A CHARACTERIZATION OF REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE

By

J.D. PÉREZ

Abstract. We study a condition that allows us to characterize all real hypersurfaces of quaternionic projective space known until now.

1. Introduction.

Let M be a connected real hypersurface of the quaternionic projective space $QP^m, m \ge 2$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_k = -J_k N$, k=1, 2, 3, where $\{J_k\}_{k=1,2,3}$ is a local basis of the quaternionic structure of QP^m . Let us denote by $D^{\perp} = \text{Span}\{U_1, U_2, U_3\}$ and by D its orthogonal complement in TM.

Recently, [1], J. Berndt, generalizing previous results of A. Martínez and the author, [6], has proved that any real hypersurface of QP^m , $m \ge 2$, such that $g(AD, D^1) = \{0\}$, where A is the Weingarten endomorphism of M, is congruent to an open subset of either a tube of radius $r, 0 < r < \Pi/2$, over the canonically (totally geodesic) embedded quaternionic projective space QP^k , $k \in \{0, \dots, m-1\}$ or a tube of radius $r, 0 < r < \Pi/4$, over the canonically (totally geodesic) embedded complex projective space CP^m .

In [5], A. Martínez introduced ruled real hypersurfaces of QP^m , obtaining several examples, as real hypersurfaces for which the distribution **D** is integrable. This is equivalent to the fact that $g(AD, D) = \{0\}$, [7].

Moreover, if M is a real hypersurface of QP^m , TM is a subbundle of TQP^m over M and $T^{\circ}M = \{X \in TM | X \perp U_i, i=1, 2, 3\}$ is a subbundle of TM. Both TMand $T^{\circ}M$ have metric connections induced from TQP^m . The orthogonal complement of $T^{\circ}M$ in TQP^m is denoted by $N^{\circ}M$, which is also a subbundle of TQP^m with the induced metric connection.

Denote by $\overline{\nabla}, \nabla, \nabla^{\circ}$ and ∇^{\perp} the connections of $TQP^{m}, TM, T^{\circ}M$ and $N^{\circ}M$, respectively. Then we have

(1.1)
$$\nabla_X Y = \nabla^\circ_X Y + A_1(X)(Y)$$

Received May 28, 1990, Revised December 3, 1990.

Research partially supported by DGICYT Grant PS87 0115-C03-02.

J.D. Pérez

(1.2)
$$\overline{\nabla}_X Y = \nabla^\circ_X Y + A_2(X)(Y)$$

for any $Y \in C^{\infty}(T^{\circ}M)$ and $X \in TM$, where A_1 and A_2 are the second fundamental forms of the subbundle $T^{\circ}M$ in TM and TQP^m , respectively. Set $A^{\circ} = A_2|_{T^{\circ}M}$, which is a smooth section of $\operatorname{Hom}(T^{\circ}M, \operatorname{Hom}(T^{\circ}M, N^{\circ}M))$. The connection on $\operatorname{Hom}(T^{\circ}M, \operatorname{Hom}(T^{\circ}M, N^{\circ}M))$ is also denoted by ∇° . The covariant derivative of A° is defined by

(1.3)
$$(\nabla_{\mathcal{X}}^{\circ}A^{\circ})(Y)(Z) = \nabla_{\mathcal{X}}^{\perp}A^{\circ}(Y)(Z) - A^{\circ}(\nabla_{\mathcal{X}}^{\circ}Y)(Z) - A^{\circ}(Y)(\nabla_{\mathcal{X}}^{\circ}Z)$$

for any $X \in TM$ and Y, $Z \in C^{\infty}(T^{\circ}M)$.

M is said to be η -parallel if $g((\nabla_X A)Y, Z)=0$ for any *X*, *Y*, $Z \in \mathbf{D}$. It is easy to see from the expressions of their Weingarten endomorphisms, [6], that any tube of radius $r, 0 < r < \Pi/2$, over $QP^k, k \in \{0, \dots, m-1\}$ or of radius r, 0 $< r < \Pi/4$ over CP^m is η -parallel. Also any ruled real hypersurface of QP^m is η -parallel.

On the other hand, we say that A° is η -parallel if $\nabla^{\circ}_{X}A^{\circ} \equiv 0$, for any $X \in C^{\infty}(T^{\circ}M)$.

The purpose of the present paper is to give a characterization of all the real hypersurfaces of QP^m , $m \ge 2$, known until now by the following.

THEOREM. Let M be a real hypersurface of QP^m , $m \ge 2$. Then A° is η -parallel and A is η -parallel if and only if M is congruent to an open subset of either

i) A tube of radius $r, 0 < r < \Pi/2$, over the canonically (totally geodesic) embedded quaternionic projective space QP^k , for some $k \in \{0, \dots, m-1\}$, or

ii) A tube of radius r, $0 < r < \Pi/4$, over the canonically (totally geodesic) embedded complex projective space CP^m , or

iii) A ruled real hypersurface.

REMARK. The conditions of η -paralleliness of A and A° for real hypersurfaces of complex projective space have been studied by M. Kimura and S. Maeda, [3], and S. Maeda and S. Udagawa, [4], respectively.

2. Preliminaries.

Let *M* be a real hypersurface (any real hypersurface is considered to be connected in the following) of QP^m , $m \ge 2$, and $\{J_1, J_2, J_3\}$ a local basis of the quaternionic structure of QP^m , see [2], *N* a local normal unit vector field on *M* and $U_i = -J_iN$, i=1, 2, 3.

Let X be a tangent vector field on M. We write $J_i X = \phi_i X + f_i(X)N$, i =

1, 2, 3, where $\phi_i X$ is the tangent component of $J_i X$, and $f_i(X) = g(X, U_i)$, i = 1, 2, 3. As $J_i^2 = -Id$, i=1, 2, 3, where Id denotes the identity endomorphism on TQP^m , we get

(2.1)
$$\phi_i^2 X = -X + f_i(X) U_i, \quad i = 1, 2, 3,$$

and

(2.2)
$$f_i(\phi_i X) = 0, \quad \phi_i U_i = 0, \quad i = 1, 2, 3,$$

for any X tangent to M.

As $J_i J_j = -J_j J_i = J_k$, where (i, j, k) is a cyclic permutation of (1, 2, 3), we obtain

(2.3)
$$\phi_i X = \phi_j \phi_k X - f_k(X) U_j = -\phi_k \phi_j X + f_j(X) U_k$$

and

(2.4)
$$f_i(X) = f_j(\phi_k X) = -f_k(\phi_j X)$$

for any X tangent to M, where (i, j, k) is a cyclic permutation of (1, 2, 3). It is also easy to see that for any X, Y tangent to M and i=1, 2, 3,

(2.5)
$$g(\phi_i X, Y) + g(X, \phi_i Y) = 0, \quad g(\phi_i X, \phi_i Y) = g(X, Y) - f_i(X) f_i(Y)$$

and

$$(2.6) \qquad \qquad \phi_i U_j = U_k = -\phi_j U_i,$$

(i, j, k) being a cyclic permutation of (1, 2, 3).

The formulae of Gauss and Weingarten of M in QP^m are given, respectively, by

(2.7)
$$\overline{\nabla}_X Y = \nabla_X Y + g(AX, Y)N$$

$$(2.8) \qquad \qquad \overline{\nabla}_X N = -AX$$

for any X, Y tangent to M, A being the Weingarten endomorphism of the immersion. From the expression of the curvature tensor of QP^m , $m \ge 2$, we have that the equation of Codazzi is given by

(2.9)
$$(\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^3 \{f_i(X)\phi_iY - f_i(Y)\phi_iX + 2g(X, \phi_iY)U_i\}$$

for any X, Y tangent to M.

The covariant derivatives of J_i , i=1, 2, 3, are given by $\overline{\nabla}_X J_i = p_j(X) J_k - p_k(X) J_j$ for any $X \in TQP^m$, where p_i , i=1, 2, 3, are local 1-forms on QP^m . Then from (2.7) and (2.8) we obtain

(2.10)
$$\nabla_X U_i = -p_j(X)U_k + p_k(X)U_j + \phi_i AX$$

J.D. Pérez

and

(2.11)
$$(\nabla_X \phi_i) Y = p_j(X) \phi_k Y - p_k(X) \phi_j Y + f_i(Y) A X - g(A X, Y) U_i$$

for any X, Y tangent to M, (i, j, k) being a cyclic permutation of (1, 2, 3).

3. Proof of the theorem.

We first obtain the following Propositions.

PROPOSITION 1.

- a) $A_1(X)(Y) = -\sum_{i=1}^{3} g(\phi_i AX, Y) U_i$ b) $A_2(X)(Y) = g(AX, Y) N - \sum_{i=1}^{3} g(\phi_i AX, Y) U_i$ c) $(\nabla_X^{\circ} \phi_i)(Y) = p_k(X) \phi_j Y - p_j(X) \phi_k Y$ d) $\nabla_X^{\perp} N = -\sum_{i=1}^{3} g(AX, U_i) U_i$
- e) $\nabla_X U_i = p_k(X)U_j p_j(X)U_k + g(AX, U_i)N g(AX, U_k)U_j + g(AX, U_j)U_k$

for any $X \in TM$, $Y \in C^{\infty}(T^{\circ}M)$, (i, j, k) being a cyclic permutation of (1, 2, 3).

The proof is straightforward bearing in mind (1.1), (1.2) and (2.1) to (2.11). From (1.3) and Proposition 1 we have

PROPOSITION 2. For any $X \in TM$, Y, $Z \in C^{\infty}(T^{\circ}M)$,

$$(\nabla_X^\circ A^\circ)(Y)(Z) = \psi(X, Y, Z)N + \sum_{i=1}^3 \psi(X, Y, \phi_i Z)U_i$$

where

(3.1)
$$\phi(X, Y, X) = g((\nabla_X A)Y, Z) - \sum_{i=1}^{3} \{f_i(AZ)g(\phi_i AX, Y) + f_i(AY)g(\phi_i AX, Z) + f_i(AX)g(\phi_i AY, Z)\}\}$$

From Proposition 2 A° is η -parallel if and only if $\psi(X, Y, Z)=0$ for any $X, Y, Z \in C^{\circ}(T^{\circ}M)$, that is,

(3.2)
$$g((\nabla_X A)Y, Z) = \sum_{i=1}^{3} \{ f_i(AZ)g(\phi_i AX, Y) + f_i(AY)g(\phi_i AX, Z) + f_i(AX)g(\phi_i AY, Z) \} .$$

If A is η -parallel, $g((\nabla_X A)Y, Z)=0$. From this and (3.2), if $g(AD, D^{\perp})=$ {0}, we obtain that M is locally congruent to 1) on 2) in Theorem, [1].

Let us now suppose that $g(AD, D^{\perp}) \neq \{0\}$. From (3.2) we see that

(3.3)
$$\sum_{i=1}^{3} f_{i}(AZ)g((A\phi_{i}+\phi_{i}A)X, Y)=0$$

for any X, Y, $Z \in C^{\infty}(T^{\circ}M)$. We can have the following cases:

318

CASE 1. $(AU_i)^p$, i=1, 2, 3, are linearly independent, where $(AU_i)^p$ denotes the **D**-component of AU_i . From (3.3) we have that $g((A\phi_i + \phi_i A)X, Y)=0$ for any $X, Y \in \mathbf{D}, i=1, 2, 3$. But this is equivalent to **D** to be integrable and then M must be ruled.

CASE 2. $(AU_i)^p$, i = 1, 2, 3, are linearly dependent. We distinguish the following subcases:

CASE 2-i. $(AU_2)^p = (AU_3)^p = 0$ and $(AU_1)^p \neq 0$. We suppose that $AU_1 = \gamma X_1 + \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_3$. From (3.3) we obtain $g((\phi_1 A + A\phi_1)X, Y) = 0$ for any $X, Y \in C^{\infty}(T^{\circ}M)$. Thus for any $X \in C^{\infty}(T^{\circ}M)$, $\phi_1 A X + A\phi_1 X = \alpha_1(X)U_1 + \alpha_2(X)U_2 + \alpha_3(X)U_3$. From (3.3) taking $Z = X_1$ we have $\gamma g(\phi_1 A X, Y) = 0$ for any $X, Y \in C^{\infty}(T^{\circ}M)$. Thus either $\gamma = 0$ which is impossible or $g(\phi_1 A X, Y) = 0$. But also $g(\phi_1 A X, U_i) = 0$, i = 1, 2, 3. Thus $\phi_1 A X = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. This means that for such an $X, A\phi_1 X = \alpha_1(X)U_1 + \alpha_2(X)U_2 + \alpha_3(X)U_3$. From (2.1) it follows that $-AX = \alpha_1(\phi_1 X)U_1 + \alpha_2(\phi_1 X)U_2 + \alpha_3(\phi_1 X)U_3$ for any $X \in C^{\infty}(T^{\circ}M)$. Thus $g(AD, D) = \{0\}$ and M is ruled.

CASE 2-ii. Let us suppose that $(AU_3)^p = 0$ and $(AU_1)^p$, $(AU_2)^p$ are linearly independent. From (3.3) we have $g((\phi_i A + A\phi_i)X, Y) = 0, i=1, 2$, for any $X, Y \in C^{\infty}(T^{\circ}M)$.

From (3.2) we also get $g(\phi_i AX, Y)=0$, i=1, 2, for any $X, Y \in C^{\infty}(T^{\circ}M)$. Thus $g(A\phi_1X, Y)=0$ for any $X, Y \in C^{\infty}(T^{\circ}M)$. Then $A\phi_1X=g(A\phi_1X, U_1)U_1+g(A\phi_1X, U_2)U_2$ for any $X \in C^{\infty}(T^{\circ}M)$. From (2.1), for such an $X, -AX=-f_1(AX)U_1-f_2(AX)U_2$ and then $g(AD, D)=\{0\}$, thus M is ruled.

CASE 2-iii. Let us suppose that $(AU_3)^p = 0$, $(AU_1)^p$, $(AU_2)^p \neq 0$ and linearly dependent. Thus we can write $AU_1 = \mu_1 W + \gamma_1 U_1 + \gamma_2 U_2 + \gamma_3 U_3$, $AU_2 = \mu_2 W + \gamma_2 U_1 + \beta_2 U_2 + \beta_3 U_3$, when $W \in \mathbf{D}$ is a unit vector field. From (3.3) we get $\mu_1 g(\phi_1 AX, Y) + \mu_2 g(\phi_2 AX, Y) = 0$ for any $X, Y \in C^{\infty}(T^{\circ}M)$. Taking scalar products with $U_i, i=1, 2, 3$, it is easy to show that $\mu_1 \phi_1 AX + \mu_2 \phi_2 AX = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. Thus either $\mu_1 = \mu_2 = 0$, which is impossible, or $\phi_1 AX$ and $\phi_2 AX$ are linearly dependent for any $X \in C^{\infty}(T^{\circ}M)$. Therefore we can have the following situations:

a) AX=0 for any $X \in C^{\infty}(T^{\circ}M)$. In this case M is ruled.

b) $AX \neq 0$ for some $X \in C^{\infty}(T^{\circ}M)$, $X \perp W$. Then from (2.3), $\phi_1 AX$ and $\phi_2 AX$ are orthogonal, which is a contradiction with the fact that they are linearly dependent.

c) AX=0 for any $X \in C^{\infty}(T^{\circ}M)$, $X \perp W$, $AW \neq 0$ and $\mu_1\phi_1AW + \mu_2\phi_2AW=0$. Thus

(3.4)
$$AW = g(AW, W)W + \mu_1 U_1 + \mu_2 U_2.$$

But then we have $\mu_1 g(\phi_1 AW, \phi_1 AW) + \mu_2 g(\phi_2 AW, \phi_1 AW) = 0$. From (2.3), this implies that $\mu_1 g(AW, AW) - \mu_1^3 - \mu_1 \mu_2^2 = 0$. Thus either $\mu_1 = 0$ which is impossible or $g(AW, AW) = \mu_1^2 + \mu_2^2$. But from (3.4) $g(AW, AW) = g(AW, W)^2 + \mu_1^2 + \mu_2^2$. Then g(AW, W) = 0, which implies that $g(AD, D) = \{0\}$ and M is ruled.

CASE 3. $(AU_i)^{p} \neq 0$, i=1, 2, 3 and are linearly dependent. We distinguish the following subcases.

CASE 3-i. $AU_1 = \mu_1 X_1 + \alpha_1 U_1 + \alpha_2 U_2 + \alpha_3 U_3$, $AU_2 = \mu_2 X_1 + \alpha_2 U_1 + \gamma_2 U_2 + \gamma_3 U_3$, $AU_3 = \mu_3 X_1 + \alpha_3 U_1 + \gamma_3 U_2 + \delta_3 U_3$, where $X_1 \in \mathbf{D}$ is a unit vector field.

From (3.2), taking $Z = X_1$ and $X, Y \in C^{\infty}(T^{\circ}M)$ orthogonal to X_1 we have

(3.5)
$$\mu_1 g(\phi_1 AX, Y) + \mu_2 g(\phi_2 AX, Y) + \mu_3 g(\phi_3 AX, Y) = 0.$$

From (3.3) and (3.5) we obtain that $\mu_1\phi_1AX + \mu_2\phi_2AX + \mu_3\phi_3AX \in \mathbf{D}^{\perp}$ for any $X \in C^{\infty}(T^{\circ}M)$, and taking scalar products with U_i , i=1, 2, 3 we get

(3.6)
$$\mu_1 \phi_1 A X + \mu_2 \phi_2 A X + \mu_3 \phi_3 A X = 0, \qquad X \in C^{\infty}(T^{\circ}M).$$

Thus either $\mu_1 = \mu_2 = \mu_3 = 0$ which is impossible, or $\phi_i AX$, i=1, 2, 3, are linearly dependent for any $X \in C^{\infty}(T^{\circ}M)$.

Then we have the following possibilities:

a) AX=0 for any $X \in \boldsymbol{D}$ and M is ruled.

b) $AX \neq 0$ for some $X \in C^{\infty}(T^{\circ}M)$, $X \perp X_1$. From (2.3), $\phi_i AX$, i=1, 2, 3, are mutually orthogonal, which is a contradiction because from (3.6) they are linearly dependent.

c) AX=0 for any $X \in C^{\infty}(T^{\circ}M)$, $X \perp X_1$ and $AX_1 \neq 0$. From (3.6) we get $\mu_1 g(\phi_1 AX_1, \phi_1 AX_1) + \mu_2 g(\phi_2 AX_1, \phi_1 AX_1) + \mu_3 g(\phi_3 AX_1, \phi_1 AX_1) = 0$. Then from (2.3) and (2.5), we obtain from this that $\mu_1 g(AX_1, AX_1) - \mu_1^3 - \mu_1 \mu_2^2 - \mu_1 \mu_3^2 = 0$. Thus either $\mu_1=0$ and this case cannot occur or $g(AX_1, AX_1) = \mu_1^2 + \mu_2^2 + \mu_3^2$. But on the other hand, $g(AX_1, AX_1) = \mu_1^2 + \mu_2^2 + \mu_3^2 + g(AX_1, X_1)^2$. Therefore $g(AX_1, X_1) = 0$ and M is ruled. This finishes Case 3-i.

CASE 3-ii. $AU_1 = \mu_1 X_1 + \alpha_1 U_1 + \alpha_2 U_2 + \alpha_3 U_3$, $AU_2 = \mu_2 X_2 + \alpha_2 U_1 + \beta_2 U_2 + \beta_3 U_3$, $AU_3 = \delta_1 X_1 + \delta_2 X_2 + \alpha_3 U_1 + \beta_3 U_2 + \gamma_3 U_3$, where $X_1, X_2 \in \mathbf{D}$ are orthonormal. From (3.2) we have

(3.7)
$$\mu_1\phi_1AX + \delta_1\phi_3AX = \alpha(X)X_2$$

for any $X \in C^{\infty}(T^{\circ}M)$ and $X \perp X_2$ and

(3.8) $\mu_2\phi_2AX + \delta_2\phi_3AX = \beta(X)X_1$

320

for any $X \in C^{\infty}(T^{\circ}M)$ and $X \perp X_1$. Thus if $X \perp X_i$, $i=1, 2, \phi_j AX$, j=1, 2, 3, are mutually orthogonal and from (3.7) and (3.8) we obtain $\delta_1 \delta_2 g(\phi_3 AX, \phi_3 AX)=0$. That is, we have the following possibilities:

a) AX=0 for any $X \in C^{\infty}(T^{\circ}M)$ orthogonal to X_1 and X_2 . From (3.7) we get $\mu_1 g(\phi_1 AX_1, \phi_1 X_2) + \delta_1 g(\phi_3 AX_1, \phi_1 X_2) = 0$. This implies

(3.9)
$$\mu_1 g(AX_1, X_2) - \delta_1 g(AX_1, X_1) g(X_1, \phi_2 X_2) = 0.$$

But as $\phi_1 A X_1 = g(A X_1, X_1) \phi_1 X_1 + g(A X_1, X_2) \phi_1 X_2 - \delta_1 U_2$ and $\phi_3 A X_1 = g(A X_1, X_1) \phi_3 X_1 + g(A X_1, X_2) \phi_3 X_2 + \mu_1 U_2$, from (3.7), $\mu_1 g(A X_1, X_1) \phi_1 X_1 + \mu_1 g(A X_1, X_2) \phi_1 X_2 + \delta_1 g(A X_1, X_1) \phi_3 X_1 + \delta_1 g(A X_1, X_2) \phi_3 X_2$ is proportional to X_2 , and taking the scalar product with $\phi_3 X_2$ we obtain

(3.10)
$$\mu_1 g(AX_1, X_1) g(X_1, \phi_2 X_2) + \delta_1 g(AX_1, X_2) = 0$$

Thus, from (3.9) and (3.10), if $g(AX_1, X_2)^2 + g(AX_1, X_1)^2 g(X_1, \phi_2 X_2)^2 \neq 0$, $\mu_1 = \delta_1 = 0$, this is impossible. Therefore we suppose that $g(AX_1, X_2)^2 + g(AX_1, AX_1)^2 g(X_1, \phi_2 X_2)^2 = 0$. On the other hand, as for (3.9) and (3.10) we can obtain

 $(3.11) \qquad -\mu_2 g(AX_2, X_2) g(X_2, \phi_1 X_1) + \delta_2 g(AX_1, X_2) = 0,$

(3.12) $\mu_2 g(AX_1, X_2) + \delta_2 g(AX_2, X_2) g(X_2, \phi_1 X_2) = 0.$

Then if $g(AX_1, X_2)=g(AX_1, X_1)=0$, $AX_1=\mu_1U_1+\delta_1U_3$, and $AX_2=g(AX_2, X_2)X_2+\mu_2U_2+\delta_2U_3$ and if $g(AX_2, X_2)=0$, M is ruled. If $g(AX_2, X_2)\neq 0$, from (3.11) and (3.12), if $g(X_2, \phi_1X_1)\neq 0$, then $\mu_2=\delta_2=0$ which cannot occur. Thus we suppose that $g(AX_2, X_2)\neq 0$ and $g(X_2, \phi_1X_1)=0$. Then $A\phi_1X_1=A\phi_1X_2=0$ and $\phi_1AX_1=\delta_1U_2$. Then $g((\phi_1A+A\phi_1)X_1, X)=0$ for any $X \in C^{\infty}(T^{\circ}M)$. From (3.3), $\delta_1g((\phi_3A+A\phi_3)X_1, X)=0$ for any $X \in C^{\infty}(T^{\circ}M)$. Thus either $\delta_1=0$ or $g((\phi_3A+A\phi_3)X_1, X)=0$ for any $X \in C^{\infty}(T^{\circ}M)$.

If $\delta_1=0$, $\mu_1g((\phi_1A+A\phi_1)X_2, X)=0$ for any $X \in C^{\infty}(T^{\circ}M)$. Bearing in mind that $A\phi_1X_2=0$, $\mu_1g(\phi_1AX_2, \phi_1X_2)=0$ which implies that $\mu_1=0$ and this case cannot occur.

If $g((\phi_3A + A\phi_3)X_1, X) = 0$ for any $X \in C^{\infty}(T^{\circ}M)$, as $\phi_3AX_1 \in \mathbf{D}^{\perp}$, we get $g(A\phi_3X_1, X) = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. Then we can write $\phi_3X_1 = g(\phi_3X_1, X_2)X_2 + W$ where $W \perp X_i$, i = 1, 2 is a unit vector field. Thus $A\phi_3X_1 = g(\phi_3X_1, X_2)g(AX_2, X_2)X_2 + U$, $U \in \mathbf{D}^{\perp}$. Then $g(\phi_3X_1, X_2) = 0$ which implies that $A\phi_3X_1 = A\phi_3X_2 = 0$. From (3.3) $\mu_2g((\phi_2A + A\phi_2)X_1, X) = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. As μ_2 must be nonnull, $g((\phi_2A + A\phi_2)X_1, X) = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. As $\phi_2AX_1 \in \mathbf{D}^{\perp}$, $g(A\phi_2X_1, X) = 0$ for any $X \in C^{\infty}(T^{\circ}M)$. But $\phi_2X_1 = g(\phi_2X_1, X_2)X_2 + \mu X$, where X is orthogonal to X_1 and X_2 . Then $A\phi_2X_1 = g(\phi_2X_1, X_2)g(AX_2, X_2)X_2 + W'$, where W' $\in \mathbf{D}^{\perp}$. Thus $g(\phi_2X_1, X_2) = 0$ and this implies that $A\phi_2X_1 = A\phi_2X_2 = 0$. Then J.D. PÉREZ

 $\mu_1\phi_1AX_2 + \delta_1\phi_3AX_2 = \mu_1g(AX_2, X_2)\phi_1X_2 + \delta_1g(AX_2, X_2)\phi_3X_2 + \mu_1\mu_2U_3 - \mu_1\delta_2U_2 - \delta_1\mu_2U_1$ and $\mu_1A\phi_1X_2 + \delta_1A\phi_3X_2 = 0$. From (3.3) adding these expressions, the result cannot have component in **D**, thus $\mu_1 = \delta_1 = 0$ and we have a contradiction.

Let us now suppose that $g(AX_1, X_2) = g(X_1, \phi_2 X_2) \neq 0$. Then we can write $g(AX_1, X_1)X_1 + \mu_1U_1 + \delta_1U_3 = AX_1$ and $AX_2 = g(AX_2, X_2)X_2 + \mu_2U_2 + \delta_2U_3$. Also we get $A\phi_2X_2 = A\phi_2X_1 = 0$. From (3.11) and (3.12) we have $\mu_2g(AX_2, X_2)g(X_2, \phi_1X_1) = 0 = \delta_2g(AX_2, X_2)g(X_2, \phi_1X_1)$. The possible situations have been already studied except if $g(X_2, \phi_1X_1) = 0$. This implies that $A\phi_1X_1 = A\phi_1X_2 = 0$. From (3.3) $\mu_1g(\phi_1AX_1, \phi_1X_1) + \delta_1g(\phi_3AX_1, \phi_1X_1) + \delta_1, g(A\phi_3X_1, \phi_1X_1) = 0$. This implies that $\mu_1g(AX_1, X_1) = 0$. Thus $g(AX_1, X_1) = 0$, and M is ruled.

b) $\delta_1=0$. As μ_1 must be nonnull, $\phi_1AX = \alpha'(X)X_2$ for any $X \in C^{\infty}(T^{\circ}M)$, $X \perp X_2$. We now can write $J_1AX = \phi_1AX + f_1(AX)N = \alpha'(X)X_2 + f_1(AX)N$. Thus $AX = -\alpha'(X)\phi_1X_2 + f_1(AX)U_1$ for any $X \in C^{\infty}(T^{\circ}M)$, $X \perp X_2$. From (3.3) we also know that $g((\phi_1A + A\phi_1)X, Y) = 0$ for any $X, Y \in C^{\infty}(T^{\circ}M)$. In particular, $A\phi_1X_2 = -\alpha'(\phi_1X_2)\phi_1X_2 + f_1(A\phi_1X_2)U_1$.

If $X \perp \text{Span}\{X_1, X_2, \phi_1 X_2\}$, $g(X, A\phi_1 X_2) = g(AX, \phi_1 X_2) = 0$. This means that AX=0 for any $X \in C^{\infty}(T^{\circ}M)$ and $X \perp \text{Span}\{X_1, X_2, \phi_1 X_2\}$.

As $\mu_1 A \phi_1 X_2 + \mu_1 \phi_1 A X_2 \in \boldsymbol{D}^{\perp}$ we obtain

(3.13)

$$AX_{1} = -\alpha'(X_{1})\phi_{1}X_{2} + \mu_{1}U_{1},$$

$$A\phi_{1}X_{2} = -g(AX_{2}, X_{2})\phi_{1}X_{2} + \mu_{1}g(\phi_{1}X_{2}, X_{1})U_{1},$$

$$AX_{2} = g(AX_{2}, X_{2})X_{2} + \mu_{2}U_{2} + \delta_{2}U_{3}.$$

We can write $\phi_1 X_1 = g(\phi_1 X_1, X_2) X_2 + W$, where $W \perp \text{Span}\{X_1, X_2, \phi_1 X_2\}$. Thus $A\phi_1 X_1 = g(\phi_1 X_1, X_2) A X_2 = g(\phi_1 X_1, X_2) g(A X_2, X_2) X_2 + \mu_2 g(\phi_1 X_1, X_2) U_2 + \delta_2 g(\phi_1 X_1, X_2) U_3$.

Then $A\phi_1X_1 + \phi_1AX_1 = \{g(\phi_1X_1, X_2)g(AX_2, X_2) + \alpha'(X_1)\}X_2 + \delta T$, where $T \in D^{\perp}$. As this field cannot have component in D, we obtain

(3.14)
$$\alpha'(X_1) = -g(\phi_1 X_1, X_2)g(AX_2, X_2).$$

Moreover, $\phi_2 X_2 = g(\phi_2 X_2, X_1) X_1 + hT'$, $T' \perp \text{Span} \{\phi_1 X_2, X_1, X_2\}$. Thus $A\phi_2 X_2 = g(\phi_2 X_2, X_1) A X_1 = -g(\phi_2 X_2, X_1) \alpha'(X_1) \phi_1 X_2 + \mu_1 g(\phi_2 X_2, X_1) U_1$. Then from (3.13) $g(A\phi_2 X_2, \phi_1 X_2) = -g(\phi_2 X_2, X_1) \alpha'(X_1) = g(\phi_2 X_2, A\phi_1 X_2) = 0$. Therefore, either $\alpha'(X_1) = 0$ or $g(\phi_2 X_2, X_1) = 0$.

Analogously $A\phi_3X_2 = g(\phi_3X_2, X_1)AX_1 = -g(\phi_3X_2, X_1)\alpha'(X_1)\phi_1X_2 + \mu_1g(\phi_3X_2, X_1)U_1$. Then, $g(A\phi_3X_2, \phi_1X_2) = -g(\phi_3X_2, X_1)\alpha'(X_1) = g(\phi_3X_2, A\phi_1X_2) = 0$.

Suppose that $g(\phi_2 X_2, X_1) = g(\phi_3 X_2, X_1) = 0$. Then $A\phi_2 X_2 = A\phi_3 X_2 = 0$. In this case, $\mu_2\phi_2 A X_2 + \delta_2\phi_3 A X_2$ has not component in **D**. Thus $\mu_2 g(A X_2, X_2) = \delta_2 g(A X_2, X_2) = \delta_2$

 X_2)=0. Thus either $\mu_2 = \delta_2 = 0$, which is impossible, or $g(AX_2, X_2) = 0$. This and (3.14) imply that $\alpha'(X_1) = 0$ and M is ruled.

Otherwise, $\alpha'(X_1)=0$ implies that either $g(AX_2, X_2)=0$ and M is ruled or $g(X_2, \phi_1X_1)=0$. In this case AX=0 for any $X \in C^{\infty}(T^{\circ}M)$, $X \perp \text{Span}\{X_1, X_2, \phi_1X_2\}$, $AX_1 = \mu_1U_1$, $A\phi_1X_2 = -g(AX_2, X_2)\phi_1X_2$, $AX_2 = g(AX_2, X_2)X_2 + \mu_2U_2 + \delta_2U_3$. Then $\phi_1AX_1 = A\phi_1X_1 = 0$, $A\phi_2X_2 = \mu_1g(\phi_2X_2, X_1)U_1$, $\phi_2AX_2 = g(AX_2, X_2)\phi_2X + \delta_2U_1$. From (3.3) we obtain $\mu_2g(AX_2, X_2) + \delta_2g(\phi_3AX_2, \phi_2X_2) + \delta_2g(A\phi_3X_2, \phi_2X_2) = \mu_2g(AX_2, X_2) = 0$. Thus $g(AX_2, X_2)=0$ and M is ruled.

c) $\delta_2=0$. This case is similar to Case b) and M must be ruled.

This finishes the proof, because the converse is trivial.

References

- J. Berndt, "Real hypersurlaces in quaternionic space forms", J. reine angew. Math., 419 (1991), 9-26.
- [2] S. Ishihara, "Quaternion Kählerian manifolds", J. Differential Geometry, 9 (1974), 483-500.
- [3] M. Kimura and S. Maeda, "On real hypersurfaces of a complex projective space", Math. Z., 202 (1989), 299-311.
- [4] S. Maeda and S. Udagawa, "Real hypersurfaces of a complex projective space in terms of holomorphic distributions", Tsukuba J. Math., 14 (1990), 39-52.
- [5] A. Martínez, "Ruled real hypersurfaces in quaternionic projective space", An. Sti. Univ. Al I Cuza, 34 (1988), 73-78.
- [6] A. Martínez and J.D. Pérez, "Real hypersurfaces in quaternionic projective space", Ann. Mat. Pura Appl., 145 (1986), 355-384.
- [7] A. Martínez, J.D., Pérez and F.G. Santos, "Generic submanifolds of a quaternion Kaehlerian manifold", Soochow J. Math., 10 (1984), 79-98.

J.D. Pérez

Departamento de Geometría y Topología Facultad de Ciencias, Universidad de Granada 18071-Granada, Spain