ON THE PRESENTATIONS OF THE FUNDAMENTAL GROUPS OF 3-MANIFOLDS

By
Moto-o TAKAhashi

In this paper we shall treat the closed 3 -manifolds obtained by Dehn surgeries along certain links and find presentations of their fundamental groups.

§ 1. The 3-chain link.

First we consider the 3 -chain link K_{1} illustrated in the Figure 1.

Figure 1
We do Dehn surgery along each component of K_{1}. Let $p_{1} / r_{1}, p_{2} / r_{2}, p_{3} / r_{3}$ be the surgery coefficients along three components L_{1}, L_{2}, L_{3} of K_{1}, respectively, where p_{i} and r_{i} are co-prime integers ($i=1,2,3$). We denote the resulting 3 manifold by $M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)$.

We shall find presentations of the fundamental group $\pi_{1}\left(M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)\right)$ of $M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)$, by the following way.

First we shall find a presentation of the link group G of K_{1}.
The Wirtinger presentation of G is:

$$
\begin{align*}
\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right| y_{2} x_{1} & =x_{1} x_{2}, y_{3} x_{2}=x_{2} x_{3}, y_{1} x_{3}=x_{3} x_{1} \\
x_{1} y_{2} & \left.=y_{2} y_{1}, x_{2} y_{3}=y_{3} y_{2}, x_{3} y_{1}=y_{1} y_{3}\right\rangle . \tag{1}
\end{align*}
$$

Received October 2, 1987. Revised June 24, 1988.

The meridian m_{i} and the longitude l_{i} of each component L_{i} are:

$$
\begin{array}{lll}
m_{1}=x_{1}, & l_{1}=y_{2} x_{3}, & \left(\left[m_{1}, l_{1}\right]=1\right) \\
m_{2}=x_{2}, & l_{2}=y_{3} x_{1}, & \left(\left[m_{2}, l_{2}\right]=1\right) \\
m_{3}=x_{3}, & l_{3}=y_{1} x_{2} . & \left(\left[m_{3}, l_{3}\right]=1\right)
\end{array}
$$

A presentation of $\pi_{1}\left(M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)\right)$ is obtained from (1) by adding the relators $m_{i}{ }^{p_{i}} l_{i}{ }^{r_{i}}=1(i=1,2,3)$. But we improve this presentation.

Since $\left(p_{i}, r_{i}\right)=1$, there are integers s_{i} and q_{i} such that $r_{i} s_{i}-p_{i} q_{i}=1$. Let $a_{i}=m_{i}{ }^{s} i_{i}{ }^{q_{i}}$. Then

$$
m_{i}=a_{i}^{r_{i}}, \quad l_{i}=a_{i}^{-p_{i}} .
$$

So,

$$
x_{1}=a_{1}^{r_{1}}, \quad x_{2}=a_{2}^{r_{2}}, \quad x_{3}=a_{3}^{r_{3}}
$$

and

$$
\begin{aligned}
& y_{1}=l_{3} x_{2}{ }^{-1}=a_{3}{ }^{-p_{3}} a_{2}^{-r_{2}}, \\
& y_{2}=l_{1} x_{3}{ }^{-1}=a_{1}{ }^{-p_{1}} a_{3}^{-r_{3}}, \\
& y_{3}=l_{2} x_{1}{ }^{-1}=a_{2}{ }^{-p_{2}} a_{1}{ }^{-r_{1}} .
\end{aligned}
$$

Substituting these in the relators of (1), we get the following three relators:

$$
\begin{aligned}
& a_{1}{ }^{p_{1}+r_{1}} a_{2}^{r_{2}} a_{1}^{-r_{1}} a_{3}^{r_{3}}=1, \\
& a_{2}^{p_{2}+r_{2}} a_{3}^{r_{3}} a_{2}^{-r_{2}} a_{1}^{r_{1}}=1, \\
& a_{3}{ }^{p_{3}+r_{3}} a_{1}^{r_{1}} a_{3}^{-r_{3}} a_{2}^{r_{2}}=1
\end{aligned}
$$

Therefore we obtain the presentation:

$$
\begin{align*}
& \pi_{1}\left(M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)\right) \cong\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}{ }^{p_{1}+r_{1}} a_{2}^{r_{2}} a_{1}{ }^{-r_{1}} a_{3}^{r_{3}}=1, \\
& \left.a_{2}{ }^{p_{2}+r_{2}} a_{3}{ }^{r_{3}} a_{2}^{-r_{2}} a_{1}^{r_{1}}=1, \quad a_{3}{ }^{p_{3}+r_{3}} a_{1}^{r_{1}} a_{3}{ }^{-r_{3}} a_{2}^{r_{2}}=1\right\rangle . \tag{2}
\end{align*}
$$

Remark. This presentation is induced by the following RR-system (c.f. [1]) illustrated in the Figure 2 and hence corresponds to a Heegaard splitting of genus 3. Actually we can easily construct a Heegaard splitting of $M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)$ with this RR-system.

Next we eliminate the generator a_{3} in the presentation (2). From the first relator of (2),

$$
\begin{equation*}
a_{3}^{r_{3}}=a_{1}^{r_{1}} a_{2}{ }^{-r_{2}} a_{1}^{-p_{1}-r_{1}} . \tag{3}
\end{equation*}
$$

Substituting it in the second relator, we obtain

$$
\begin{equation*}
a_{2}{ }^{p_{2}+r_{2}} a_{1}^{r_{1}} a_{2}^{-r_{2}} a_{1}^{-p_{1}-r_{1}} a_{2}^{-r_{2}} a_{1}^{r_{1}}=1 . \tag{4}
\end{equation*}
$$

Figure 2
Moreover, from the third relator and (3),

$$
\begin{equation*}
a_{3}{ }^{p_{3}+r_{3}}=a_{2}{ }^{-r_{2}} a_{1}{ }^{r_{1}} a_{2}{ }^{-r_{2}} a_{1}^{-\left(p_{1}+2 r_{1}\right)} . \tag{5}
\end{equation*}
$$

But

$$
\left[a_{1}^{r_{1}} a_{2}{ }^{-r_{2}} a_{1}{ }^{-p_{1}-r_{1}}, a_{2}{ }^{-r_{2}} a_{1}^{r_{1}} a_{2}^{-r_{2}} a_{1}^{-\left(p_{1}+2 r_{1}\right)}\right]=1
$$

is a consequence of (4). So we can eliminate a_{3} by (3) and (5) (since ($p_{3}+r_{3}, r_{3}$) $=1$) and we obtain

$$
\left(a_{1}^{r_{1}} a_{2}{ }^{-r_{2}} a_{1}{ }^{-p_{1}-r_{1}}\right)^{p_{8}+r_{3}}=\left(a_{2}{ }^{-r_{2}} a_{1}^{r_{1}} a_{2}^{-r_{2}} a_{1}{ }^{-\left(p_{1}+2 r_{1}\right)}\right)^{r_{3}} .
$$

In order to simplify this equality, we multiply $a_{1}{ }^{-r_{1}}$ from the left and $a_{1}{ }^{r_{1}}$ from the right. Then,

$$
\begin{equation*}
\left(a_{2}^{-r_{2}} a_{1}-p_{1}\right)^{p_{3}+r_{3}}=\left(a_{1}{ }^{-r_{1}} a_{2}{ }^{-r_{2}}{\underline{a_{1}}}^{r_{1}} a_{2}{ }^{-r_{2}} a_{1}-\left(p_{1}+r_{1}\right)\right)^{r_{3}}, \tag{6}
\end{equation*}
$$

By (4),

$$
a_{1}^{r_{1}} a_{2}^{-r_{2}} a_{1}^{-\left(p_{1}+r_{1}\right)}=a_{2}^{-\left(p_{2}+r_{2}\right)} a_{1}{ }^{-r_{1}} a_{2}^{r_{2}} .
$$

Substituting this for the underlind part in (6), we obtain

$$
\left(a_{2}^{-r_{2}} a_{1}^{-p_{1}}\right)^{p_{3}+r_{3}}=\left(a_{1}^{-r_{1}} a_{2}^{-\left(p_{2}+2 r_{2}\right)} a_{1}{ }^{-r_{1}} a_{2}^{r_{2}}\right)^{r_{3}},
$$

or

$$
\begin{equation*}
\left(a_{1}{ }^{p_{1}} a_{2}{ }^{r_{2}}\right)^{-\left(p_{3}+r_{3}\right)}=\left(a_{1}{ }^{-r_{1}} a_{2}{ }^{-\left(p_{2}+2 r_{2}\right)} a_{1}{ }^{-r_{1}} a_{2}{ }^{r_{2}}\right)^{r_{3}} . \tag{7}
\end{equation*}
$$

Now, since

$$
a_{1}^{-r_{1}} a_{2}^{-\left(p_{2}+2 r_{2}\right)} a_{1}^{-r_{1}} a_{2}^{r_{2}}=\left(a_{1}^{-r_{1}} a_{2}-\left(p_{2}+2 r_{2}\right) a_{1}^{-\left(p_{1}+r_{1}\right)}\right)\left(a_{1}{ }^{p_{1}} a_{2}^{r_{2}}\right)
$$

and

$$
\left[a_{1}{ }^{p_{1}} a_{1}{ }^{r_{2}}, a_{1}{ }^{-r_{1}} a_{2}-\left(p_{2}+2 r_{2}\right) a_{1}-\left(p_{1}+r_{1}\right)\right]=1,
$$

by (4) it follows that

$$
\left(a_{1}^{-r_{1}} a_{2}-\left(p_{2}+2 r_{2}\right) a_{1}^{-r_{1}} a_{2}{ }^{r_{2}}\right)^{r_{3}}=\left(a_{1}^{-r_{1}} a_{2}^{-\left(p_{2}+2 r_{2}\right)} a_{1}^{-\left(p_{1}+r_{1}\right)}\right)^{r_{3}}\left(a_{1}{ }_{1}^{p_{1}} a_{2}^{\left.r_{2}\right)^{r_{3}}} .\right.
$$

So, by (7)

$$
\left(a_{1}{ }^{p_{1}} a_{2}{ }^{r_{2}}\right)^{-\left(p_{3}+2 r_{3}\right)}=\left(a_{1}^{-r_{1}} a_{2}^{-\left(p_{2}+2 r_{2}\right)} a_{1}-\left(p_{1}+r_{1}\right)\right)^{r_{3}} .
$$

Taking the inverse we obtain

$$
\left(a_{1}{ }^{p_{1}} a_{2}^{r_{2}}\right)^{p_{3}+2 r_{3}}=\left(a_{1}{ }^{p_{1}+r_{1}} a_{2}{ }^{p_{2}+2 r_{2}} a_{1}{ }^{r_{1}}\right)^{r_{3}} .
$$

Hence

$$
\begin{aligned}
& \pi_{1}\left(M_{1}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}\right)\right) \cong\left\langle a_{1}, a_{2}\right| \\
& a_{2}^{p_{2}+r_{2}} a_{1}^{r}{ }^{r} a_{2}{ }^{-r_{2}} a_{1}{ }^{-\left(p_{1}+r_{1}\right)} a_{2}^{-r_{2}} a_{1}{ }^{r_{1}}=1, \\
& \left.\left(a_{1}{ }^{p_{1}} a_{2}{ }^{r_{2}}\right)^{p_{3}+2 r_{3}}=\left(a_{1}{ }^{p_{1}+r_{1}} a_{2}^{p_{2}+2 r_{2}} a_{1}{ }^{r_{1}}\right)^{r_{3}}\right\rangle .
\end{aligned}
$$

This presentation corresponds to a Heegaard diagram of genus two.

§2. Some other links.

We do the same thing as did in $\S 1$ for some other links. We describe only the results.
2.1. Consider the link K_{2} illustrated in the Figure 3.

Figure 3
Let $M_{2}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}\right)$ be the 3 -manifold obtained by Dehn surgery along each component of K_{2} with surgery coefficients $p_{1} / r_{1}, p_{2} / r_{2}, p_{3} / r_{3}$, p_{4} / r_{4}. Then

$$
\begin{aligned}
& \pi_{1}\left(M_{2}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}\right)\right) \cong\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| \\
& a_{4}{ }^{r_{4}} a_{1}{ }^{p_{1}} a_{2}{ }^{-r_{2}}=1, a_{1}{ }^{-r_{1}} a_{2}{ }^{p_{2}} a_{3}^{r_{3}}=1, \\
& \left.a_{2}{ }^{r_{2}} a_{3}{ }^{p_{3}} a_{4}{ }^{-r_{4}}=1, a_{3}{ }^{-r_{3}} a_{4}{ }^{p_{4}} a_{1}{ }^{r_{1}}=1\right\rangle \\
& \cong\left\langle a_{1}, a_{2}\right|\left(a_{2}-p_{2}\right)^{r_{4}}=\left(a_{2}{ }^{r_{2}} a_{1}{ }^{-p_{1}}\right)^{p_{4}}, \\
& \left.\left(a_{1}-p_{1}\right)^{r_{3}}=\left(a_{2}-p_{2} a_{1}{ }^{r_{1}}\right)^{p_{3}},\left[a_{1}{ }^{p_{1}}, a_{2}{ }^{p_{2}}\right]=1\right\rangle .
\end{aligned}
$$

The corresponding RR-system is illustrated in the Figure 4.

Figure 4
2.2. Consider the link K_{3} illustrated in the Figure 5.

Figure 5
Let $M_{3}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}\right)$ be the 3 -manifold obtained by Dehn surgery along each component of K_{3} with surgery coefficients $p_{1} / r_{1}, p_{2} / r_{2}, p_{3} / r_{3}$, p_{4} / r_{4}. Then,

$$
\begin{aligned}
& \pi_{1}\left(M_{3}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}\right)\right) \cong\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| \\
& a_{2}^{-r_{2}} a_{1}{ }^{-p_{1}} a_{4}^{r_{4}}=1, a_{2}^{p_{2}+r_{2}} a_{1}^{r_{1}} a_{4}^{-\left(p_{4}+r_{4}\right)} a_{1}^{p_{1}+r_{1}}=1, \\
& \left.a_{3}{ }^{-r_{3}} a_{1}{ }^{r_{1}} a_{4}{ }^{-p_{4}}=1, a_{3}^{p_{3}+r_{3}} a_{4}^{p_{4}+r_{4}} a_{1}^{-\left(p_{1}+r_{1}\right)} a_{4}^{r_{4}}=1\right\rangle \\
& \cong\left\langle a_{1}, a_{4}\right| \\
& \left(a_{1}-p_{1} a_{4}^{r_{4}}\right)^{p_{2}+r_{2}}\left(a_{1} r_{1} a_{4}-\left(p_{4}+r_{4}\right) a_{1}^{p_{1}+r_{1}}\right)^{r_{2}}=1, \\
& \left(a_{1}^{r_{1}} a_{4}{ }^{-p_{4}}\right)^{p_{3}+r_{3}}\left(a_{4}^{p_{4}+r_{4}} a_{1}^{-\left(p_{1}+r_{1}\right)} a_{4}^{r_{4}}\right)^{r_{3}}=1, \\
& \left.\left[a_{1}^{-p_{1}} a_{4}^{r_{4}}, a_{1}{ }^{r} a_{4}-\left(p_{4}+r_{4}\right) a_{1}^{p_{1}+r_{1}}\right]=1\right\rangle,
\end{aligned}
$$

2.3. Consider the link K_{4} illustrated in the Figure 6.

Figure 6
Let $M_{4}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4} ; p_{5}, r_{5} ; p_{6}, r_{6}\right)$ be the 3 -manifold obtained by Dehn surgery along each component of K_{4} with surgery coefficients p_{1} / r_{1}, $p_{2} / r_{2}, p_{3} / r_{3}, p_{4} / r_{4}, p_{5} / r_{5}, p_{6} / r_{6}$. Then,

$$
\begin{aligned}
& \pi_{1}\left(M_{4}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4} ; p_{5}, r_{5} ; p_{6}, r_{6}\right)\right) \\
& \cong\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right| a_{1}{ }^{-r_{1}} a_{2}{ }^{p_{2}} a_{3}{ }^{r_{3}}=1, \\
& a_{2}{ }^{r_{2}} a_{3}{ }^{p_{3}} a_{4}-r_{4}=1, a_{3}{ }^{-r_{3}} a_{4}^{p_{4}} a_{5}^{r_{5}}=1, a_{4}{ }^{r_{4}} a_{5}{ }^{p_{5}} a_{6}{ }^{-r_{6}}=1, \\
& \left.a_{5}{ }^{-r_{5}} a_{6}{ }^{p_{6}} a_{1}{ }^{r_{1}}=1, a_{6}{ }^{r_{6}} a_{1}{ }^{p_{1}} a_{2}{ }^{-r_{2}}=1\right\rangle .
\end{aligned}
$$

Note that

$$
a_{2}{ }^{p_{2}} a_{4}^{p_{4}} a_{6}{ }^{p_{6}}=1 \quad \text { and } \quad a_{1}{ }^{p_{1}} a_{3}{ }^{p_{3}} a_{5}{ }^{p_{5}}=1
$$

are consequences of the relators of this presentation. This presentation is expressed by the following 4-regular planar graph with labels (Figure 7).

Figure 7
2.4. Consider the link $L_{2 n}$ illustrated in the Figure 8.

On the presentations of the fur

Figure 8
Let.$M_{2 n}^{\prime}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; \cdots ; p_{2 n}, r_{2 n}\right)$ be the 3 -magery along each component of $L_{2 n}$ with surgers $p_{2 n} / r_{2 n}$. Then,

$$
\begin{aligned}
& \pi_{1}\left(M_{2 n}^{\prime}\left(p_{1}, r_{1} ; p_{2}, r_{2} ; \cdots ; p_{2 n}, r_{2 n}\right)\right) \\
& \cong\left\langle a_{1}, a_{2}, \cdots, a_{2 n}\right| a_{2 i}^{r}{ }^{r} r_{i i} a_{2 i+1}^{p_{2 i+1}} a_{2 i+2}^{-r_{2} i+2}= \\
& a_{2 i-1}^{-r_{2} i-1} a_{2 i}^{p_{i}^{p i}} a_{2 i+1}^{r_{2} r_{i+1}}=1, \quad(i=1,2, \cdots, n)(n
\end{aligned}
$$

For example, if $n=5$ then the presentation is expl 4 -regular graph with labels (Figure 9).

Figure 9

the results in $\S 2$.

ited planar graph with the following label for sere p, r are co-prime integers. We call such

Figure 10
rable. We color the faces by two colors (say, red 4 -color problem. We assume that G is drawn on $)^{3}$.
copies of G. We assume that $G_{1}, G_{2}, G_{3}, G_{4}$ are

Figure 11
drawn on the boundaries of the 3 -disks $D_{1}^{3}, D_{2}^{3}, D_{3}^{3}, G_{4}^{3}$, respectively, and the faces of $G_{1}, G_{2}, G_{3}, G_{4}$ are colored in the same way as G. Moreover we assume that G_{2}, G_{4} are mirror images of G_{1}, G_{3}, The Figure 11 is an example. (This figure is symmetric with respect to the lines l and m.)

We glue the corresponding points of $\partial D_{1}^{3}, \partial D_{2}^{3}, \partial D_{3}^{3}, \partial D_{4}^{3}$, in the following way. The corresponding points in the red faces of G_{1} and G_{2} are glued together; the corresponding points in the red faces of G_{3} and G_{4} are glued together; the corresponding points in the blue faces of G_{1} and G_{4} are glued together; the corresponding points in the blue faces of G_{2} and G_{3} are glued together.

red faces	blue faces
$G_{1} \longleftrightarrow G_{2}$	$G_{1} \longleftrightarrow G_{4}$
$G_{3} \longleftrightarrow G_{4}$	$G_{2} \longleftrightarrow G_{3}$

Then the corresponding vertices of $G_{1}, G_{2}, G_{3}, G_{4}$ are glued together. We remove the interiors of regular neighborhoods of these vertices. Then we obtain a 3-manifold, whose boundary consists of the same number of tori as the number of vertices of G. We denote this manifold by $M^{\prime}(G)$.

In the neighborhood of a vertex the situation is as shown in the Figure 12.

Figure 12

Here, if the label at a vertex is

then we do Dehn surgery (Dehn filling) on the corresponding boundary torus along the loop of slope p / r. Examples are shown in the Figure 13.

boundary torus

Figure 13
Then we obtain a closed orientable 3 -manifold, which we denote by $M(G)$. We say that the graph G represents $M(G)$. For this the following theorem holds.

Theorem 1. Let M be a closed orientable connected 3-mainfold. In order for M to be representable by an M-graph it is necessary and sufficient that M is
homeomorphic to the 2-fold branched covering space of S^{3} branched along a link.
Proof. [Necessity] Suppose that M is represented by an M-graph G. We change G to a link L in the following way.

For every vertex of G with label as shown in the Figure 14 (we can assume $p \geqq 0, r \geqq 0$) we insert the rational tangle shown in the Figure 15. (The Figure 16

Figure 14

Figure 15

$p=5, r=3$

$$
p=1, r=0
$$

$p=1, r=1$

$p=0, r=1$

Figure 16
shows examples.)
Now it is not hard to see that M is homeomorphic to the 2 -fold branched covering space of S^{3} branched along the link L now constructed.
[sufficiency] Suppose that M is the 2 -fold branched covering space of S^{3} branched along a link L. Consider a regular projection P of L on a plane. We change P to an M-graph G by changing each crossing point to a vertex with label as shown in the Figure 17.

Figure 17
Then as above M is represented by this M-graph. q.e.d.

Next we shall find a presentation of the fundamental group of $M^{\prime}(G)$.
Let \mathscr{F} be the set of all faces of G and let \mathscr{F}_{1} (resp. \mathscr{F}_{2}) be the set of all red (resp. blue) faces of G. Let $Q V$ be the set of all vertices of G. For each vertex V we correspond generators b_{V}, c_{V} and write the following at the vertex V.

Figure 18
For each face Δ of G, we correspond the relator $r_{\Delta}=1$ in the following way as illustrated in the Figure 19.

Figure 19
Theorem 2.

$$
\pi_{1}\left(M^{\prime}(G)\right) \cong\left\langle\left\{b_{V}, c_{V}: V \varepsilon \mathscr{F}\right\}\right|\left\{\left[b_{V}, c_{V}\right]=1: V \varepsilon \subset \mathcal{V},\left\{r_{\Delta}=1: \Delta \varepsilon \mathscr{F}\right\}\right\rangle .
$$

Each relator $r_{\Delta}=1\left(\Delta \varepsilon \mathscr{F}_{i}\right)$ is a consequence of $\left\{r_{\Lambda^{\prime}}=1: \Delta^{\prime} \varepsilon \mathscr{I}_{i}-\{\Delta\}\right\}$, for $i=$

1, 2. So two of the relators of the above presentation are redundant.
Proof. Let

$$
J_{i}=D_{i}^{3}-\{\text { vertices }\}, \quad(i=1,2,3,4) .
$$

Let X be the space obtained from J_{1} and J_{2} by glueinng the corresponding points of the red faces of them.
$\pi_{1}(X)$ is a free group. Now we take a base point O in the interior of J_{2} and define a loop b_{V} for each $V \varepsilon \subset V$ as follows.
b_{V} starts from O, proceeds in J_{2} and reaches a point A_{1} of a red face Δ_{1} with vertex V, and then proceeds in J_{1} and reaches a point A_{2} of another red face Δ_{2} with vertex V and again proceeds in J_{2} and returns to O.

$$
b_{V}: O \xrightarrow{J_{2}} A_{1} \xrightarrow{J_{1}} A_{2} \xrightarrow{J_{2}} O
$$

It is easy to see that

$$
\pi_{1}(X) \cong\left\langle\left\{b_{V}: V \varepsilon \subset \mathcal{O}\right\} \mid\left\{r_{\Delta}=1: \Delta \varepsilon \mathscr{F}_{2}\right\}\right\rangle,
$$

and that each $r_{\Delta}=1$ is a consequence of $\left\{r_{\Delta^{\prime}}=1: \Delta^{\prime} \varepsilon \mathscr{F}_{2}-\{\Delta\}\right\}$.
Next let Y be the space obtained by glueing the corresponding points of blue faces of J_{2} and J_{3}. We define the loop $c_{V}(V \varepsilon \subset)$ as follows. c_{V} starts from O, proceeds in J_{2} and reaches a point B_{1} of a blue face Δ_{3} with vertex V, and then proceeds in J_{3} and reaches a point B_{2} of another blue face Δ_{4} with vertex V and again proceeds in J_{2} and returns to O.

$$
c_{V}: O \xrightarrow{J_{2}} B_{1} \xrightarrow{J_{3}} B_{2} \xrightarrow{J_{2}} O .
$$

As before, we have that

$$
\pi_{1}(Y) \cong\left\langle\left\{c_{V}: V \varepsilon \subset V\right] \mid\left\{r_{4}=1: \Delta \varepsilon \mathscr{I}_{1}\right\}\right\rangle,
$$

and that each $r_{\Delta}=1$ is a consequence of $\left\{r_{\Delta^{\prime}}=1: \Delta^{\prime} \varepsilon \mathscr{I}_{1}-\{\Delta\}\right\}$.
Next let Z be the space obtained from $J_{1} \cup J_{2} \cup J_{3}$ by glueing the corresponding points of red faces of J_{1} and J_{2} and by glueing the corresponding points of blue faces of J_{2} and J_{3}.

Then,

$$
Z=X \cup Y, \quad X \cap Y=J_{2} .
$$

By using van Kampen theorem we obtain

$$
\begin{aligned}
\pi_{1}(Z) & \cong \pi_{1}(X) * \pi_{1}(Y) \\
& \cong\left\langle\left\{b_{V}, c_{V}: V \varepsilon \subset \mathcal{V}\right\} \mid\left\{r_{\Delta}=1: \Delta \varepsilon \mathscr{F}\right\}\right\rangle
\end{aligned}
$$

Finally let U be the space obtained from $Z \cup J_{4}$ by glueing the corresponding points of blue faces of J_{1} and J_{4} and by glueing the corresponding points of red faces of J_{3} and J_{4}. Then,

$$
U \cap J_{4}=\partial D_{4}^{3}-\{\text { vertices }\} .
$$

By using van Kampen theorem again, we obtain

$$
\pi_{1}(U) \cong\left\langle\left\{b_{V}, c_{V}: V \varepsilon \subset\right)\right\}\left|\left\{\left[b_{V}, c_{V}\right]=1: V \varepsilon \subset \mathcal{O}\right\},\left\{r_{\Delta}=1: \Delta \varepsilon \subsetneq\right\}\right\rangle .
$$

Now it is obvious that $\pi_{1}(U) \cong \pi_{1}\left(M^{\prime}(G)\right)$. Hence we have the theorem.
Next let G be an M-graph, and let V be a vertex with label as shown in the Figure 20.

Figure 20
To this vertex we correspond a generator a_{V} and write the following at the vertex V.

Figure 21
For each face Δ of G we correspond a relator $s_{\Delta}=1$ in the following way.

Figure 22

$$
s_{\Delta}=a_{V_{1}}^{p_{1}} a_{V_{2}}^{p_{3}} \cdots a_{V n}^{p_{n}}
$$

Then we have the following theorem.
ThEOREM 3. $\pi_{1}(M(G)) \cong\left\langle\left\{a_{V}: V \varepsilon \subset \mathcal{V}\right\} \mid\left\{s_{\Delta}=1: \Delta \varepsilon \mathscr{G}\right\}\right\rangle$. Each relator $s_{\Delta}=1$ $\left(\Delta \varepsilon \mathscr{I}_{i}\right)$ is a consequence of other $s_{\Lambda^{\prime}}=1\left(\Delta^{\prime} \varepsilon \mathscr{I}_{i}\right)$ for $i=1,2$. So two of the relators of the above presentation is redundant.

Proof. A presentation of $\pi_{1}(M(G))$ is obtained from that of $\pi_{1}\left(M^{\prime}(G)\right)$ in Theorem 2 by adding the relator ${b_{V}}^{p} V=c_{V}{ }^{r} V$ for each $V \varepsilon \subset V$. Since $\left[b_{V}, c_{V}\right]=1$, $b_{V}=a_{V}{ }^{r} V, c_{V}=a_{V}{ }^{p_{V}}$ for some $a_{V} \varepsilon \pi_{1}(M(G))$, as in $\S 1$. So the theorem is obvious from Theorem 2.

Reference

[1] Osborne, R.P. and Stevens, R.S., Group presentations correspoding to spines of 3-manifolds, II, Trans. Amer. Math. Soc. 234 (1977), 213-243.

