for every $v\in C^{1}(Q)$ wlth compact support in $Q$ .
In Sections 3 and 4 we consider the Dirichlet problem (1), (2) with $\phi\in$

$L^{\infty}(\partial Q)$ . In general, functions from $L^{\infty}(\partial Q)$ are not traces of elements from
$W^{1.2}(Q)$ . Therefore we cannot expect a solution of (1), (2) to belong to $W^{1.2}(Q)$

The results of papers [3], [4], [5], [6], [7], [18] and [19] show that the
suitable Sobolev space in our situation ls
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$\tilde{W}^{1.2}(Q)=\{u;ueW_{1\dot{O}C}^{12}(Q)$ and $\int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx<\infty\}$ ,

where $r(x)=dist(x, \partial Q)$ , equipped with the norm

$\Vert u\Vert_{\tilde{W}^{1,2}(Q)}^{2}=\int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx$ .

The explain in what sense the solution recovers the boundary function $\phi$ , we
need some definitions and terminology.

It follows from the regularity of the boundary $\partial Q$ that there is a number
$\delta_{0}>0$ such that for $\delta e(O, \delta_{0}$] the domain

$Q_{\delta}=Q\cap\{x;\min_{y\in\partial Q}|x-y|>\delta\}$

with the boundary $\partial Q_{\delta}$ possesses the following property: to each $x_{0}\in\partial Q$ there
is a unique $x_{\delta}(x_{0})\in\partial Q_{\delta}$ such that $x_{\delta}(x_{0})=x_{0}-\delta\nu(x_{0})$ , where $\nu(x_{0})$ is the out-
ward normal to $\partial Q$ at $x_{0}$ , The above relation gives a one-to-one mapping of
class $C^{1}$ , of $\partial Q$ onto $\partial Q_{\delta}$ .

According to Lemma 14.16 in [10], the distance $r(x)$ belongs to $C^{2}(\mathcal{G}-Q_{\delta_{0}})$

if $\delta_{0}$ is sufficiently small. We denote by $\rho(x)$ the extension of the function
$r(x)$ into $\overline{Q}$ satisfying the following properties: $\rho(x)=r(x)$ for $x\in\overline{Q}-Q_{\delta_{0}},$ $\rho e$

$C^{2}(\overline{Q}),$ $\rho(x)\geqq 3\delta_{0}/4$ in $Q_{\delta_{0}},$ $\gamma_{1}^{-1}r(x)\leqq\rho(x)\leqq\gamma_{1}r(x)$ in $Q$ for some constant $\gamma_{1}>0$ ,
$\partial Q_{\delta}=\{x;\rho(x)=\delta\}$ for $\delta e(O, \delta_{0}$] and finally $\partial Q=\{x;\rho(x)=0\}$ .

We need the following result whlch justifies our approach to the Dirichlet
problem (1), (2).

LEMMA 1. Let $u$ be a weak solution in $W_{1o^{\prime}c}^{12}(Q)$ of (1) such that

(5) $\int_{Q}|Du(x)|^{2}(u(x)^{2}+1)r(x)dx+\int_{Q}u(x)^{2}dx<\infty$ ,

then there exists $\zeta\in L^{2}(\partial Q)$ such that

$\lim_{\delta\rightarrow 0}\int_{\partial Q}(u(x_{\delta}(x))-\zeta(x))^{2}dS_{x}=0$ .

PROOF. First we observe that by the hypothesis (5), $u$ belongs to $\pi_{(Q)}1.2$

The same result was proved in [5] (see Theorem 2) under the assumptlon that
$b$ grows linearly in $p$ . This proof can be adapted without any difficulty to
the present sltuation. We only sketch the main steps of the proof. Let us
define

$v(x)=\{0onQ-Q_{\delta}u(x)(\rho(x)-\delta)$

.
on $Q_{\delta}$ ,
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It follows from (5) and the assumption (3) on $b(x, t, p)$ that $v$ is a legitimate
test function in (4). Integrating by parts we obtain

$\int_{\partial Q_{\delta}}\sum_{i.j=1}^{n}\int_{0}^{u(x)}a_{ij}(x, s)sdsD_{i}\rho(x)dS_{x}$

$=-\int_{Q_{\delta}}\sum_{i.j=1}^{n}\int_{0}^{u(x)}a_{ij}(x, s)sdsD_{ij}\rho(x)dx$

$-\int_{Q_{\delta}}\int_{0}^{u(x)}\sum_{i.j=1}^{n}D_{i}a_{ij}(x, s)sdsD_{j}\rho(x)dx$

$+\int_{Q_{\delta}}.\sum_{i}^{n}a_{ij}(x, u)D_{i}uD_{j}u(\rho-\delta)dx$

$+\int_{Q_{\delta}}c(x)u^{2}(\rho-\delta)dx-\int_{Q_{\delta}}b(x, u, Du)u(\rho-\delta)dx$ .

Here the values of $u$ on $\partial Q_{\delta}$ are understood in the sense of traces (see [13],

chap. 6). Using the assumptions on $a_{\ell j}$ and $b$ we derive the following estimate

$\sup_{0<}\delta\leq\delta_{1}\int_{\partial Q_{\delta}}\sum_{i.j=1}^{n}\int_{0}^{u(x)}a_{if}(x, s)sdsD_{i}\rho D_{j}\rho dS_{x}\leqq C_{1}[\int_{Q}u(x)^{2}dx$

$+\int_{Q}|Du(x)|^{2}(u(x)^{2}+1)\rho(x)dx+\int_{Q}u(x)^{2}\rho(x)dx$

$+\Vert f\Vert_{\infty}\int_{Q}|u(x)|\rho(x)dx+\int_{Q}|u(x)|^{r+1}\rho(x)dx]$

for some constants $C_{1}>0$ and $0<\delta_{1}\leqq\delta_{0}$ . Hence, by the elllpticity assumption

$\sup_{0<\delta\leq\delta_{\delta}}\int_{\partial Q_{\delta}}u(x)^{2}dS_{x}<\infty$ . Consequently the set of functions

$\{\int_{0}^{u(x)}\delta\sum_{i.j=1}^{n}a_{ij}(x_{\delta}, s)dsD_{i}\rho(x_{\delta})D_{j}\rho(x_{\delta})dS_{x}$ ; $0<\delta\leqq\delta_{1}\}$

is bounded in $L^{2}(\partial Q)$ . As in Lemma 2 from [5] we show that there exists a
function $\beta eL^{2}(\partial Q)$ such that

$\int_{0}^{u(x)}\delta\sum_{i.j=1}^{n}a_{ij}(x_{\delta}, s)dsD_{i}\rho(x_{\delta})D_{j}\rho(x_{\delta})$

converges weakly to $\beta$ in $L^{2}(\partial Q)$ . Repeating the argument of Lemma 3 from
[5] we show that the weak convergence can be replaced by the strong con-
vergence in $L^{2}(\partial Q)$ . Finally, following the argument used in the proof of
Theorem 1 in [5] we conclude the exlstence of $\zeta\in L^{g}(\partial Q)$ satisfying the asser-
tion of our lemma. We point out here that the following relation holds be-
tween $\zeta$ and $\beta$
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$\int_{0}^{\zeta(x)}\sum_{i.j=1}^{n}$ a $\iota J(\chi, s)dsD_{i}\rho(x)D_{j}\rho(x)=\beta(x)$

$a.e$ . on $\partial Q$ .
Lemma 1 suggests the following approach to the Dirichlet problem (1), (2).

Let $\phi eL^{\infty}(\partial Q)$ . A weak solution $ueW_{1\dot{o}c}^{12}(Q)$ of (1) is a solutlon of the
Dirichlet problem with the boundary condition (2) if

(6) $\lim_{\delta\rightarrow 0}\int_{\partial Q}[u(x_{\delta}(x))-\phi(x)]^{2}dS_{x}=0$ .

3. Existence of solutions of the Dirichlet problem (1), (2).

In this section, using the method of sub and supersolutions we establish
the existence theorem for the problem (1), (2).

We briefly recall the definitions of sub and supersolution.
Let $\phi\in H^{1/2}(\partial Q)$ . A function $\Phi\in W^{1,2}(Q)$ is a subsolution of (1) $ 1f\Phi(x)\leqq$

$\phi(x)$ on $\partial Q$ in the sense of trace in $H^{1/2}(\partial Q)$ and

$\int_{Q}^{n}\sum_{i.j=1}a_{ij}(x, \Phi)D_{i}\Phi D_{j}vdx+\int_{Q}c(x)\Phi vdx\leqq\int_{Q}b(x, \Phi, D\Phi)vdx$

for all nonnegative $v\in C^{1}(Q)$ with compact support in $Q$ .
A supersolution is defined by reversing the inequality sign in the above

definition.

THEOREM 1. Suppose that $c(x)\geqq c_{0}$ in $Q$ for some $c_{0}>0,$ $\phi\in L^{\infty}(\partial Q)$ , and

that there exists a sequence of $C^{1}(\partial Q)$-functions $\{\phi_{k}\}$ such that $\lim_{k\rightarrow\infty}\int_{\partial Q}[\phi_{k}(x)-$

$\phi(x)]^{2}dS_{x}=0$ and such that for each $k$ the Dirichlet problem (1), (2), with $\phi=\phi_{k}$ ,

admits a subsolution $\Phi_{k}(x)$ and a supersolution $\Psi_{k}(x)$ in $W^{1.\infty}(Q)$ satisfying
$\Phi_{k}(x)\leqq\Psi_{h}(x)$ on Q. Moreover, we suppose that both sequences $\{\Phi_{k}\}$ and $\{\Psi_{k}\}$

are locally uniformly bounded in $L^{\infty}(Q)$ . Then the problem (1), (2) admits a
solution $ue\wp_{1,2}(Q)$ satisfying the estimate

(7) $\int_{Q}|Du(x)|^{2}(u(x)^{2}+1)e^{Tu(x)^{2}}r(x)dx+\int_{Q}u(x)^{2}e^{Tu(x)^{2}}r(x)dx$

$+\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q_{\delta}}e^{Tu(x)^{2}}dS_{x}\leqq M_{1}\int_{\partial Q}e^{Tu(x)^{2}}dS_{x}+M_{2}$

for some constants $M_{1}>0,$ $M_{2}>0,$ $T>0$ and $0<\delta_{1}\leqq\delta_{0}$ .

PROOF. Let $\{\phi_{k}\}$ be sequence of $C^{1}(\partial Q)$ functlons satisfying the hypotheses
of our theorem. Then it follows from [1] that for each $k$ the problem (1), (2)
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with $u(x)=\phi_{k}(x)$ on $\partial Q$ has a solutlon $u_{k}\in W^{1.2}(Q)\cap L^{\infty}(Q)$ and such that

(8) $\Phi_{k}(x)\leqq u_{k}(x)\leqq\Psi_{k}(x)$ $Q$

for each $k$ . Let us define

$v(x)=u_{k}(x)e^{tu_{k}(x)^{8}}\rho(x)$

for some $t>0$ . It is clear that $v$ is a legltlmate test function in (4) and on
substitution we obtain

(9) $\int_{Q}\sum_{i.j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}D_{j}u_{k}e^{tu_{k}^{2}}\rho dx$

$+2t\int_{Q}\sum_{i.j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}D_{j}u_{i}u_{k}^{2}e^{\iota u_{k}^{2}}\rho dx$

$+\int_{Q}\sum_{i.j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}u_{k}e^{tu_{k}^{2}}D_{j}\rho dx+\int_{Q}c(x)u_{k}^{2}e^{lu_{k}^{2}}\rho dx$

$=\int_{Q}b(x, u_{k}, Du_{k})u_{k}e^{tu_{k}^{2}}\rho dx$ .

Let us denote the first three integrals of the left side of (9) by $J_{1},$ $J_{2}$ and $J_{3}$ ,

respectively. If follows from (A) that

(10) $J_{1}+J_{2}\geqq\gamma^{-1}[\int_{Q}|Du_{k}|^{2}e^{lu_{k}^{2}}\rho dx+2t\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{lu_{i}^{2}}\rho dx]$ .

Integrating by parts we get

(11) $J_{3}=\int_{Q}\sum_{i.j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}u_{k}e^{lu_{k}^{2}}D_{j}\rho dx$

$=\int_{Q}\sum_{t.j=1}^{n}D_{i}(\int_{0}^{u_{k}}a_{\iota j}(x, s)se^{ls^{2}}ds)D_{j}\rho dx$

$-\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{u_{h}}D_{i}a_{ij}(x, s)se^{\iota s^{2}}dsD_{j}\rho dx$

$=-\int_{\partial Q}\sum_{i.j=1}^{n}\int_{0}^{\phi_{k}}a_{ij}(x, s)se^{t\epsilon^{2}}dsD_{i}\rho D_{j}\rho dS_{n}$

$-\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{u_{k}}a_{ij}(x, s)se^{t\epsilon^{2}}dsD_{ij}\rho dx$

$-\int_{Q}\sum_{t.j=1}^{n}\int_{0}^{u_{k}}D_{i}a_{ij}(x, s)se^{\iota}2dsD_{j}\rho dx$ .

Combining (10), (11) and the assumptions (A) and (B) we derive from (9) that
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(12) $\gamma^{-1}\int_{Q}|Du_{k}|^{2}e^{lu_{k}^{2}}\rho dx+2t\gamma^{-1}\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{lu_{k}^{2}}\rho dx+c_{0}J_{Q^{u_{k}^{2}e^{tu_{k}^{2}}\rho dx}}^{\wedge}$

$\geqq C_{1}[t^{-1}\int_{\partial Q}e^{t\phi_{k}^{2}}dS_{x}+t^{-1}\int_{Q}e^{lu_{k}^{2}}dx+\int_{Q}|u_{k}|e^{lu_{k}^{2}}\rho dx]$

$+B[\int_{Q}|Du_{k}|^{2}|u_{k}|e^{lu_{k}^{2}}\rho dx+\int_{Q}|u_{k}|^{r+1}e^{tu_{k}^{2}}\rho dx]$ ,

where a constant $C_{1}>0$ depends only on $n,$ $\gamma,$ $\sup_{Q}|\rho|,$ $\sup_{Q}|D^{2}\rho|$ , $\sup_{QxR}$

$|D_{i}a^{\iota_{j}}(x, u)|(i, j=1, \cdots , n),$ $\Vert f\Vert_{\infty}$ and $n$ . Using the Young inequality we de-
duce from (12) that

(13) $\frac{\gamma^{-1}}{2}\int_{Q}|Du_{k}|^{2}e^{tu_{k}^{2}}\rho dx+(2t\gamma^{-1}-\frac{B^{2}\gamma}{2})\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{tu_{k}^{2}}\rho dx$

$+\frac{c_{0}}{2}\int_{Q}u_{k}^{2}e^{tu_{k}^{2}}\rho dx\leqq C_{2}[t^{-1}\int_{\partial Q}e^{t\phi_{k}^{2}}dS_{x}+t^{-1}\int_{Q}e^{tu_{k}^{2}}dx+\int_{Q}e^{tu_{k}^{2}}\rho dx]$ ,

where $C_{2}>0$ depends on $C_{1},$ $c_{0},$ $r$ and $B$ . Now taking as a test function in (4)

$\nu(x)=\{0o^{k}n^{(x)}Q^{2}-Q_{\delta}u_{k}(x)e^{tu}(\rho(x)-\delta)$

on $Q_{\delta}$ ,

and integrating by parts and letting $\delta\rightarrow 0$ we get the following estimate

(14) $t^{-1}\gamma^{-1}\delta\sup_{0<\leq\delta 1}\int_{\partial Q\delta}e^{tu_{k}^{2}}dS_{x}\leqq\gamma\int_{Q}|Du_{k}|^{2}e^{tu_{k}^{2}}\rho dx$

$+\Vert c\Vert_{\infty}\int_{Q}u_{k}^{2}e^{tu_{k}^{2}}\rho dx+2t\gamma\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{tu_{k}^{2}}\rho dx$

$+C_{3}[t^{-1}\int_{Q}e^{tu_{k}^{2}}dx+\int_{Q}|u_{k}|e^{tu_{k}^{2}}\rho dx]$

$+B[\int_{Q}|Du_{k}|^{2}|u_{k}|e^{tu_{k}^{2}}\rho dx+\int_{Q}|u_{k}|^{1+r}e^{tu_{k}^{2}}\rho dx]$ ,

where $C_{3}>0$ is a constant of the same nature as $C_{1}$ .
Let us set

$K\equiv\frac{1}{t}\int_{Q}e^{tu_{k}^{2}}dx+\frac{1}{t}\int_{\partial Q}e^{t\phi^{2}}dS_{x}+\int_{Q}e^{lu_{k}^{2}}\rho dx$ .

Applying the Young inequality we derive from (13) and (14) that

$\frac{\gamma^{-1}}{2}\int_{Q}|Du_{k}|^{2}e^{tu_{k}^{2}}\rho dx+(2t\gamma^{-1}-\frac{B^{2}\gamma}{2})\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{tu_{k}^{2}}\rho dx$

$+\frac{c_{0}}{2}\int_{Q}u_{k}^{2}e^{tu_{k}^{2}}\rho dx+\gamma^{-1}t^{-1}\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q\delta}e^{tu_{k}^{2}}dS_{x}$
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$\leqq C_{4}K+\Vert c\Vert_{\infty}\int_{Q}u^{g_{k}}\rho dx$

$+(\gamma+B)\int_{Q}|Du_{k}|^{2}e^{lu^{g_{k}}}\rho dx+(2t\gamma+B)\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{\iota u^{g_{k}}}\rho dx$ ,

for some $C_{4}>0$ independent of $t>0$ . Letting $t=T>B^{2}\gamma^{2}/2$ and combining the
last estimate with (13) we arrive at the inequallty

(15) $\int_{Q}|Du_{k}|^{2}e^{Tu_{k}^{2}}\rho d_{X}+\int_{Q}|Du_{k}^{2}|^{2}u_{k}^{2}e^{Tu_{k}^{2}}\rho dx$

$+\int_{Q}u_{k}^{2}e^{Tu_{k}^{2}}\rho dx+\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q\delta}e^{Tu_{k}^{2}}dS_{x}\leqq C_{6}lC$

for some constant $C_{5}>0$ . To estimate the integrals $\int_{Q}e^{Tu^{2_{k}}}dx$ and $\int_{Q}e^{Tu_{k}^{2}}\rho dx$

we observe that by the local boundedness of $\{\Phi_{k}\}$ and $\{\Psi_{k}\}$ we obtain

$\int_{Q}e^{Tu_{k}^{1}}dx=\int_{Q-Q_{\delta_{1}}}e^{Tu^{2_{k}}}dx+\int_{Q_{\delta_{1}}}e^{Tu_{k}^{2}}d_{X}\leqq\delta_{1}\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q}e^{Tu_{k}^{2}}dS_{x_{\delta}}+M(\delta_{1})$ ,

for some constant $M(\delta_{1})>0$ . In a slmilar way we estimate $\int_{Q}e^{Tu_{k}^{2}}\rho dx$ . Choos-

ing $\delta_{1}$ sufficiently small we obtain

(16) $\int_{Q}|Du_{k}|^{2}e^{Tu_{k}^{2}}\rho dx+\int_{Q}|Du_{k}|^{2}u_{k}^{2}e^{Tu_{k}^{2}}\rho dx$

$+\int_{Q}u_{k}^{2}e^{Tu^{2_{k}}}\rho dx+\delta\sup_{0<s\delta_{1}}\int_{\partial Q_{\delta}}e^{Tu_{k}^{2}}dS_{x}\leqq L_{1}\int_{\partial Q}e^{T\phi^{2}}dS_{x}+L_{2}$

for some constants $L_{1}>0$ and $L_{2}>0$ .
In the second step of the proof we show that for each open set $Q_{1}$ , with

$\overline{Q}_{1}\subset Q$ , there exlsts $\epsilon_{1}>0$ such that the sequence $\{u_{k}\}$ is bounded in $W^{1.2+\text{\’{e}}}(Q_{1})$ .
Since the argument of this claim was used in the proof of Theorem 2.1 in [1]

and Theorem 2 in [6], we only sketch the proof of thls fact. Let $\theta$ be a $C^{\infty_{-}}$

function with properties $\theta(x)=1$ on $B(O, 1/2),$ $\theta(x)=0$ on $R_{n}-B(O, 1/2)$ and
$0\leqq\theta(x)\leqq 1$ on $R_{n}$ , where $B(x_{0}, r)$ denotes an open ball of radius $r$ and centered

at $x_{0}$ . Let $Q_{2}$ be an open set such that $\overline{Q}_{1}\subset Q_{2}\subset\overline{Q}_{2}\subset Q$ . We assign to each
$x_{0}eQ_{1}$ a number $R(x_{0})$ defined by

$R(x_{0})=\sup\{R;Re[0, \infty),\overline{B}(x_{0}, R)\subset Q_{2}\}$ .

Since $Q$ is bounded, $R(x_{0})$ is bounded independently of $x_{0}$ . If $R<R(x_{0})$ we
define $\theta_{R}(x)=\theta(x-x_{0}/R)$ and set

$v_{k}(x)=\theta_{R}(x)^{2}(u_{k}-K)e^{l(u_{k}-K)^{2}}$
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with

$K=\frac{1}{|B(x_{0},R)|}\int_{B(x_{0},R)}u_{k}(x)dx$ .

Since the sequences } $\Phi_{k}$ } and $\{\Psi_{k}\}$ are bounded in $L^{\infty}(Q_{2})$ , the estimate (8)

implies that the sequence $\{u_{k}\}$ is bounded in $L^{\infty}(Q_{2})$ . Using $v_{k}$ as a test func-
tion in (4) and choosing $t$ sufficiently large we arrive at the inequality

(17) $\int_{B(x_{0}.R/2)}|Du_{k}|^{2}dz\leqq\frac{M_{1}}{R^{2}}\int_{B(x_{0}.R)}|u_{k}-K|^{2}d_{X}+\int_{B(x_{0}.R)}g(x)dx$ ,

where $M_{1}>0$ is a constant independent of $R$ and $k$ and $g(x)$ is a bounded
function on $Q_{2}$ . Let $1/s=1/n+1/2$ if $1/n+1/2<1$ and $s=1$ if $1/n+1/2\geqq 1$ . By
the Sobolev embedding theorem we derive from (17) that

$\frac{1}{|B(x_{0},R/2)|}\int_{B(x_{0}.R/2)}|Du_{k}|^{2}dx\leqq M_{2}(\frac{1}{|B(x_{0},R)|}\int_{B(x_{0},R)}|Du_{k}|^{2}dx)^{2/s}$

$+\frac{M_{3}}{|B(x_{0},R)|}\int_{B(x_{0}.R)}gdx$ ,

where $M_{2}>0$ and $M_{2}>0$ are constants independent of $R$ and $k$ . Now by a
standard argument with the aid of Gehring’s Lemma [10] (see also Proposition

5.1 in [9]) we can show that there exists $\epsilon>0$ such that $\{Du_{k}\}$ is bounded in
$L^{2+e}(\omega)$ for each open set $\omega$ with $\overline{\omega}\subset Q_{2}$ . We note here that $\epsilon$ depends on $Q_{2}$ .
We now observe that by Fatou’s lemma we may assume that the sequence

$\int_{\partial Q}e^{\tau\phi_{k}^{2}}dS_{x}$ is bounded. Consequently, by (16) the sequence $\{u_{k}\}$ is bounded in
$\varpi_{(Q)}12$ Therefore we may assume that there exists $ue\tilde{W}^{1.1}(Q)$ such that $u_{k}$

converges to $u$ weakly in $\tilde{W}^{1.2}(Q)$ . Moreover, by virture of Theorem 14.11 in
[16] we may also assume that $u_{k}$ converges to $u$ in $L^{2}(Q)$ and $a.e$ . on $Q$ .
Using the boundedness of $\{Du_{k}\}$ in $L^{2+\epsilon}(\omega)$ for each $\omega\subset Q$ , with $\overline{\omega}\subset Q$ and $\epsilon=$

$\epsilon(\omega)$ , one can show that for each open set $\omega$ , with $\overline{\omega}\subset Q$ , there exists a sub-
sequence $\{u_{k_{m}}\}$ such that $Du_{k_{m}}$ converges to $Du$ in $L^{2}(\omega)$ (for details see [7]).

It is now obvious that $u$ is a weak solution of (1) and that the estimates (7)

asserted by our theorem holds for $u$ . It remains to show that $u$ satisfies the
boundary condition (2) in the sense of $L^{2}$-convergence. According to Lemma

1, there exists $\zeta\in L^{2}(\partial Q)$ such that $\lim_{\delta\rightarrow 0}\int_{\partial Q}[u(x_{\delta})-\zeta(x)]^{2}dS_{x}=0$ . Therefore it

suffices to show that $\zeta=\phi a.e$ . on $\partial Q$ . The proof of this fact is similar to the
corresponding part of Theorem 2 in [7] and therefore is omitted.

REMARK. Inspection of the proof of Theorem 1 shows that the assertion
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of this theorem remains true for a boundary data satisfying

$\int_{\partial Q}e^{T\phi(x)^{2}}dS_{x}<\infty$ ,

where $T$ is a constant satisfying $T>B^{2}\gamma^{2}/4$ . Obviously this condition holds
for bounded functions and one can give examples of unbounded functions satis-
fying this condition.

To illustrate Theorem 1 let us consider the problem (1), (2) with $b(x, u, Du)$

$=f(x)-|Du|^{2}g(x, u)$ , where $f\in L^{\infty}(Q),$ $g\in L^{\infty}(Q\times R)$ and $g(x, u)u\geqq 0$ for all
$(x, u)\in Q\times R$ . Moreover, we assume that there exists functions $A_{ij}\in C^{1}(\overline{Q})$

such that

(i) $\lim_{1u|\rightarrow\infty}aij(X, u)=A_{ij}(x)$

and

(ii) $\lim_{|u|\rightarrow\infty}D_{x}a_{ij}(x, u)=D_{x}A_{if}(x)$

$(i, j=1, \cdots, n)$ uniformly on $\overline{Q}$ . Let $\phi\in L^{\infty}(\partial Q)$ and let $\{\phi_{k}\}$ be a sequence of
$C^{1}(\partial Q)$-functions such that

$\lim_{k\rightarrow\infty}\int_{\partial Q}[\phi(x)-\phi_{k}(x)]^{2}dS_{x}=0$ .

For each $k$ the Dirichlet problem

$-\sum_{ij=1}^{n}D_{j}(a_{ij}(x, u)D_{i}u)+c(x)u=|f(x)|$ in $Q$ ,

$u(x)=|\phi_{k}(x)$ on $\partial Q$ ,

has a solution $\Phi_{k}\in W^{1.1}(Q)\cap L^{\infty}(Q)$ , which by the maximum principle in non
negative on $Q$ . Since $g(x, \Phi_{k})\geqq 0$ on $Q,$ $\Phi_{k}$ is a supersolution of the problem
(1), (2). A subsolutlon $\Psi_{k}$ is determined as a solution of the problem

- $\sum_{i.j=1}^{n}D_{j}(a_{ij}(x, u)D_{i}u)+c(x)u=-|f(x)|$ in $Q$

$u(x)=-|\phi_{k}(x)|$ on $\partial Q$ .

As in [6] one can show that the sequences $\{\Phi_{k}\}$ and $\{\Psi_{k}\}$ are bounded in
$\tilde{W}^{1.1}(Q)$ . We sketch the proof of this fact here for $\{\Phi_{k}\}$ . Using as a test
function

$v(x)=\left\{\begin{array}{l}\Phi_{k}(x)(\rho(x)-\delta) xeQ_{\delta},\\0 onQ-Q_{\delta},\end{array}\right.$

integrating by parts and letting $\delta-0$ , we get
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$\downarrow_{Q}\sum_{i,j=1}^{n}a_{ij}(x, \Phi_{k})D_{i}\Phi_{k}D_{j}\Phi_{k}\rho dx$

$=\frac{1}{2}\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{\Phi_{k}^{2}}a_{ij}(x, s)dsD_{i}\rho D_{j}\rho dS_{x}+\frac{1}{2}\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{\Phi_{k}^{2}}a_{ij}(x, s)dsD_{ij}\rho dx$

$+\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{\Phi_{k}^{2}}D_{i}a_{ij}(x, s)dsD_{j}\rho dx-\int_{Q}c(x)\Phi_{k}^{2}\rho dx+\int_{Q}|f(x)|\Phi_{k}\rho dx$ .

It is now clear that to show the boundedness of $\{\Phi_{k}\}$ in $\tilde{W}^{1.2}(Q)$ it is sufficient
to show that this sequence is bounded in $L^{2}(Q)$ . In the contrary case we may
assume that $\lim_{k\rightarrow\infty}\Vert\Phi_{k}\Vert_{L2(Q)}=\infty$ . Letting $v_{k}=\Phi_{k}\Vert\Phi_{k}\Vert_{L^{2}(Q)}^{-1}$ , the above identity

shows that $\{v_{k}\}$ is bounded in $\tilde{W}^{1.2}(Q)$ . Since $\tilde{W}^{1.2}(Q)$ is compactly embedded
in $L^{2}(Q)$ (see [16]), we may assume that $v_{k}\rightarrow v$ weakly in $\tilde{W}^{1.2}(Q)$ , strongly in
$L^{2}(Q)$ and $a.e$ . on $Q$ . As in [6] we can show that $v$ satisfies the equation

$-\sum_{i.j=I}^{n}D_{j}(A_{ij}(x)D_{i}v)+c(x)v=0$ in $Q$ .

According to [3] or [4], $v$ must have trace $\zeta\in L^{2}(\partial Q)$ , in the sense that $v(x_{\delta})$

$\rightarrow\zeta$ in $L^{2}(\partial Q)$ as $\delta\rightarrow 0$ . It is now a routine to show that $\zeta\equiv 0$ on $\partial Q$ , that is,
$v\in\mathring{W}^{1.2}(Q)$ . Since $c\geqq 0$ on $Q$ we get $v\equiv 0$ , and this contradicts the fact that
$\Vert v\Vert_{L2(Q)}=1$ . If we additionally assume that $D_{u}a_{ij}\in L^{\infty}(Q\times R)(i, j=1, \cdots, n)$

then $\Phi_{k}eW^{1.\infty}(Q)$ for each $k$ .
It is worth mentioning that Theorem 1 is closely related to Theorem 2

from [7]. However, applying the latter to our example, we can only conclude
the existence of a solutlon for $\phi\in L^{\infty}(\partial Q)$ with small norm and some addltional
restriction on the coefficlent $c$ .

4. Nonnegative solutions.

The objective of this section is to establish the existence of nonnegative
solutions. To achieve this we assume the existence of nonnegative subsolutions
and supersolutions. This assumption allows to consider the quasilinear equa-
tions with the coefficients $a_{ij}$ depending also on $Du$ .

In this section we assume that the coefficients $a_{ij}(x, u, p)(i, j=1, \cdots, n)$

are defined and continuous on $\overline{Q}\times R\times R_{n}$ and satisfy the ellipticity condition
from Section 2 (see asumption $(A)$). The functions $a_{ij}(x, u, 0)$ have bounded
partial derivatives $D_{i}a_{ij}(x, u, 0)$ on $\overline{Q}\times R$ ( $i,$ $j=1,$ $\cdots$ , n) and moreover

(18) $|a_{ij}(x, u, p)-a_{ij}(x, u, 0)|\leqq\frac{A}{|p|+1}$ $(i, j=1, \cdots, n)$

for all $(x, u, p)\in Q\times R\times R_{n}$ and for some constant $A>0$ . The nonlinearity
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satisfies the assumption (B) from Section (2).

We derive here the existence result for the Dirichlet problem

(19) $-\sum_{i.j=1}(D_{j}a_{ij}(x, u, Du)D_{j}u)+c(x)u=b(x, u, Du)$ in $Q$ ,

(20) $u(x)=\phi(x)$ on $\partial Q$ .

To proceed further we observe first that Lemma 1 continues to hold for weak
solutions $u\in W_{IOC}^{12}(Q)$ of (19) satisfying the condition (5) of Lemma 1. Indeed,

using the same test function as in the proof of Lemma 1 we arrive at the
identity

$\int_{\partial Q_{\delta}}\sum_{i.j=1}^{n}\int_{0^{u(x)}}a_{ij}(x, s, 0)sdsD_{i}\rho D_{j}\rho dS_{x}$

$=-\int_{Q_{\delta}}\sum_{i.j=1}^{n}\int_{0^{u(x)}}a_{ij}(x, s, 0)sdsD_{ij}\rho dx$

$-\int_{Q_{\delta}}\sum_{i.j=1}^{n}\int_{0^{u(x)}}D_{i}a_{ij}(x, s, 0)sdsD_{j}\rho dx$

$+\int_{Q_{\delta}}\sum_{i.j=1}^{n}a_{tj}(x, u, Du)D_{i}uD_{j}u(\rho-\delta)dx$

$+\int_{Q_{\delta}}\sum_{i.j=1}^{n}[a_{ij}(x, u, Du)-a_{ij}(x, u, 0)]D_{i}uuD_{f}\rho dx$

$+\int_{Q_{\delta}}c(x)u^{2}(\rho-\delta)dx-\int_{Q_{\delta}}b(x, u, Du)u(\rho-\delta)dx$ .

By virtue of the assumption (18) the fourth integral on the right side can be
estimated by

$\sup_{Q}|D\rho(x)|n^{2}A\int_{Q}|u|dx$ .

It is now a routine to show that

$\sup_{0<}\delta\leq\delta_{1}\int_{\partial Q_{\delta}}|u(x)|^{2}dS_{x}<\infty$ .

Repeating the argument of the proof of Lemma 1 (see also Theorem 1 in [5])

one can show that there exists $\zeta eL^{2}(\partial Q)$ such that $\lim_{\delta\rightarrow 0}\int_{\partial Q}[u(x_{\delta})-\zeta(x)]^{2}dS_{x}$

$=0$ .

THEOREM 2. Suppose that $c(x)\geqq c_{0}$ on $Q$ for some $c_{0}>0$ . Let $\phi$ be a non-
$negat\iota ve$ function in $L^{\infty}(\partial Q)$ and suppose that there exists a sequence of $C^{1}(\partial Q)-$

functions $\{\phi_{k}\}$ with $\lim_{k\rightarrow\infty}\int_{\partial Q}[\phi_{k}(x)-\phi(x)]^{2}dS_{x}=0ana$ such that ] $or$ each $k$ the
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Dirichlet problem (19), (20) with $\phi=\phi_{k}$ admits a subsolution $\Phi_{k}$ and a supersolu-

tion $\Psi_{k}$ in $W^{1.\infty}(Q)$ satisfying $0\leqq\Phi_{k}(x)\leqq\Psi_{k}(x)$ on $Q$ for each $k$ . Moreover we
suppose that the sequence $\{\Psi_{k}\}$ is locally uniformly bounded in $L^{\infty}(Q)$ . Then the
problem (19), (20) admits a solution $u\in W_{1\dot{o}c}^{12}(\overline{Q})$ satisfying the estimate

(21) $\int_{Q}|Du(x)|^{2}e^{Tu(x)}r(x)dx+\int_{Q}u(x)e^{Tu(x)}r(x)dx$

$+\delta\sup_{0<\cong\delta_{1}}\int_{\partial Q_{\delta}}e^{Tu(x)}dS_{x}\leqq M_{1}\int_{\partial Q}e^{T\phi(x)}dS_{x}+M_{2}$

for some constants $M_{1}>0,$ $M_{2}>0$ and $0<\delta\leqq\delta_{0}$ .

PROOF. The proof is similar to that of Theorem 1. We only give the
proof of the analogue of the energy estimate (16).

Let $\{\phi_{k}\}$ be sequence of $C^{1}(\partial Q)$-functions satisfying the hypotheses of the
theorem. According of Theorem 2.1 in [1] for each $k$ the Dirichlet problem

(19), (20), with $\phi=\phi_{k}$ admits a solution $ueW^{1.2}(Q)\cap L^{\infty}(Q)$ such that

$\Phi_{k}(x)\leqq u_{k}(x)\leqq\Psi_{k}(x)$ on $Q$ .
Taking as a test function

$v(x)=e^{lu_{k}(x)}\rho(x)$

for some $t>0$ we obtain

(22) $t\int_{Q}\sum_{i.j=1}^{n}a_{tj}(x, u_{k}, Du_{k})D_{i}u_{k}D_{j}u_{k}e^{tu_{k}}\rho dx$

$+\int_{Q}\sum_{i.j=1}^{n}a_{ij}(x, u_{i}, 0)D_{i}u_{k}e^{tu_{k}}D_{j}\rho dx$

$+\int_{Q}\sum_{i.j=1}^{n}[a_{ij}(x, u_{k}, Du_{k})-a_{ij}(x, u_{k}, 0)]D_{i}u_{k}e^{tu_{k}}D_{j}\rho dx$

$+\int_{Q}cu_{k}e^{tu_{k}}\rho dx=\int_{Q}b(x, u_{k}, Du_{k})e^{tu_{k}}\rho dx$ .

Let us denote the first three integrals on the left side by $J_{1},$ $J_{2}$ and $J_{3}$ , respec–
tively. We then have

(23) $J_{1}\geqq t\gamma^{-1}\int_{Q}|Du_{k}|^{2}e^{tu_{k}}\rho dx$

and by the assumption (18)

(24) $|J_{3}|\leqq An^{2}\sup_{Q}|D\rho(x)|\int_{Q}e^{tu_{k}}dx$ .

Integrating by parts we obtain
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(25) $J_{2}=-\int_{\partial Q}\sum_{i.j=1}^{n}\int_{0}^{\phi_{k}}a_{ij}(x, s, 0)e^{li}dsD_{i}\rho D_{j}\rho dx$

$-\int_{Q}\sum_{i.j=1}^{n}\int_{0^{u_{k}}}D_{i}a_{ij}(x, s, 0)e^{t\iota}dsD_{j}\rho dx$

$-\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{u_{k}}a_{ij}(x, s, 0)e^{li}dsD_{ij}\rho dx$ .

It follows from (22), (23). (24) and (25) that

$(r\gamma^{-1}-B)\int_{Q}|Du_{k}|^{2}e^{tu_{k}}\rho dx+\frac{c_{0}}{2}\int_{Q}u_{k}e^{lu_{k}}\rho dx$

$\leqq\gamma t^{-1}\int_{\partial Q}e^{t\phi_{k}}dS_{x}+C_{1}\int_{Q}e^{tu_{k}}dx$

for some $C_{1}>0$ independent of $t$ . Similarly using as a test function

$u(x)=\left\{\begin{array}{l}e^{lu_{k}(x)}(\rho(x)-\delta) onQ_{\delta},\\0 onQ-Q_{\delta},\end{array}\right.$

we arrive at the estimate

$0<\sup_{\delta\leq\delta_{1}}\int_{\partial Q}e^{tu_{k}}dS_{x}\leqq C_{2}[\int_{Q}|Du_{k}|^{2}e^{lu_{k}}\rho d_{X}+\int_{Q}u_{k}e^{tu_{k}}\rho d_{X}+\int_{Q}e^{tu_{k}}\rho dx]$

for some $C_{2}>0$ independent of $t$ . Finally, using Lemma 2, we deduce from the
last two estimates, as in the proof of Theorem 1, the estimate (21).

REMARK. If $b(x, 0,0)\leqq 0$ on $Q$ , then we can take $\Phi_{k}\equiv 0(k=1,2, \cdots)$ as
subsolutions and to guarantee the existence of a nontrivial solution we can
assume that either $b(x, 0,0)$ or $\phi$ is not identically equal to $0$ .

We conclude this section with the following comment. Theorem 1, unlike
Theorem 2, has been proved for the equation (1) with the coefficients $a_{ij}$ inde-
pendent of $Du$ . Comparing the proofs of these theorems we see that the de-
pendence of $a_{ij}$ on $Du$ would lead, in the derivation of the energy estimate
(16), to an extra term

$\int_{Q}\sum_{i.j=1}^{n}[a_{ij}(x, u, Du)-a_{ij}(x, u, 0)]D_{i}uue^{lu^{2}}D_{j}\rho dx$ .

Assuming (18), this term can be estimated by $n^{2}A\int_{Q}|u|e^{lu^{2}}dx$ and we were

unable to get the estimate (16) in this situation.
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5. The Dirichlet preblem with $L^{2}$-boundary data.

In this section we extend our method to solve the problem (1), (2) with
$\phi\in L^{2}(\partial Q)$ . However, we must introduce more restrictive assumptions on the
nonlinearity $b$ . We consider the equation (1) with $c(x)\equiv 0$ on $Q$ , that is,

(1’) $-\sum_{i.j=1}^{n}D_{j}(a_{ij}(x, u)D_{i}u)+b(x, u, Du)=0$ in $Q$ ,

with the boundary condition (2), where $\phi\in L^{2}(\partial Q)$ .
We assume that $b(x, u, p)$ satisfies the Carath\’eodory conditions and

(29) $|b(x, u, p)|\leqq f(x)+B(|u|+|p|)$

for all $(x, u, p)\in Q\times R\times R_{n}$ , where $f\in L^{2}(Q)$ and $B>0$ is a constant.
We point out here that, according to Theorem 1 in [5], if $u$ is a solution

in $\tilde{W}^{1.2}(Q)$ of (1) then there exists $\zeta\in L^{2}(\partial Q)$ such that (6) holds. Obviously
this result justifies our approach to the problem (1’) (2) wlth the boundary
condition (2) understood by the relation (6).

THEOREM 3. Let $\phi eL^{2}(\partial\overline{Q})$ and suppose that there exists a sequence of
$C^{1}(\partial\overline{Q})$-functions $t\phi_{k}$ } such that $\lim_{k\rightarrow\infty}\int_{\partial Q}[\phi_{k}(x)-\phi(x)]^{2}dS_{x}=0$ and such that for
each $k$ the Dirichlet problem (1’), (2), with $\phi=\phi_{k}$ , admits a subsolution $\Phi_{k}$ and a
supersolution $\Psi_{k}$ in $W^{1,\infty}(\overline{Q})$ satisfymg $\Phi_{k}(x)\leqq\phi_{k}(x)\leqq\Psi_{k}(x)$ on Q. Moreover, $we$

assume that both sequences $\{\Phi_{k}\}$ and $\{\Psi_{k}\}$ are locally uniformly bounded in
$L^{\infty}(\overline{Q})$ . Then the problem (1’), (2) admits a solution $u\in\tilde{W}^{1.2}(Q)$ salisfymg the
estimate

(27) $\int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx+\delta\sup_{0<\leqq\delta_{1}}\int_{\partial Q_{\delta}}u(x)^{2}dS_{x}$

$\leqq M_{1}\int_{\partial Q}\phi(x)^{2}dS_{x}+M_{2}$

for some constants $M_{1}>0,$ $M_{2}>0$ and $0<\delta_{1}\leqq\delta_{0}$ .

PROOF. The proof is similar to the proofs of Theorem 1 and 2. We only
change test functions. First, it follows from [1] that for each $k$ the problem
(1’), (2), with $u(x)=\phi_{k}(x)$ on $\partial Q$ , has a solution $u_{k}eW^{1,2}(Q)\cap L^{\infty}(Q)$ such that

$\Phi_{k}(x)\leqq u_{k}(x)\leqq\Psi_{k}(x)$ on $Q$ .

Taking $v(x)=u_{k}(x)\rho(x)$ as a test function we obtain, integrating by parts, that
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$\int_{Q}\sum_{ij}^{n}a_{ij}(x, u_{k})D_{i}u_{k}D_{j}u_{k}\rho dx=\frac{1}{2}\int_{\partial Qt}.\sum_{j=1}^{n}\int_{0}^{\phi_{k}^{2}}a_{ij}(x, s)dsD_{i}\rho D_{j}\rho dS_{n}$

$+\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{u_{k}^{2}}a_{ij}(x, s)dsD_{ij}\rho dx$

$+\frac{1}{2}\int_{Q}\sum_{i.j=1}^{n}\int_{0}^{u_{k}^{2}}D_{i}a_{ij}(x, s)dsD_{i}\rho dx-\int_{Q}b(x, u_{k}, Du_{k})u_{k}\rho dx$

Using the ellipticity, (6) and the Young inequality we arrive at the estimate

(28) $\int_{Q}|Du_{k}|\rho dx\leqq C_{1}[\int_{\partial Q}\phi_{k}^{2}dS_{x}+\int_{Q}u_{k}^{2}dx+\int_{Q}f^{2}dx+\int_{Q}u_{k}^{2}\rho dx]$ ,

where $C_{1}>0$ is a constant. Similarly the use of the test function

$v(x)=\left\{\begin{array}{l}u_{k}(x)(\rho(x)-\delta) onQ_{\delta},\\0 onQ-Q_{\delta},\end{array}\right.$

yields the estimate

(29) $\sup_{0<}\delta\leq\delta_{1}\int_{\partial Q}\leqq C_{2}[\int_{Q}|Du_{k}|^{2}\rho dx+\int_{Q}u_{k}^{2}dx+\int_{Q}u_{k}^{2}\rho dx+\int_{Q}f^{2}dx]$ .

The estimates (28) and (29) combined together give

(30) $\int_{Q}|Du_{k}|^{2}\rho dx+\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q_{\delta}}u_{k}^{2}dS_{x}\leqq C_{3}[\int_{Q}u_{k}^{2}dx+\int_{Q}u_{k}^{2}\rho dx+\int_{Q}f^{2}dx]$

for some constant $C_{2}>0$ . We now observe that for each $-1<\mu\leqq 1$ we have

$\int_{Q}u_{k}^{2}\rho^{\mu}dx\leqq- 1\frac{\delta_{1}^{1+\mu}}{+\mu}\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q_{\delta}}u_{k}^{2}dS_{x}+\int_{Q_{\delta_{1}}}u_{k}^{2}\rho^{\mu}dx$

$\leqq\frac{\delta_{1}^{1+\mu}}{1+\mu}\delta\sup_{0<\leq\delta_{1}}\int u_{k}^{2}dS_{x}+M\max_{\delta_{1}}\rho^{\mu}$ ,

where $M=\sup_{k\geqq 1}\sup_{Q\delta_{1}}u_{k}(x)^{2}$ . Hence taking $\delta_{1}$ sufficiently small we get from
(29) that

(31) $\int_{Q}|Du_{k}|^{2}\rho d_{X}+\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q_{\delta}}u_{k}^{2}dS_{x}\leqq C_{4}\int_{\partial Q}\phi_{k}^{2}dS_{x}+C_{5}$

for some constants $C_{4}>0$ and $C_{5}>0$ . On the other hand, according to Lemma
1 in [4], we have for $0<d\leqq\delta_{0}/2$

$\int_{Q_{\delta}}u_{k}^{2}dS_{x}\leqq K[\int_{Q_{\delta}}u_{k}^{2}dx+d\int_{\partial Q_{\delta}}u_{k}^{2}dS_{x}+d\int_{Q}|Du_{k}|^{2}\rho dx]$ ,

for all $0<\delta\leqq d$ , where $K>0$ is a constant independent of $k,$ $\delta,$ $d$ and $\delta_{1}$ . Com-
bining this with the estimate (31) we obtain (27). The estimate (27) shows
that the sequence $\{u_{k}\}$ is bounded in $\tilde{W}^{1.2}(Q)$ . Consequently we may assume
that $u_{k}$ converges weakly in $\tilde{W}^{1.2}(Q)$ to a function $u$ . By virtue of Theorem
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14.11 in [16] we may also assume that $u_{k}$ converges to $u$ in $L^{2}(Q)$ and $a.e$ . on
$Q$ . It is clear that $u$ is a solution of (1). By Theorem 2 in [5] $u$ has a trace
$\zeta\in L^{2}(\partial Q)$ in the sense of the $L^{2}$-convergence (see (6)). It is now a routine to
show that $\zeta=\phi a.e$ . on $\partial Q$ (for more details see the proof of Theorem 3 in [5]).

Remark. Examination of the proof of Theorem 3 shows that the assump-
tion (26) on the growth of the nonlinearity $b$ can be replaced by

$|b(x, u, p)|\leqq f(x)+B(r(x)^{-\alpha}|p|+r(x)^{-\beta}|u|)$

for all $(x, u, p)\in Q\times R\times R_{n}$ , where $\alpha$ and $\beta$ are constants such that $0<\alpha<1$

and $0<\beta<2$ .
We close up this paper with an example illustrating the use of Theorem 3.

Let
$b(x, u, Du)=f(x)-\sqrt{|Du|^{2}+1}g(u)F(x)$ ,

where $f\rho^{\theta/2}\in L^{2}(Q)$ for some $2\leqq\theta<3,$ $F$ is a measurable function such that
$|F(x)|\leqq Br(x)^{-\alpha}$ on $Q$ with $0<\alpha<1$ and $g\in L^{\infty}(R)$ with $g(u)u\geqq 0$ on $R$ . We
assume that $a_{ij}$ satisfy the conditions (i) and (ii) (see the example following
Theorem 1) and moreover $D_{u}a_{ij}eL^{\infty}(Q\times R)$ . Let $\{\phi_{k}\}$ be a $C^{1}$-sequence con-
verging to $\phi$ in $L^{2}(\partial Q)$ . Since $f$ , in general, is not in $L^{2}(Q)$ , we take a

sequence $\{f_{l}\}$ in $L^{\infty}(Q)$ such that $\int_{Q}f_{l}^{2}\rho^{\theta}dx\rightarrow\int_{Q}f^{2}\rho^{\theta}dx$ as $1\rightarrow\infty$ . First, we

consider for each $1\geqq 1$ the Dirlchlet problem

(32) $-\sum_{i,j=1}^{n}D_{j}(a_{ij}(x, u)D_{i}u)+b_{l}(x, u, Du)=0$ in

(33) $u(x)=\phi(x)$ $\partial Q$ ,

where $b_{l}(x, u, Du)=f_{l}(x)-\sqrt{}\overline{|Du|^{2}+1}g(u)F(x)$ . To solve the problem (32), (33)

we construct a sequence of supersolutions $\{\Psi_{k}^{l}\}$ (subsolutions $\{\Phi_{k}^{l}\}$ ) obtained as
solutions of the Dirichlet problem

$-\sum_{i.j\Leftarrow 1}^{n}D_{j}(a_{\iota j}(x, u)D_{i}u)=|f_{l}(x)|$ in $Q$ , (resp. $-|f_{l}(x)|$ )

$u(x)=\phi_{k}(x)$ on $\partial Q$ . resp. $-|\phi_{k}(x)|$

Using the assumptions (1) and (i1) we can show that $\{\Phi_{k}^{l}\}$ and $\{\Psi_{k}^{\iota}\}$ are bounded
in $\tilde{W}^{1.2}(Q)$ independently of $k$ and $l$ . Moreover, both sequences are locally

uniformly bounded in $L^{\infty}(Q)$ . By Theorem 3 for each 1 the problem (32), (33)

has a solution $\mathcal{U}_{l}\in\varpi_{(Q)}12$ It is clear that we may assume that $\lim_{k\rightarrow\infty}\Phi_{k}^{l}(x)$

$=\Phi_{\iota}$ and $\lim_{k\rightarrow\infty}\Psi_{k}^{l}(x)=\Psi_{l}(x)a.e$ . on $Q$ with $\{\Phi_{l}\}$ and $\{\Psi_{l}\}$ bounded in $L^{2}(Q)$ .
We also have for each 1
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$\Phi_{l}(x)\leqq u_{l}(x)\leqq\Psi_{l}(x)$ $a.e$ . on $Q$ .

Using this inequality and repeating the estimates from the proof Theorem 3
one can show that

$\int_{Q}|Du|^{2}\rho dx+\int_{Q}u_{l}^{2}dx+\delta\sup_{0<\leq\delta_{1}}\int_{\partial Q}u_{l}^{2}dS_{x}\leqq M_{1}(\int_{\partial Q}\phi^{2}dS_{x}+\int_{Q}f^{2}\rho^{\theta}dx)+M_{2}$

for some constants $M_{1}>0,$ $M_{2}>0$ and $\delta_{1}>0$ . 0bviously this estimate implies the
solvability of the problem (32), (33) with $b$ replaced by $b_{\iota}$ .
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