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0. Introduction.

Real hypersurfaces in a complex projective space have been studied by

many differential geometers (for example, see [1], [2], [3], [7], [14] and [15]).

In this paper, we study real hypersurfaces in $P_{n}(C)$ from the point of view of
holomorphic distribution, where $P_{n}(C)$ denotes an n-dimensional complex projec-
tive space with Fubini-Study metric of constant holomorphic sectional curva-
ture 4.

R. Takagi ([13]) showed that all homogeneous real hypersurfaces in $P_{n}(C)$

are realized as the tubes of constant radius over compact Hermitian symmetric
spaces of rank 1 or 2. Namely, he proved the following

THEOREM A ([13]). Let $M$ be a homogeneous real hypersurface of $P_{n}(C)$ .
Then $M$ is locally congruent to one of the following:
(A) a geodesic hypersphe $re$ (, that is, a tube over a hyperplane $P_{n- 1}(C)$),

(A) a tube over a totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ ,

(B) a tube over a complex quadric $Q_{n- 1}$ ,

(C) a tube over $P_{1}(C)\times P_{(n-1)/2}(C)$ and $n(\geqq 5)$ is odd,

(D) a tube over a complex Grassmann $G_{2,5}(C)$ and $n=9$ ,

(E) a tube over a Hermitian symmetric space $SO(10)/U(5)$ and $n=15$ .

On the other hand, Kimura ([4], [5]) constructed a certain class of non-
homogeneous real hypersurfaces in $P_{n}(C)$ , which are called ruled real hyper-

surfaces in $P_{n}(C)$ .
Let $M$ be a real hypersurface of $P_{n}(C)$ and denote by $TM$ the tangent

bundle of $M$ . Set $\xi=-JN$, where $J$ is the complex structure tensor of $P_{n}(C)$

and $N$ is a local unit normal vector field of $M$ in $P_{n}(C)$ . Then we may write
as $T_{x}M=T_{x}^{0}M+R\{\xi_{x}\}$ at any fixed point $x$ of $M$ , where $T_{x}^{0}M$ is a J-invariant
subspace of $T_{x}M$ . Let $A_{2}$ be the second fundamental form for the subbundle
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$T^{0}M$ in $TP_{n}(C)$ over $M$ (see \S 3), where $TP_{n}(C)$ is the tangent bundle of $P_{n}(C)$ .
Set $A^{0}=A_{2}|_{T^{0}M}$ . Then $A^{0}$ may be interpreted as a smooth section of $Hom(T^{0}M$ ,

$Hom(T^{0}M, N^{0}M))$ , where $N^{0}M$ is the orthogonal complement of $T^{0}M$ in $TP_{n}(C)$

with respect to the metric on $TP_{n}(C)$ , which is also a subbundle of $TP_{n}(C)$ .
Each of $T^{0}M$ and $N^{0}M$ has a connection induced from $TP_{n}(C)$ and hence
$Hom(T^{0}M, Hom(T^{0}M, N^{0}M))$ has a connection, which is denoted by $\nabla^{0}$ (cf. [6]).

In Section 3, we show the condition that $\nabla_{x}^{0}A^{0}=0$ for any $X\in T^{0}M$ implies

that either $\xi$ is a principal curvature vector and the shape operator $A$ of $M$ in
$P_{n}(C)$ is $\eta$ -parallel or $T^{0}M$ is integrable, hence either $M$ is locally a homo-
geneous real hypersurface of type $A_{1},$ $A_{2}$ or $B$ , or $M$ is foliated by complex

hypersurface of $P_{n}(C)$ with parallel second fundamental form, which is $P_{n-1}(C)$

or a complex hyperquadric $Q_{n-1}(C)$ by the well-known result of Nakagawa-

Takagi ([10]). Moreover, we determine real hypersurfaces $M\prime s$ (in $P_{n}(C)$ ) which
satisfy the condition $T^{0}M$ is a curvature invariant subspace of $TM$ and $\xi$ is
not a principal curvature vector” by using Kimura’s work [4].

In Section 2, we give some characterizations of homogeneous real hyper-

surfaces of type $A_{1}$ and $A_{2}$ .

1. Preliminaries.

Let $M$ be a real hypersurface of $P_{n}(C)$ . In a neighborhood of each point, we
choose a unit normal vector field $N$ in $P_{n}(C)$ . The Riemannian connections V

in $P_{n}(C)$ and $\nabla$ in $M$ are related by the following formulas for arbitrary vector

fields $X$ and $Y$ on $M$ :

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$,

(1.2) $\tilde{\nabla}_{X}N=-AX$,

where $g$ denotes the Riemannian metric of $M$ induced from the Fubini-Study

metric $G$ of $P_{n}(C)$ and $A$ is the shape operator of $M$ in $P_{n}(C)$ . An eigenvector
$X$ of the shape operator $A$ is called a principal curvature vector. Also an eigen-

value $\lambda$ of $A$ is called a principal curvature. In what follows, we denote by $V_{\lambda}$

the eigenspace of $A$ associated with eigenvalue $\lambda$ . It is known that $M$ has an
almost contact metric structure induced from the complex structure $J$ of $P_{n}(C)$ ,

that is, we define a tensor field $\phi$ of type $(1, 1)$ , a vector field $\xi$ and a l-form $\eta$

on $M$ by $g(\phi X, Y)=G(JX, Y)$ and $g(\xi, X)=\eta(X)=G(JX, N)$ . Then we have

(1.3) $\phi^{2}X=-X+\eta(X)\xi$ , $g(\xi, \xi)=1$ , $\phi\xi=0$ .
From (1.1), we easily have
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(1.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(1.5) $\nabla_{X}\xi=\phi AX$ .

Let $\tilde{R}$ and $R$ be the curvature tensors of $P_{n}(C)$ and $M$ , respectively. Since the
curvature tensor $\tilde{R}$ has a nice form, we have the following Gauss and Codazzi
equations:

(1.6) $g(R(X, Y)Z,$ $W$ )$=g(Y, Z)g(X, W)-g(X, Z)g(Y, W)$

$+g(\phi Y, Z)g(\phi X, W)-g(\phi X, Z)g(\phi Y, W)$

$-2g(\phi X, Y)g(\phi Z, W)+g(AY, Z)g(AX, W)$

$-g(AX, Z)g(AY, W)$ ,

(1.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

It is well-known that there does not exist a real hypersurface $M$ of $P_{n}(C)$

satisfying $\nabla A=0$ (, that is, the second fundamental form of $M$ is parallel).

Here we recall the following notion: The second fundamental form is called $\eta-$

parallel if $g((\nabla_{X}A)Y, Z)=0$ for any $X,$ $Y$ and $Z$ which are orthogonal to $\xi$ .
We note that the second fundamental form of homogeneous real hypersurfaces
of type $A_{1},$ $A_{2},$ $B$ and ruled real hypersurfaces is $\eta$ -parallel (cf. Theorem 5).

We say that $M$ is a ruled real hypersurface if there is a foliation of $M$ by com-
plex hyperplanes $P_{n-1}(C)$ . More precisely, let $T^{0}M$ be the distribution defined
by $T_{x}^{0}M=\{X\in T_{x}M:X\perp\xi\}$ for $x\in M$ . Then $T^{0}M$ is integrable and its integral

manifold is a totally geodesic submanifold $P_{n-1}(C)$ . In the following, we use
the same terminology and notations as above unless otherwise stated. Now we
prepare without proof the following in order to prove our Theorems:

THEOREM $B$ ([11], [12]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then
the following are equivalent:

(i) $M$ is locally congruent to one of homogeneous real hypersurfaces of type
$A_{1}$ and $A_{2}$ .

(ii) $L_{\xi}g=0$ , where $L$ is the Lie derivative. Namely, $\xi$ is an infinitesimal
isometry.

(iii) $\phi A=A\phi$ .

THEOREM $C$ ([5]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the second
fundamental form of $M$ is $\eta$ -parallel and $\xi$ is a principal curvature vector if and
only if $M$ is locally congruent to one of homogeneous real hypersurfaces of type
$A_{1},$ $A_{2}$ and $B$ .
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THEOREM $D$ ([5]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the second
fundamental form of $M$ is $\eta$ -parallel and the holomorphic distribution $T^{0}M(=$

$\{X\in TM:X\perp\xi\})$ is integrable if and only if $M$ is locally congruent to a ruled
real hypersurface of $P_{n}(C)$ .

PROPOSITION A ([9]). If $\xi$ is a principal curvature vector, then the corre-
sponding principal curvature $\alpha$ is locally constant.

PROPOSITION $B$ ([9]). Assume that $\xi$ is a principal curvature vector and the
corresponding principal curvature is $\alpha$ . If $AX=rX$ for $ X\perp\xi$ , then we have $A\phi X$

$=((\alpha r+2)/(2r-\alpha))\phi X$.

PROPOSITION $C([9])$ . Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the
following are equivalent:

(i) $M$ is locally congruent to one of homogeneous ones of type $A_{1}$ and $A_{2}$ .
(ii) $g((\nabla_{X}A)Y, Z)=-\eta(Y)g(\phi X, Z)-\eta(Z)g(\phi X, Y)$ for any vector fields $X$,

$Y$ and $Z$ on $M$.

PROPOSITION $D$ ([5]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the
following are equivalent:

(i) The holomorphic distribution $T^{0}M=\{X\in TM:X\perp\xi\}$ is integrable.
(ii) $g((\phi A+A\phi)X, Y)=0$ for any $X,$ $Y\in T^{0}M$.

2. Homogeneous real hypersurfaces of type $A_{1}$ and $A_{2}$ .
In this section we provide some characterizations of homogeneous real hyper-

surfaces of type $A_{1}$ and $A_{2}$ in $P_{n}(C)$ . Motivated by Theorem $B$ , first of all we
prove the following

THEOREM 1. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the following
are equivalent:

(i) $M$ is locally congruent to one of homogeneous real hypersurfaces of type
$A_{1}$ and $A_{2}$ .

(ii) $L_{\xi}\phi=0$ , that is, $\xi$ is an infinitesimal automorphism of $\phi$ .
PROOF. For any $X\in TM$, we have

$(L_{\xi}\phi)(X)=[\xi, \phi X]-\phi([\xi, X])$

$=\nabla_{\xi}(\phi X)-\nabla_{\phi X}\xi-\phi(\nabla_{\xi}X-\nabla_{X}\xi)$

$=(\nabla_{\xi}\phi)X-\nabla_{\phi X}\xi+\phi(\nabla_{X}\xi)$
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$=\eta(X)A\xi-g(A\xi, X)\xi-\phi A\phi X+\phi^{2}AX$ (from (1.4) and (1.5))

$=\eta(X)A\xi-g(A\xi, X)\xi-\phi A\phi X-AX+\eta(AX)\xi$ (from (1.3))

$=\eta(X)A\xi-\phi A\phi X-AX$ .
Since $(L_{\xi}\phi)(\xi)=0$ , the above calculation asserts that $L_{\xi}\phi=0$ is equivalent to

(2.1) $AX=-\phi A\phi X$ for any $X(\perp\xi)$ .
From (1.3) and (2.1) we find

(2.2) $\phi AX=A\phi X-\eta(A\phi X)\xi$ for any $X(\perp\xi)$ .
Then we see

$\phi^{2}AX=-AX+\eta(AX)\xi$ (from (1.3))

$=\phi A\phi X$ (from (1.3) and (2.2))

$=-AX$ (from (2.1)),

that is, $\eta(AX)=0$ for any $X(\perp\xi)$ so that $\xi$ is a principal curvature vector. And
hence, we get $\eta(A\phi X)=g(A\phi X, \xi)=g(\phi X, A\xi)=0$ . Here we suppose that $L_{\xi}\phi=0$ .
Then from (2.2) we obtain $\phi AX=A\phi X$ for any $X(\perp\xi)$ . Moreover, from the
fact that $\xi$ is a principal curvature vector, it follows that $\phi A\xi=A\phi\xi(=0)$ . Then

$L_{\xi}\phi=0$
’ implies $\phi A=A\phi’$ . On the other hand $\phi A=A\phi$ ’ yields the equation

(2.1), that is, $L_{\xi}\phi=0’$ . Therefore by virtue of Theorem $B$ , we get our con-
clusion. Q. E. D.

Nom let $T^{0}M^{c}$ be a complexification of $T^{0}M$ . Then we have $T^{0}M^{C}=$

$T^{0}M^{(1.0)}\oplus T^{0}M^{(0,1)}$ with respect to $\phi$ , where

$T^{0}M^{(1,0)}=\{Z\in T^{0}M^{C} : \phi Z=\sqrt{-1}Z\}=\{X-\sqrt{-1}\phi X:X\in T^{0}M\}$

and

$T^{0}M^{(0.1)}=\{Z\in T^{0}M^{C} : \phi Z=-\sqrt{-1}Z\}=\{X\cdot+\sqrt{-1}\phi X:X\in T^{0}M\}$ .

We are now in a position to prove the following

THEOREM 2. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the following
are equivalent:

(i) $M$ is locally equivalent to one of homogeneous real hypersurfaces of type
$A_{1}$ and $A_{2}$ .

(ii) $\xi$ is a principal curvature vector and $\nabla_{Z}\xi$ is a $(0,1)$-vector for any $ Z\in$

$T^{0}M^{(0.1)}$ .

PROOF. For any $Z(=X+\sqrt{-1}\phi X)\in T^{0}M^{(0.1)}$ , from (1.5) we have
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(2.3) $\nabla_{Z}\xi=\phi+-1^{-}\phi A\phi X\in T^{0}M^{c}$ where $X\in T^{0}M$ .

$(i)\Rightarrow(ii)$ : Since $\phi A=A\phi,$ $\xi$ is a principal curvature vector. Then from (2.3) we
get

$\nabla_{z}\xi=\phi AX+\sqrt{1}\phi^{2}AX$

$=\phi AX+\sqrt{-1}(-AX+\eta(AX)\xi)$ (from (1.3))

$=\phi AX-’-1AX$ .
Then we find

$\phi(\nabla_{z}\xi)=\phi(\phi AX-\sqrt{-1}AX)$

$=-AX+\eta(AX)\xi-\sqrt{-1}\phi AX$

$=-\sqrt{-1}(\phi AX-\sqrt{-1}AX)$ ,

which shows that $\nabla_{Z}\xi$ is a $(0,1)$-vector with respect to $\phi$ .
$(ii)\Rightarrow(i)$ : From (2.3) we have

$\phi(\nabla_{Z}\xi)=\phi(\phi AX+\sqrt{-1}\phi A\phi X)=-\sqrt{-1}(\phi AX+\sqrt{-1}\phi A\phi X)$ .
This, together with (1.3), shows that

(2.4) $-AX+\eta(AX)\xi+\sqrt{-1}(-A\phi X+\eta(A\phi X)\xi)$

$=-\sqrt{-1}\phi AX+\phi A\phi X$ for any $X(\perp\xi)$ .

Since $\xi$ is a principal curvature vector, the equation (2.4) is reduced to $-AX$

$-\sqrt{-1}A\phi X=\phi A\phi X-\sqrt{}\overline{-1}\phi AX$ for any $X(\perp\xi)$ . Therefore we conclude that
$\phi A=A\phi$ . Q. E. D.

REMARK 1. Let $M$ be a Kaehler manifold (with complex structure $J$ ).

Then the following are equivalent:

(i) $L_{x}J=0$ .
(ii) $\nabla_{Z}X$ is a $(0,1)$-vector for any $(0,1)$-vector $Z$.

Motivated by this fact, we established Theorem 2.

Finally we prove the following

PROPOSITION 1. Let $M$ be a real hypersurface of $P_{n}(C)$ . Suppose that $\xi$ is
a principal curvature vector and the corresponding principal curvature is non-zero.
If $\nabla_{\xi}A=0$ , then $M$ is locally congruent to one of homogeneous real hypersurfaces
of type $A_{1}$ and $A_{2}$ .
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PROOF. By hypothesis we may put $ A\xi=\alpha\xi$ . Then from Proposition $A$ ,

(1.3) and (1.5) we have

$(\nabla_{\xi}A)\xi=\nabla_{\xi}(A\xi)-A\nabla_{\xi}\xi=(\xi\alpha)\xi+\alpha\nabla_{\xi}\xi=0$ .
And hence $\nabla_{\xi}A=0$

’ implies

(2.5) $g((\nabla_{\xi}A)X, Y)=0$ (for any $X,$ $ Y\perp\xi$).

On the other hand, for any $X(\in V_{r}=\{X:AX=rX, X\perp\xi\})$ we get

$g((\nabla_{\xi}A)X, Y)=g((\nabla_{X}A)\xi+\phi X, Y)$ (from (1.7))

$=g(\nabla_{X}(A\xi)-A\nabla_{X}\xi+\phi X, Y)$

$=g(\alpha\phi AX-A\phi AX+\phi X, Y)$ (from Proposition A and (1.5))

$=g(\alpha r\phi X-rA\phi X+\phi X, Y)$

$=\{r(\alpha-\frac{\alpha r+2}{2r-\alpha})+1\}g(\phi X, Y)$ (from Proposition B)

Therefore the equation (2.5) asserts that

$r(\alpha-\frac{\alpha r+2}{2r-\alpha})+1=0$ .

Namely we find $\alpha(r^{2}-\alpha r-1)=0$ . Since $\alpha\neq 0$ , we have $r^{2}-\alpha r-1=0$ so that
$r(2r-\alpha)=\alpha r+2$ , that is, $r=(\alpha r+2)/(2r-\alpha)$ . Therefore $\phi V_{r}=V_{r}$ so that our real
hypersurface $M$ must be locally congruent to one of homogeneous ones of type
$A_{1}$ and $A_{2}$ (cf. [8]). Of course a homogeneous real hypersurface of type $A_{1}$

and $A_{2}$ satisfies the condition $\nabla_{\xi}A=0$
’ (cf. Proposition C). Q.E. D.

REMARK 2. $A\xi=0$ ’ implies $\nabla_{\xi}A=0$
’ (see the proof of Proposition 1).

REMARK 3. By an easy calculation we find the following:
$\nabla_{\xi}\xi=0$ (, that is, $\xi$ is $principa1$ ) $\Leftarrow\ni(\nabla_{\xi}\phi)X=0$ for any $X\in TM\Leftrightarrow(\nabla_{\xi}\phi)(\xi)=0$ .

3. Main results.

To state our results, we prepare some fundamental equations of subbundles
(cf. [6]). Let $F$ be a vector bundle over a Riemannian manifold $M$ . Assume
that $F$ has a metric connection. Then any subbundle $E$ of $F$ has an induced
metric connection. Denote by $\nabla^{F}$ and $\nabla^{E}$ the connections of $F$ and $E$, respec-
tively. Then we have

(3.1) $\nabla_{X}^{F}v=\nabla_{X}^{E}v+A(X)(v)$ for any $v\in C^{\infty}(E)$ and $X\in TM$ ,
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where $A$ is a $Hom(E, E^{\perp})$-valued l-form on $M$ and $E^{\perp}$ is the orthogonal comple-
ment of $E$ in $F$ with respect to the metric on F. $A$ is called the second funda-
mental form of subbundle $E$ in F. $E^{\perp}$ is also given a connection induced from
$F$. Denote it by $\nabla^{E^{\perp}}$ . Then we see that

(3.2) $\nabla_{x}^{F}w=\nabla_{x}^{E^{1}}w+B(X)(w)$ for any $w\in C^{\infty}(E^{\perp})$ and $X\in TM$ ,

where $B$ is a $Hom(E^{\perp}, E)$-valued l-form on $M$ . It is easily seen that $A=-{}^{t}B$ ,

where ${}^{t}B$ is the transpose of $B$ with respect to the metric on $F$.
Now let $M$ be a real hypersurface of $P_{n}(C)$ . Then $TM$ is a subbundle of

$TP_{n}(C)$ over $M$ and $T^{0}M=\{X\in TM:X\perp\xi\}$ is a subbundle of $TM$ . Thus each
of $TM$ and $T^{0}M$ has a metric connection induced from $TP_{n}(C)$ . The orthogonal
complement of $T^{0}M$ in $TP_{n}(C)$ with respect to the metric on $TP_{n}(C)$ is denoted
by $N^{0}M$ , which is also a subbundle of $TP_{n}(C)$ with the induced metric connec-
tion.

Denote by $\nabla^{0}$ and $\nabla^{\perp}$ the connections of $T^{0}M$ and $N^{0}M$ , respectively. By
(3.1) we have

(3.3) $\nabla_{X}Y=\nabla_{X}^{0}Y+A_{1}(X)(Y)$

(3.4) $\tilde{\nabla}_{X}Y=\nabla_{x}^{0}Y+A_{2}(X)(Y)$ for any $Y\in C^{\infty}(T^{0}M)$ and $X\in TM$ ,

where $A_{1}$ and $A_{2}$ are the second fundamental forms of the subbundle $T^{0}M$ in
$TM$ and $TP_{n}(C)$ , respectively. Note that the second fundamental form of $TM$

in $TP_{n}(C)$ coincides with the ordinary second fundamental form of the immersion
$M\rightarrow P_{n}(C)$ . $A_{2}$ is interpreted as a smooth section of $Hom(TM, Hom(T^{0}M, N^{0}M))$ .
Set $A^{0}=A_{2}|_{T^{0}M}$ , which is a smooth section of $Hom(T^{0}M, Hom(T^{0}M, N^{0}M))$ .
Note that any ruled real hypersurfaces in $P_{n}(C)$ may be characterized by the
condition $A^{0}\equiv 0$ . We here consider the covariant derivative of $A^{0}$ with respect
to the connection on $Hom(T^{0}M, Hom(T^{0}M, N^{0}M))$ induced from $TP_{n}(C)$ . First
of all we show the following fundamental relations.

PROPOSITION 2.

(i) $ A_{1}(X)(Y)=-g(\phi AX, Y)\xi$ ,

(ii) $ A_{2}(X)(Y)=g(AX, Y)N-g(\phi AX, Y)\xi$ ,

(iii) $\nabla^{0}\phi=0$ ,

(iv) $\nabla_{X}^{\perp}\xi=g(AX, \xi)N$,

(v) $\nabla_{x}^{\perp}N=-g(AX, \xi)\xi$ ,

where $X\in TM$ and $Y\in C^{\infty}(T^{0}M)$ .
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PROOF. For any $X\in TM$ and $Y\in C^{\infty}(T^{0}M)$ , we have

(i) $g(A_{1}(X)(Y), \xi)=g(\nabla_{X}Y, \xi)=-g(Y, \phi AX)$ ,

(ii) $g(A_{2}(X)(Y), \xi)=G(\tilde{\nabla}_{X}Y, \xi)=g(\nabla_{X}Y, \xi)=-g(Y, \phi AX)$ ,

$G(A_{2}(X)(Y), N)=G(\tilde{\nabla}_{X}Y, N)=g(AX, Y)$ ,

(iii) $(\nabla_{X}^{0}\phi)(Y)=\nabla_{X}^{0}\phi(Y)-\phi(\nabla_{X}^{0}Y)$

$=\nabla_{X}\phi(Y)-A_{1}(X)(\phi(Y))-\phi(\nabla_{X}Y-A_{1}(X)(Y))$

$=(\nabla_{X}\phi)(Y)+g(\phi AX, \phi Y)\xi$

$=0$ ,

where we have used $(1.1)\sim(1.5)$ .

(iv) $\tilde{\nabla}_{X}\xi=\nabla_{X}\xi+g(AX, \xi)N=\phi AX+g(AX, \xi)N$,

which, together with (3.2), implies $\nabla_{X}^{\perp}\xi=g(AX, \xi)N$.
(v) $\tilde{\nabla}_{X}N=-AX$,

which, combined with (3.2), implies $\nabla_{X}^{\perp}N=-g(AX, \xi)\xi$ . Q. E.D.

The connection on $Hom(T^{0}M, Hom(T^{0}M, N^{0}M))$ is also denoted by $\nabla^{0}$ . The
covariant derivative of $A^{0}$ is defined by

(3.5) $(\nabla_{X}^{0}A^{0})(Y)(Z)=\nabla_{X}^{1}A^{0}(Y)(Z)-A^{0}(\nabla_{X}^{0}Y)(Z)-A^{0}(Y)(\nabla_{X}^{0}Z)$

for any $X\in TM$ and $Y,$ $Z\in C^{\infty}(T^{0}M)$ .

Now we prove

PROPOSITION 3. For any $X\in TM$ and $Y,$ $Z\in C^{\infty}(T^{0}M)$ ,

(3.6) $(\nabla_{X}^{0}A^{0})(Y)(Z)=\Psi(X, Y, Z)N+\Psi(X, Y, \phi Z)\xi$ ,

where $\Psi$ is the trilinear tensor defined by

(3.7) $\Psi(X, Y, Z)=g((\nabla_{X}A)(Y), Z)-\eta(AX)g(\phi AY, Z)$

$-\eta(AY)g(\phi AX, Z)-\eta(AZ)g(\phi AX, Y)$ .

PROOF. We have from Proposition 2

$(\nabla_{X}^{0}A^{0})(Y)(Z)=\nabla_{X}^{\perp}A^{0}(Y)(Z)-A^{0}(\nabla_{x}^{0}Y)(Z)-A^{0}(Y)(\nabla_{x}^{0}Z)$

$=\{g(\nabla_{X}(AY), Z)+g(AY, \nabla_{X}Z)\}N-\eta(AX)g(AY, Z)\xi$

$-\{g(\nabla_{X}(\phi AY), Z)+g(\phi AY, \nabla_{X}Z)\}\xi-\eta(AX)g(\phi AY, Z)N$
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$-g(A(\nabla_{X}^{0}Y), Z)N+g(\phi A(\nabla_{x}^{0}Y), Z)\xi-g(AY, \nabla_{x}^{0}Z)N$

$+g(\phi AY, \nabla_{X}^{0}Z)\xi$

$=\{g((\nabla_{X}A)(Y), Z)-\eta(AY)g(\phi AX, Z)-\eta(AX)g(\phi AY, Z)$

$-\eta(AZ)g(\phi AX, Y)\}N+\{-\eta(AX)g(AY, Z)-\eta(AY)g(AX, Z)$

$-g(\phi(\nabla_{X}(AY)), Z)+g(\phi A(\nabla_{X}Y), Z)-\eta(A\phi Z)g(\phi AX, Y)\}\xi$ ,

which implies (3.6). Q.E.D.

Recall the definition of $\eta$-parallelity of $A$ . We say that $A^{0}$ is $\eta$-parallel if
$\nabla_{X}^{0}A^{0}\equiv 0$ for any $X\in C^{\infty}(T^{0}M)$ .

The main purpose of this paper is to prove the following

THEOREM 3. Let $M$ be a real hypersurface of $P_{n}(C)$ . Assume that $A^{0}$ is $\eta-$

parallel. Then $M$ is locally congruent to one of the following:
(1) a homogeneous real hypersurface of type $A_{1}$ ,
(2) a homogeneous real hypersurface of type $A_{2}$ ,
(3) a homogeneous real hypersurface of type $B$ ,

(4) a real hypersurface in which $T^{0}M$ is integrable and its integral manifold
is a totally geodesic $P_{n-1}(C)$ (, that is, $M$ is a ruled real hypersurface),

(5) a real hypersurface in which $T^{0}M$ is integrable and its integral manifold
is a complex quadric $Q_{n-1}$ .

PROOF. By Proposition 3, $A^{0}$ is $\eta$ -parallel if and only if $\Psi(X, Y, Z)=0$ for
any $X,$ $Y,$ $Z\in C^{\infty}(T^{0}M)$ , that is,

(3.8) $g((\nabla_{X}A)(Y), Z)=\eta(AX)g(\phi AY, Z)+\eta(AY)g(\phi AX, Z)$

$+\eta(AZ)g(\phi AX, Y)$ for any $X,$ $Y,$ $Z\in C^{\infty}(T^{0}M)$ .

Therefore we must study real hypersurfaces (in $P_{n}(C)$) which satisfy the equa-
tion (3.8). Since the Codazzi equation (1.7) tells us that $g((\nabla_{X}A)Y, Z)$ is sym-

metric for any $X,$ $Y$ and $Z(\in T^{0}M)$ , exchanging $X$ and $Y$ in (3.8), we obtain
$g(Y, \phi AX)\eta(AZ)=g(X, \phi AY)\eta(AZ)$ so that

(3.9) $\eta(AZ)g((A\phi+\phi A)X, Y)=0$ for any $X,$ $Y,$ $Z(\in T^{0}M)$ .

Now we assume that $\eta(AZ)=0$ for any $Z(\in T^{0}M)$ , that is, $\xi$ is a principal cur-
vature vector. Then the equation (3.8) shows that $g((\nabla_{X}A)Y, Z)=0$ for any
$X,$ $Y,$ $Z(\in T^{0}M)$ , that is, the second fundamental form $A$ of $M$ is $\eta$ -parallel.

And hence our real hypersurface $M$ is locally congruent to one of homogeneous

ones of type $A_{1},$ $A_{2}$ and $B$ (cf. Theorem C). Next we assume that $\xi$ is not a
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principal curvature vector. Then the equation (3.9) tells us that the holomor-
phic distribution $T^{0}M$ is integrable (cf. Proposition D). Of course the integral

manifold $M^{0}$ of $T^{0}M$ is a complex hypersurface (with complex structure $\phi$ ) in
$P_{n}(C)$ . Moreover, the second fundamental form $A^{0}$ of $M^{0}$ is parallel (, which
is equivalent to (3.8)). Therefore we conclude that $M^{0}$ is locally congruent to
$P_{n-1}(C)$ or $Q_{n-1}$ (cf. [10]). Q. E. D.

As an immediate consequence of Theorem $C$ and (3.8), we get

THEOREM 4. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then $A^{0}$ is $\eta$ -parallel
and $\xi$ is a principal curvature vector if and only if $M$ is locally congruent to one
of homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ .

In addition, from Theorem $C$, Theorem $D$ and Theorem 3, we find

THEOREM 5. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then $A^{0}$ is $\eta$ -parallel
and the second fundamental form of $M$ is $\eta$ -parallel if and only if $M$ is locally
congruent to one of homogeneous real hypersurfaces of type $A_{1},$ $A_{t}$ and $B$ or a
ruled real hypersurface.

REMARK 4. We now denote by $H$ the sectional curvature of a holomorphic
2-plane (with respect to $\phi$ ) on a real hypersurface $M$ . Kimura ([4]) determined
real hypersurfaces (in $P_{n}(C)$ ) on which $H$ is constant. He showed the following

THEOREM $E$ ([4]). Let $M$ be a real hypersurface of $P_{n}(C)(n\geqq 3)$ on which
$H$ is constant. Then $M$ is one of the following:

(a) a homogeneous real hypersurface of type $A_{1}(H>4)$ ,

(b) a real hypersurface in which $T^{0}M$ is integrable and its integral manifold
is a totally geodesic $P_{n-1}(C)$ (, that is, $M$ is a ruled real hypersurface) $(H=4)$ ,

(c) a real hypersurface in which there is a foliation contained in some com-
plex hyperplane $P_{n- 1}(C)$ as a ruled real hypersurface $(H=4)$ .

Our aim here is to give a characterization of the cases (b), (c) in Theorem
E. We prove

PROPOSITION 4. Let $M$ be a real hypersurface of $P_{n}(C)(n\geqq 3)$ . If $T^{0}M$ is
a curvature invariant subspace of $TM$ and $\xi$ is not a principal curvature vector,

then $M$ is locally congruent to one of the cases (b), (c) in Theorem $E$ .

PROOF. Since $R(T^{0}M, T^{\theta}M)T^{0}M\subset T^{0}M$ , the equation (1.6) yields
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$0=g(R(X, Y)Z,$ $\xi$)

$=g(AY, Z)g(AX, \xi)-g(AX, Z)g(AY, \xi)$

for any $X,$ $Y,$ $Z\in T^{0}M$ and $\xi=-JN$.
Then we have

(3.10) $\eta(AX)\phi AY=\eta(AY)\phi AX$ for any $X,$ $Y\in T^{0}M$ .
We here consider a linear transformation $\phi A:T^{0}M\rightarrow T^{0}M$ . Note that

(3.11) rank $(\phi A)\leqq 1$ at each point of $M$ .

Then (3.11) asserts that the Gauss equation (1.6) is reduced to

$g(R(X, Y)Z,$ $W$ )$=g(Y, Z)g(X, W)-g(X, Z)g(Y, W)+g(\phi Y, Z)g(\phi X, W)$

$-g(\phi X, Z)g(\phi Y, W)-2g(\phi X, Y)g(\phi Z, W)$ ,

that is,

$R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z$ for any $X,$ $Y,$ $Z\in T^{0}M$ .

Then we conclude that our real hypersurface $M$ satisfies that $H=4$ . Therefore
Theorem $E$ tells us that $M$ is locally congruent to one of the cases (b), (c). Of
course the cases (b), (c) satisfy the hypothesis of Proposition 4. Q.E.D.

We here provide a geometric meaning of the condition “the second funda-
mental form of $M$ is $\eta$-parallel”. The following is due to Nakagawa.

PROPOSITION 5. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the following
are equivalent:

(i) The second fundamental form of $M$ is $\eta$ -parallel.
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(ii) Every geodesic $\gamma=\gamma(t)(t\in I)$ of $M$ such that $\gamma^{\prime}(t)$ is orthogonal to $\xi$ (for

any $t\in I$ ), considered as a curve in $P_{n}(C)$ , has constant first curvature along $\gamma$ .

PROOF. We find that the condition (ii) is equivalent to $g((\nabla_{X}A)X, X)=0$

for any $X(\in T^{0}M)$ . On the other hand, the Codazzi equation shows that
$g((\nabla_{X}A)Y, Z)$ is symmetric for any $X,$ $Y$ and $Z(\in T^{0}M)$ . And hence the con-
dition (i) is equivalent to the condition (ii). Q. E. D.

REMARK 5. The first author ([8]) proved the following:

Let $M$ be a real hypersurface of $P_{n}(C)$ . Then every geodesic $\gamma$ of $M$ , con-
sidered as a curve in $P_{n}(C)$ , has constant first curvature along $\gamma$ if and only if
$M$ is locally congruent to one of homogeneous real hypersurfaces of type $A_{1}$

and $A_{2}$ .

REMARK 6. The authors do not know how to construct a real hypersurface
$M$ with $M^{0}=Q_{n-1}$ (, that is, $M$ is of case (5) in Theorem 3).
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