REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE IN TERMS OF HOLOMORPHIC DISTRIBUTION

By

Sadahiro MAEDA and Seiichi UDAGAWA

0. Introduction.

Real hypersurfaces in a complex projective space have been studied by many differential geometers (for example, see [1], [2], [3], [7], [14] and [15]). In this paper, we study real hypersurfaces in $P_n(C)$ from the point of view of holomorphic distribution, where $P_n(C)$ denotes an *n*-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4.

R. Takagi ([13]) showed that all homogeneous real hypersurfaces in $P_n(C)$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or 2. Namely, he proved the following

THEOREM A ([13]). Let M be a homogeneous real hypersurface of $P_n(C)$. Then M is locally congruent to one of the following:

- (A₁) a geodesic hypersphere (, that is, a tube over a hyperplane $P_{n-1}(C)$),
- (A₂) a tube over a totally geodesic $P_k(C)$ $(1 \le k \le n-2)$,
- (B) a tube over a complex quadric Q_{n-1} ,
- (C) a tube over $P_1(C) \times P_{(n-1)/2}(C)$ and $n \geq 5$ is odd,
- (D) a tube over a complex Grassmann $G_{2,5}(C)$ and n=9,
- (E) a tube over a Hermitian symmetric space SO(10)/U(5) and n=15.

On the other hand, Kimura ([4], [5]) constructed a certain class of nonhomogeneous real hypersurfaces in $P_n(C)$, which are called *ruled* real hypersurfaces in $P_n(C)$.

Let M be a real hypersurface of $P_n(C)$ and denote by TM the tangent bundle of M. Set $\boldsymbol{\xi} = -JN$, where J is the complex structure tensor of $P_n(C)$ and N is a local unit normal vector field of M in $P_n(C)$. Then we may write as $T_x M = T_x^0 M + \mathbf{R}\{\boldsymbol{\xi}_x\}$ at any fixed point x of M, where $T_x^0 M$ is a J-invariant subspace of $T_x M$. Let A_2 be the second fundamental form for the subbundle

Received April 18, 1989.

 $T^{\circ}M$ in $TP_{n}(C)$ over M (see § 3), where $TP_{n}(C)$ is the tangent bundle of $P_{n}(C)$. Set $A^{\circ}=A_{2}|_{T^{\circ}M}$. Then A° may be interpreted as a smooth section of $Hom(T^{\circ}M, Hom(T^{\circ}M, N^{\circ}M))$, where $N^{\circ}M$ is the orthogonal complement of $T^{\circ}M$ in $TP_{n}(C)$ with respect to the metric on $TP_{n}(C)$, which is also a subbundle of $TP_{n}(C)$. Each of $T^{\circ}M$ and $N^{\circ}M$ has a connection induced from $TP_{n}(C)$ and hence $Hom(T^{\circ}M, Hom(T^{\circ}M, N^{\circ}M))$ has a connection, which is denoted by ∇° (cf. [6]).

In Section 3, we show the condition that $\nabla_X^0 A^0 = 0$ for any $X \in T^0 M$ implies that either ξ is a principal curvature vector and the shape operator A of M in $P_n(C)$ is η -parallel or $T^0 M$ is integrable, hence either M is locally a homogeneous real hypersurface of type A_1, A_2 or B, or M is foliated by complex hypersurface of $P_n(C)$ with parallel second fundamental form, which is $P_{n-1}(C)$ or a complex hyperquadric $Q_{n-1}(C)$ by the well-known result of Nakagawa-Takagi ([10]). Moreover, we determine real hypersurfaces M's (in $P_n(C)$) which satisfy the condition " T^0M is a curvature invariant subspace of TM and ξ is not a principal curvature vector" by using Kimura's work [4].

In Section 2, we give some characterizations of homogeneous real hypersurfaces of type A_1 and A_2 .

1. Preliminaries.

Let M be a real hypersurface of $P_n(C)$. In a neighborhood of each point, we choose a unit normal vector field N in $P_n(C)$. The Riemannian connections $\tilde{\nabla}$ in $P_n(C)$ and ∇ in M are related by the following formulas for arbitrary vector fields X and Y on M:

(1.1)
$$\tilde{\nabla}_{\mathbf{X}} Y = \nabla_{\mathbf{X}} Y + g(AX, Y)N,$$

(1.2)
$$\tilde{\nabla}_{\mathbf{X}} N = -AX,$$

where g denotes the Riemannian metric of M induced from the Fubini-Study metric G of $P_n(C)$ and A is the shape operator of M in $P_n(C)$. An eigenvector X of the shape operator A is called a *principal curvature vector*. Also an eigenvalue λ of A is called a *principal curvature*. In what follows, we denote by V_{λ} the eigenspace of A associated with eigenvalue λ . It is known that M has an almost contact metric structure induced from the complex structure J of $P_n(C)$, that is, we define a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η on M by $g(\phi X, Y) = G(JX, Y)$ and $g(\xi, X) = \eta(X) = G(JX, N)$. Then we have

(1.3)
$$\phi^2 X = -X + \eta(X)\xi$$
, $g(\xi, \xi) = 1$, $\phi\xi = 0$.

From (1.1), we easily have

Real hypersurfaces of a complex projective space

- (1.4) $(\nabla_{\boldsymbol{X}}\boldsymbol{\phi})\boldsymbol{Y} = \boldsymbol{\eta}(\boldsymbol{Y})\boldsymbol{A}\boldsymbol{X} \boldsymbol{g}(\boldsymbol{A}\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{\xi},$
- (1.5) $\nabla_{\mathbf{X}}\boldsymbol{\xi} = \boldsymbol{\phi}AX.$

Let \tilde{R} and R be the curvature tensors of $P_n(C)$ and M, respectively. Since the curvature tensor \tilde{R} has a nice form, we have the following Gauss and Codazzi equations:

(1.6)
$$g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W)$$

 $+ g(\phi Y, Z)g(\phi X, W) - g(\phi X, Z)g(\phi Y, W)$
 $- 2g(\phi X, Y)g(\phi Z, W) + g(AY, Z)g(AX, W)$
 $- g(AX, Z)g(AY, W),$

(1.7)
$$(\nabla_X A) Y - (\nabla_Y A) X = \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi .$$

It is well-known that there does not exist a real hypersurface M of $P_n(C)$ satisfying $\nabla A=0$ (, that is, the second fundamental form of M is parallel). Here we recall the following notion: The second fundamental form is called η parallel if $g((\nabla_X A)Y, Z)=0$ for any X, Y and Z which are orthogonal to ξ . We note that the second fundamental form of homogeneous real hypersurfaces of type A_1, A_2, B and ruled real hypersurfaces is η -parallel (cf. Theorem 5). We say that M is a *ruled* real hypersurface if there is a foliation of M by complex hyperplanes $P_{n-1}(C)$. More precisely, let $T^{\circ}M$ be the distribution defined by $T_x^{\circ}M = \{X \in T_x M : X \perp \xi\}$ for $x \in M$. Then $T^{\circ}M$ is integrable and its integral manifold is a totally geodesic submanifold $P_{n-1}(C)$. In the following, we use the same terminology and notations as above unless otherwise stated. Now we prepare without proof the following in order to prove our Theorems:

THEOREM B ([11], [12]). Let M be a real hypersurface of $P_n(C)$. Then the following are equivalent:

(i) M is locally congruent to one of homogeneous real hypersurfaces of type A_1 and A_2 .

(ii) $L_{\xi}g=0$, where L is the Lie derivative. Namely, ξ is an infinitesimal isometry.

(iii) $\phi A = A\phi$.

THEOREM C ([5]). Let M be a real hypersurface of $P_n(C)$. Then the second fundamental form of M is η -parallel and ξ is a principal curvature vector if and only if M is locally congruent to one of homogeneous real hypersurfaces of type A_1 , A_2 and B. THEOREM D ([5]). Let M be a real hypersurface of $P_n(C)$. Then the second fundamental form of M is η -parallel and the holomorphic distribution $T^{\circ}M(=$ $\{X \in TM : X \perp \xi\})$ is integrable if and only if M is locally congruent to a ruled real hypersurface of $P_n(C)$.

PROPOSITION A ([9]). If ξ is a principal curvature vector, then the corresponding principal curvature α is locally constant.

PROPOSITION B ([9]). Assume that ξ is a principal curvature vector and the corresponding principal curvature is α . If AX = rX for $X \perp \xi$, then we have $A\phi X = ((\alpha r + 2)/(2r - \alpha))\phi X$.

PROPOSITION C ([9]). Let M be a real hypersurface of $P_n(C)$. Then the following are equivalent:

(i) M is locally congruent to one of homogeneous ones of type A_1 and A_2 .

(ii) $g((\nabla_X A)Y, Z) = -\eta(Y)g(\phi X, Z) - \eta(Z)g(\phi X, Y)$ for any vector fields X, Y and Z on M.

PROPOSITION D ([5]). Let M be a real hypersurface of $P_n(C)$. Then the following are equivalent:

(i) The holomorphic distribution $T^{\circ}M = \{X \in TM : X \perp \xi\}$ is integrable.

(ii) $g((\phi A + A\phi)X, Y) = 0$ for any $X, Y \in T^{\circ}M$.

2. Homogeneous real hypersurfaces of type A_1 and A_2 .

In this section we provide some characterizations of homogeneous real hypersurfaces of type A_1 and A_2 in $P_n(C)$. Motivated by Theorem B, first of all we prove the following

THEOREM 1. Let M be a real hypersurface of $P_n(C)$. Then the following are equivalent:

(i) M is locally congruent to one of homogeneous real hypersurfaces of type A_1 and A_2 .

(ii) $L_{\xi}\phi=0$, that is, ξ is an infinitesimal automorphism of ϕ .

PROOF. For any $X \in TM$, we have

$$(L_{\xi}\phi)(X) = [\xi, \phi X] - \phi([\xi, X])$$
$$= \nabla_{\xi}(\phi X) - \nabla_{\phi X}\xi - \phi(\nabla_{\xi} X - \nabla_{X}\xi)$$
$$= (\nabla_{\xi}\phi)X - \nabla_{\phi X}\xi + \phi(\nabla_{X}\xi)$$

Real hypersurfaces of a complex projective space

$$= \eta(X)A\xi - g(A\xi, X)\xi - \phi A\phi X + \phi^2 AX \text{ (from (1.4) and (1.5))}$$

$$= \eta(X)A\xi - g(A\xi, X)\xi - \phi A\phi X - AX + \eta(AX)\xi \text{ (from (1.3))}$$

$$= \eta(X)A\xi - \phi A\phi X - AX.$$

Since $(L_{\xi}\phi)(\xi)=0$, the above calculation asserts that $L_{\xi}\phi=0$ is equivalent to

(2.1)
$$AX = -\phi A\phi X$$
 for any $X(\pm \xi)$.

From (1.3) and (2.1) we find

(2.2)
$$\phi AX = A\phi X - \eta (A\phi X)\xi$$
 for any $X(\perp \xi)$.

Then we see

$$\phi^2 A X = -A X + \eta (A X) \xi$$
 (from (1.3))
= $\phi A \phi X$ (from (1.3) and (2.2))
= $-A X$ (from (2.1)),

that is, $\eta(AX)=0$ for any $X(\pm\xi)$ so that ξ is a principal curvature vector. And hence, we get $\eta(A\phi X)=g(A\phi X, \xi)=g(\phi X, A\xi)=0$. Here we suppose that $L_{\xi}\phi=0$. Then from (2.2) we obtain $\phi AX=A\phi X$ for any $X(\pm\xi)$. Moreover, from the fact that ξ is a principal curvature vector, it follows that $\phi A\xi=A\phi\xi(=0)$. Then " $L_{\xi}\phi=0$ " implies " $\phi A=A\phi$ ". On the other hand " $\phi A=A\phi$ " yields the equation (2.1), that is, " $L_{\xi}\phi=0$ ". Therefore by virtue of Theorem B, we get our conclusion. Q. E. D.

Nom let $T^{\circ}M^{c}$ be a complexification of $T^{\circ}M$. Then we have $T^{\circ}M^{c} = T^{\circ}M^{(1,0)} \oplus T^{\circ}M^{(0,1)}$ with respect to ϕ , where

$$T^{0}M^{(1,0)} = \{Z \in T^{0}M^{C} : \phi Z = \sqrt{-1}Z\} = \{X - \sqrt{-1}\phi X : X \in T^{0}M\}$$

and

$$T^{0}M^{(0,1)} = \{Z \in T^{0}M^{c} : \phi Z = -\sqrt{-1}Z\} = \{X + \sqrt{-1}\phi X : X \in T^{0}M\}.$$

We are now in a position to prove the following

THEOREM 2. Let M be a real hypersurface of $P_n(\mathbb{C})$. Then the following are equivalent:

(i) M is locally equivalent to one of homogeneous real hypersurfaces of type A_1 and A_2 .

(ii) ξ is a principal curvature vector and $\nabla_{Z}\xi$ is a (0, 1)-vector for any $Z \in T^{0}M^{(0,1)}$.

PROOF. For any $Z(=X+\sqrt{-1}\phi X)\in T^{0}M^{(0,1)}$, from (1.5) we have

(2.3)
$$\nabla_z \xi = \phi A X + \sqrt{-1} \phi A \phi X \in T^{\circ} M^c$$
, where $X \in T^{\circ} M$.

(i) \Rightarrow (ii): Since $\phi A = A\phi$, ξ is a principal curvature vector. Then from (2.3) we get

$$\nabla_{z} \boldsymbol{\xi} = \boldsymbol{\phi} A X + \sqrt{-1} \boldsymbol{\phi}^{2} A X$$
$$= \boldsymbol{\phi} A X + \sqrt{-1} (-A X + \boldsymbol{\eta} (A X) \boldsymbol{\xi}) \quad (\text{from (1.3)})$$
$$= \boldsymbol{\phi} A X - \sqrt{-1} A X.$$

Then we find

$$\phi(\nabla_{z}\xi) = \phi(\phi AX - \sqrt{-1}AX)$$
$$= -AX + \eta(AX)\xi - \sqrt{-1}\phi AX$$
$$= -\sqrt{-1}(\phi AX - \sqrt{-1}AX),$$

which shows that $\nabla_{z}\xi$ is a (0, 1)-vector with respect to ϕ .

 $(ii) \Rightarrow (i):$ From (2.3) we have

$$\phi(\nabla_{z}\xi) = \phi(\phi AX + \sqrt{-1}\phi A\phi X) = -\sqrt{-1}(\phi AX + \sqrt{-1}\phi A\phi X).$$

This, together with (1.3), shows that

(2.4)
$$-AX + \eta(AX)\xi + \sqrt{-1}(-A\phi X + \eta(A\phi X)\xi)$$
$$= -\sqrt{-1}\phi AX + \phi A\phi X \quad \text{for any } X(\bot\xi).$$

Since ξ is a principal curvature vector, the equation (2.4) is reduced to $-AX - \sqrt{-1}A\phi X = \phi A\phi X - \sqrt{-1}\phi AX$ for any $X(\pm \xi)$. Therefore we conclude that $\phi A = A\phi$. Q. E. D.

REMARK 1. Let M be a Kaehler manifold (with complex structure J). Then the following are equivalent:

(i) $L_X J=0.$

(ii) $\nabla_Z X$ is a (0, 1)-vector for any (0, 1)-vector Z. Motivated by this fact, we established Theorem 2.

Finally we prove the following

PROPOSITION 1. Let M be a real hypersurface of $P_n(C)$. Suppose that ξ is a principal curvature vector and the corresponding principal curvature is non-zero. If $\nabla_{\xi}A=0$, then M is locally congruent to one of homogeneous real hypersurfaces of type A_1 and A_2 . PROOF. By hypothesis we may put $A\xi = \alpha\xi$. Then from Proposition A, (1.3) and (1.5) we have

$$(\nabla_{\xi}A)\xi = \nabla_{\xi}(A\xi) - A\nabla_{\xi}\xi = (\xi\alpha)\xi + \alpha\nabla_{\xi}\xi = 0.$$

And hence " $\nabla_{\xi} A = 0$ " implies

(2.5)
$$g((\nabla_{\xi}A)X, Y) = 0 \quad (\text{for any } X, Y \perp \xi).$$

On the other hand, for any $X \in V_r = \{X : AX = rX, X \perp \xi\}$ we get

$$g((\nabla_{\xi}A)X, Y) = g((\nabla_{X}A)\xi + \phi X, Y) \quad (\text{from (1.7)})$$

$$= g(\nabla_{X}(A\xi) - A\nabla_{X}\xi + \phi X, Y)$$

$$= g(\alpha\phi AX - A\phi AX + \phi X, Y) \quad (\text{from Proposition A and (1.5)})$$

$$= g(\alpha r\phi X - rA\phi X + \phi X, Y)$$

$$= \left\{ r\left(\alpha - \frac{\alpha r + 2}{2r - \alpha}\right) + 1 \right\} g(\phi X, Y) \quad (\text{from Proposition B})$$

Therefore the equation (2.5) asserts that

$$r\left(\alpha-\frac{\alpha r+2}{2r-\alpha}\right)+1=0.$$

Namely we find $\alpha(r^2 - \alpha r - 1) = 0$. Since $\alpha \neq 0$, we have $r^2 - \alpha r - 1 = 0$ so that $r(2r - \alpha) = \alpha r + 2$, that is, $r = (\alpha r + 2)/(2r - \alpha)$. Therefore $\phi V_r = V_r$ so that our real hypersurface M must be locally congruent to one of homogeneous ones of type A_1 and A_2 (cf. [8]). Of course a homogeneous real hypersurface of type A_1 and A_2 satisfies the condition " $\nabla_{\xi}A = 0$ " (cf. Proposition C). Q. E. D.

REMARK 2. " $A\xi = 0$ " implies " $\nabla_{\xi}A = 0$ " (see the proof of Proposition 1).

REMARK 3. By an easy calculation we find the following: $\nabla_{\xi} \xi = 0$ (, that is, ξ is principal) $\Leftrightarrow (\nabla_{\xi} \phi) X = 0$ for any $X \in TM \Leftrightarrow (\nabla_{\xi} \phi)(\xi) = 0$.

3. Main results.

To state our results, we prepare some fundamental equations of subbundles (cf. [6]). Let F be a vector bundle over a Riemannian manifold M. Assume that F has a metric connection. Then any subbundle E of F has an induced metric connection. Denote by ∇^F and ∇^E the connections of F and E, respectively. Then we have

(3.1)
$$\nabla_X^F v = \nabla_X^E v + A(X)(v)$$
 for any $v \in C^{\infty}(E)$ and $X \in TM$,

where A is a Hom (E, E^{\perp}) -valued 1-form on M and E^{\perp} is the orthogonal complement of E in F with respect to the metric on F. A is called the *second fundamental form* of subbundle E in F. E^{\perp} is also given a connection induced from F. Denote it by $\nabla^{E^{\perp}}$. Then we see that

(3.2)
$$\nabla_X^F w = \nabla_X^{E^\perp} w + B(X)(w) \quad \text{for any } w \in C^{\infty}(E^\perp) \text{ and } X \in TM,$$

where B is a Hom (E^{\perp}, E) -valued 1-form on M. It is easily seen that $A = -{}^{t}B$, where ${}^{t}B$ is the transpose of B with respect to the metric on F.

Now let M be a real hypersurface of $P_n(C)$. Then TM is a subbundle of $TP_n(C)$ over M and $T^0M = \{X \in TM : X \perp \xi\}$ is a subbundle of TM. Thus each of TM and T^0M has a metric connection induced from $TP_n(C)$. The orthogonal complement of T^0M in $TP_n(C)$ with respect to the metric on $TP_n(C)$ is denoted by N^0M , which is also a subbundle of $TP_n(C)$ with the induced metric connection.

Denote by ∇^0 and ∇^{\perp} the connections of T^0M and N^0M , respectively. By (3.1) we have

 $(3.3) \qquad \nabla_X Y = \nabla^0_X Y + A_1(X)(Y)$

$$(3.4) \qquad \tilde{\nabla}_X Y = \nabla^0_X Y + A_2(X)(Y) \qquad \text{for any } Y \in C^{\infty}(T^0 M) \text{ and } X \in TM,$$

where A_1 and A_2 are the second fundamental forms of the subbundle $T^{\circ}M$ in TM and $TP_n(C)$, respectively. Note that the second fundamental form of TM in $TP_n(C)$ coincides with the ordinary second fundamental form of the immersion $M \rightarrow P_n(C)$. A_2 is interpreted as a smooth section of $\text{Hom}(TM, \text{Hom}(T^{\circ}M, N^{\circ}M))$. Set $A^{\circ} = A_2|_{T^{\circ}M}$, which is a smooth section of $\text{Hom}(T^{\circ}M, \text{Hom}(T^{\circ}M, N^{\circ}M))$. Note that any ruled real hypersurfaces in $P_n(C)$ may be characterized by the condition $A^{\circ} \equiv 0$. We here consider the covariant derivative of A° with respect to the connection on $\text{Hom}(T^{\circ}M, \text{Hom}(T^{\circ}M, N^{\circ}M))$ induced from $TP_n(C)$. First of all we show the following fundamental relations.

PROPOSITION 2.

- (i) $A_1(X)(Y) = -g(\phi AX, Y)\xi$,
- (ii) $A_2(X)(Y) = g(AX, Y)N g(\phi AX, Y)\xi$,
- (iii) $\nabla^{0}\phi = 0$,
- (iv) $\nabla^{\perp}_{X} \boldsymbol{\xi} = g(AX, \boldsymbol{\xi})N,$
- $(\mathbf{v}) \quad \nabla_{\mathbf{X}}^{\perp} N = -g(AX, \boldsymbol{\xi})\boldsymbol{\xi},$

where $X \in TM$ and $Y \in C^{\infty}(T^{0}M)$.

PROOF. For any $X \in TM$ and $Y \in C^{\infty}(T^{0}M)$, we have

(i)
$$g(A_1(X)(Y), \xi) = g(\nabla_X Y, \xi) = -g(Y, \phi AX),$$

- (ii) $g(A_2(X)(Y), \xi) = G(\tilde{\nabla}_X Y, \xi) = g(\nabla_X Y, \xi) = -g(Y, \phi AX),$ $G(A_2(X)(Y), N) = G(\tilde{\nabla}_X Y, N) = g(AX, Y),$
- (iii) $(\nabla^{0}_{X}\phi)(Y) = \nabla^{0}_{X}\phi(Y) \phi(\nabla^{0}_{X}Y)$

$$= \nabla_{X} \phi(Y) - A_{1}(X)(\phi(Y)) - \phi(\nabla_{X} Y - A_{1}(X)(Y))$$
$$= (\nabla_{X} \phi)(Y) + g(\phi AX, \phi Y)\xi$$
$$= 0,$$

where we have used $(1.1)\sim(1.5)$.

(iv)
$$\tilde{\nabla}_{X}\xi = \nabla_{X}\xi + g(AX, \xi)N = \phi AX + g(AX, \xi)N,$$

which, together with (3.2), implies $\nabla_x \xi = g(AX, \xi)N$.

(v) $\tilde{\nabla}_{\mathbf{X}} N = -AX$,

which, combined with (3.2), implies $\nabla_X N = -g(AX, \xi)\xi$. Q.E.D.

The connection on Hom $(T^{\circ}M, \text{Hom}(T^{\circ}M, N^{\circ}M))$ is also denoted by ∇° . The covariant derivative of A° is defined by

$$(3.5) \qquad (\nabla^{\mathbf{0}}_{X}A^{\mathbf{0}})(Y)(Z) = \nabla^{\perp}_{X}A^{\mathbf{0}}(Y)(Z) - A^{\mathbf{0}}(\nabla^{\mathbf{0}}_{X}Y)(Z) - A^{\mathbf{0}}(Y)(\nabla^{\mathbf{0}}_{X}Z)$$

for any $X \in TM$ and $Y, Z \in C^{\infty}(T^{\circ}M)$.

Now we prove

PROPOSITION 3. For any $X \in TM$ and $Y, Z \in C^{\infty}(T^{\circ}M)$,

(3.6) $(\nabla^{0}_{X}A^{0})(Y)(Z) = \Psi(X, Y, Z)N + \Psi(X, Y, \phi Z)\xi,$

where Ψ is the trilinear tensor defined by

(3.7)
$$\Psi(X, Y, Z) = g((\nabla_X A)(Y), Z) - \eta(AX)g(\phi AY, Z) - \eta(AY)g(\phi AX, Z) - \eta(AZ)g(\phi AX, Y).$$

PROOF. We have from Proposition 2

$$\begin{aligned} (\nabla^{\mathbf{0}}_{\mathbf{X}}A^{\mathbf{0}})(Y)(Z) &= \nabla^{\perp}_{\mathbf{X}}A^{\mathbf{0}}(Y)(Z) - A^{\mathbf{0}}(\nabla^{\mathbf{0}}_{\mathbf{X}}Y)(Z) - A^{\mathbf{0}}(Y)(\nabla^{\mathbf{0}}_{\mathbf{X}}Z) \\ &= \{g(\nabla_{\mathbf{X}}(AY), Z) + g(AY, \nabla_{\mathbf{X}}Z)\}N - \eta(AX)g(AY, Z)\xi \\ &- \{g(\nabla_{\mathbf{X}}(\phi AY), Z) + g(\phi AY, \nabla_{\mathbf{X}}Z)\}\xi - \eta(AX)g(\phi AY, Z)N \end{aligned}$$

Sadahiro MAEDA and Seiichi UDAGAWA

$$-g(A(\nabla_{\mathbf{X}}^{0}Y), Z)N + g(\phi A(\nabla_{\mathbf{X}}^{0}Y), Z)\boldsymbol{\xi} - g(AY, \nabla_{\mathbf{X}}^{0}Z)N + g(\phi AY, \nabla_{\mathbf{X}}^{0}Z)\boldsymbol{\xi} = \{g((\nabla_{\mathbf{X}}A)(Y), Z) - \eta(AY)g(\phi AX, Z) - \eta(AX)g(\phi AY, Z) - \eta(AZ)g(\phi AX, Y)\}N + \{-\eta(AX)g(AY, Z) - \eta(AY)g(AX, Z) - g(\phi(\nabla_{\mathbf{X}}(AY)), Z) + g(\phi A(\nabla_{\mathbf{X}}Y), Z) - \eta(A\phi Z)g(\phi AX, Y)\}\boldsymbol{\xi},). Q. E. D.$$

which implies (3.6).

Recall the definition of η -parallelity of A. We say that A° is η -parallel if $\nabla^{\circ}_{X}A^{\circ} \equiv 0$ for any $X \in C^{\infty}(T^{\circ}M)$.

The main purpose of this paper is to prove the following

THEOREM 3. Let M be a real hypersurface of $P_n(C)$. Assume that A^0 is η -parallel. Then M is locally congruent to one of the following:

(1) a homogeneous real hypersurface of type A_{1} ,

(2) a homogeneous real hypersurface of type A_{2} ,

(3) a homogeneous real hypersurface of type B,

(4) a real hypersurface in which $T^{\circ}M$ is integrable and its integral manifold is a totally geodesic $P_{n-1}(C)$ (, that is, M is a ruled real hypersurface),

(5) a real hypersurface in which $T^{\circ}M$ is integrable and its integral manifold is a complex quadric Q_{n-1} .

PROOF. By Proposition 3, A° is η -parallel if and only if $\Psi(X, Y, Z)=0$ for any X, Y, $Z \in C^{\infty}(T^{\circ}M)$, that is,

(3.8)
$$g((\nabla_X A)(Y), Z) = \eta(AX)g(\phi AY, Z) + \eta(AY)g(\phi AX, Z)$$
$$+ \eta(AZ)g(\phi AX, Y) \quad \text{for any } X, Y, Z \in C^{\infty}(T^{\circ}M).$$

Therefore we must study real hypersurfaces (in $P_n(C)$) which satisfy the equation (3.8). Since the Codazzi equation (1.7) tells us that $g((\nabla_X A)Y, Z)$ is symmetric for any X, Y and $Z(\in T^0M)$, exchanging X and Y in (3.8), we obtain $g(Y, \phi AX)\eta(AZ) = g(X, \phi AY)\eta(AZ)$ so that

(3.9)
$$\eta(AZ)g((A\phi + \phi A)X, Y) = 0 \quad \text{for any } X, Y, Z \in T^{\bullet}M).$$

Now we assume that $\eta(AZ)=0$ for any $Z(\in T^{\circ}M)$, that is, ξ is a principal curvature vector. Then the equation (3.8) shows that $g((\nabla_X A)Y, Z)=0$ for any $X, Y, Z(\in T^{\circ}M)$, that is, the second fundamental form A of M is η -parallel. And hence our real hypersurface M is locally congruent to one of homogeneous ones of type A_1 , A_2 and B (cf. Theorem C). Next we assume that ξ is not a

48

principal curvature vector. Then the equation (3.9) tells us that the holomorphic distribution $T^{\circ}M$ is integrable (cf. Proposition D). Of course the integral manifold M° of $T^{\circ}M$ is a complex hypersurface (with complex structure ϕ) in $P_n(C)$. Moreover, the second fundamental form A° of M° is parallel (, which is equivalent to (3.8)). Therefore we conclude that M° is locally congruent to $P_{n-1}(C)$ or Q_{n-1} (cf. [10]). Q.E.D.

As an immediate consequence of Theorem C and (3.8), we get

THEOREM 4. Let M be a real hypersurface of $P_n(C)$. Then A° is η -parallel and ξ is a principal curvature vector if and only if M is locally congruent to one of homogeneous real hypersurfaces of type A_1 , A_2 and B.

In addition, from Theorem C, Theorem D and Theorem 3, we find

THEOREM 5. Let M be a real hypersurface of $P_n(C)$. Then A^0 is η -parallel and the second fundamental form of M is η -parallel if and only if M is locally congruent to one of homogeneous real hypersurfaces of type A_1 , A_2 and B or a ruled real hypersurface.

REMARK 4. We now denote by H the sectional curvature of a holomorphic 2-plane (with respect to ϕ) on a real hypersurface M. Kimura ([4]) determined real hypersurfaces (in $P_n(C)$) on which H is constant. He showed the following

THEOREM E ([4]). Let M be a real hypersurface of $P_n(C)$ $(n \ge 3)$ on which H is constant. Then M is one of the following:

(a) a homogeneous real hypersurface of type A_1 (H>4),

(b) a real hypersurface in which $T^{\circ}M$ is integrable and its integral manifold is a totally geodesic $P_{n-1}(C)$ (, that is, M is a ruled real hypersurface) (H=4),

(c) a real hypersurface in which there is a foliation contained in some complex hyperplane $P_{n-1}(C)$ as a ruled real hypersurface (H=4).

Our aim here is to give a characterization of the cases (b), (c) in Theorem E. We prove

PROPOSITION 4. Let M be a real hypersurface of $P_n(C)$ $(n \ge 3)$. If $T^{\circ}M$ is a curvature invariant subspace of TM and ξ is not a principal curvature vector, then M is locally congruent to one of the cases (b), (c) in Theorem E.

PROOF. Since $R(T^{\circ}M, T^{\circ}M)T^{\circ}M \subset T^{\circ}M$, the equation (1.6) yields

Sadahiro MAEDA and Seiichi UDAGAWA

$$0 = g(R(X, Y)Z, \xi)$$

= g(AY, Z)g(AX, \xi) - g(AX, Z)g(AY, \xi)

for any X, Y, $Z \in T^{\circ}M$ and $\xi = -JN$.

Then we have

(3.10)
$$\eta(AX)\phi AY = \eta(AY)\phi AX \quad \text{for any } X, Y \in T^{\bullet}M.$$

We here consider a linear transformation $\phi A: T^{\bullet}M \rightarrow T^{\bullet}M$. Note that

(3.11) $\operatorname{rank}(\phi A) \leq 1$ at each point of M.

Suppose that rank(ϕA) ≥ 2 at a certain point x of M. Then there exist X, $Y \in T_x^0 M$ such that

(3.12)
$$\phi AX \neq 0$$
, $\phi AY \neq 0$ and $g(\phi AX, \phi AY) = 0$.

So from (3.10) and (3.12) we see

 $(3.13) \qquad \eta(AX)=0.$

It follows from (3.10) and (3.13) that

(3.14) $\eta(AY)=0 \quad \text{for any } Y(\perp X).$

Therefore, from (3.13) and (3.14) we find that ξ is a principal curvature vector at x, which is a contradiction.

Then (3.11) asserts that the Gauss equation (1.6) is reduced to

$$g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W) + g(\phi Y, Z)g(\phi X, W) - g(\phi X, Z)g(\phi Y, W) - 2g(\phi X, Y)g(\phi Z, W),$$

that is,

$$R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y$$
$$-2g(\phi X, Y)\phi Z \quad \text{for any } X, Y, Z \in T^{\circ}M.$$

Then we conclude that our real hypersurface M satisfies that H=4. Therefore Theorem E tells us that M is locally congruent to one of the cases (b), (c). Of course the cases (b), (c) satisfy the hypothesis of Proposition 4. Q.E.D.

We here provide a geometric meaning of the condition "the second fundamental form of M is η -parallel". The following is due to Nakagawa.

PROPOSITION 5. Let M be a real hypersurface of $P_n(C)$. Then the following are equivalent:

(i) The second fundamental form of M is η -parallel.

(ii) Every geodesic $\gamma = \gamma(t)$ $(t \in I)$ of M such that $\gamma'(t)$ is orthogonal to ξ (for any $t \in I$), considered as a curve in $P_n(C)$, has constant first curvature along γ .

PROOF. We find that the condition (ii) is equivalent to $g((\nabla_X A)X, X)=0$ for any $X(\in T^{\circ}M)$. On the other hand, the Codazzi equation shows that $g((\nabla_X A)Y, Z)$ is symmetric for any X, Y and $Z(\in T^{\circ}M)$. And hence the condition (i) is equivalent to the condition (ii). Q. E. D.

REMARK 5. The first author ([8]) proved the following:

Let M be a real hypersurface of $P_n(C)$. Then every geodesic γ of M, considered as a curve in $P_n(C)$, has constant first curvature along γ if and only if M is locally congruent to one of homogeneous real hypersurfaces of type A_1 and A_2 .

REMARK 6. The authors do not know how to construct a real hypersurface M with $M^{0}=Q_{n-1}$ (, that is, M is of case (5) in Theorem 3).

References

- [1] Cecil, T.E. and Ryan, P.J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [2] Ki, U. H., Nakagawa, H. and Suh, Y. J., Real hypersurfaces with harmonic Weyl tensor of a complex space form, a preprint.
- [3] Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [4] Kimura, M., Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(C)$, Math. Ann. 276 (1987), 487-497.
- [5] Kimura, M. and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [6] Kobayashi, S., Differential geometry of complex vector bundles, Publ. Math. Soc. Japan 15, Iwanami Shoten, Publ. and Princeton Univ. Press, 1987.
- [7] M. Kon, Pseudo-Einstein real hypersufaces in complex space form, J. Diff. Geom. 14 (1979), 339-354.
- [8] Maeda, S., Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
- [9] Maeda, Y., On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [10] Nakagawa, H. and Takagi, R., On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
- [11] Okumura, M., On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [12] Okumura, Compact real hypersurfaces of a complex projective space, J. Diff. Geom. 12 (1977), 595-598.
- [13] Takagi, R., On homogeneous real hypersurfaces in a complex projective space,

Osaka, J. Math. 10 (1973), 495-506.

- [14] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
- [15] Udagawa, S., Bi-order real hypersurfaces in a complex projective space, Kodai Math. J. 10 (1987), 182-196.

.

Sadahiro Maeda Department of Mathematics Kumamoto Institute of Technology Ikeda 4-22-1 Kumamoto 860, Japan

Seiichi Udagawa Department of Mathematics School of Medicine Nihon University Itabashi, Tokyo 173, Japan

. . . • • .