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NORMAL HIGHER WEIERSTRASS POINTS

By

R. F. LAX

Let $X$ denote a compact Riemann surface of genus $g>1$ and let $\Omega$ denote
the sheaf of sections of the canonical bundle on $X$. Put $D_{n}=\dim_{C}H^{0}(X, \Omega^{\otimes n})$

$=(2n-1)(g-1)+\delta_{1n}$ . An integer $\gamma$ is called an n-gap at $P$ if there exists $\sigma\in$

$H^{0}(X, \Omega^{\otimes n})$ such that $ord_{P}\sigma=\gamma-1$ . At each point $P\in X$ there is a sequence of
$D_{n}$ n-gaps

$1=\gamma_{1}(P)<\gamma_{2}(P)<\cdots<\gamma_{D_{n}}(P)\leqq 2n(g-1)+1$

and $P$ is called a Weierstrass point of order $n$ if $\gamma_{D_{n}}>D_{n}$ (cf. [1, 2]). The n-
weight of $P$, denoted $W_{n}(P)$ , is defined by $W_{n}(P)=\Sigma_{i=}^{D_{n_{1}}}(\gamma_{i}(P)-i)$ and one has

$\sum_{P\in X}W_{1}(P)=g^{3}-g$ and $\sum_{P\in X}W_{n}(P)=gD_{n}^{2}$ for $n\geqq 2$ .

A Weierstrass point $P$ of order $n$ is called normal if the sequence of n-gaps at
$P$ is 1, 2, $\cdots$ , $D_{n}-1,$ $D_{n}+1$ or, equivalently, if the n-weight of $P$ is 1.

The “classical” Weierstrass points are the Weierstrass points of order 1
and it is well-known that a generic Riemann surface has only normal classical
Weierstrass points. The analogous statement for higher order Weierstrass points
fails for genus two by virtue of the following result.

PROPOSITION 1. Let $X$ be a hyperelliptic Riemann surface of genus $g\geqq 2$ and
let $P$ denote one of the $2g+2$ (hyperelliptic) classical Weierstrass points on $X$.
Then $W_{n}(P)=g(g+1)/2$ for all $n\geqq 2$ .

PROOF. [1].

It follows from the Proposition that if $X$ is any compact Riemann surface
of genus two, then $X$ must have weight three Weierstrass points of order $n$

for all $n\geqq 2$ . Our goal in this note is to show how one may use results of H. B.
Laufer [3] to show that if $X$ is a generic compact Riemann surface of genus
$g>2$ , then $X$ has only normal Weierstrass points of order $n$ for all $n$ .

Following Laufer, for $P\in X$, let $d_{n}(P)$ denote the maximal order of a zero
at $P$ of sections in $H^{0}(X, \Omega^{\emptyset n})$ and let $w_{n}(P)$ denote the smallest nonnegative
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integer such that there does not exist $\sigma\in H^{0}(X, \Omega^{\otimes}‘‘)$ with a zero at $P$ of order
$w_{n}(P)$ . Thus, $d_{n}(P)+1$ is the largest n-gap at $P$ and $w_{n}(P)+1$ is the smallest
positive non-n-gap at $P$. Then Laufer [3] proved the following important result.

THEOREM 1. Let $X$ be a compact Riemann surface of genus $g\geqq 2$ . Let
$\pi;x\rightarrow T$ be the complete effectively parametrized deformation of X. Let $P\in X$ .
Put

$G_{1}=$ { $Q\in\chi,$ $Q$ near $P:d_{1}(Q)=d_{1}(P)$ }.
Fix $n\geqq 1$ .

(1) Put $G=$ { $Q\in\chi Q$ near $P:d_{n}(Q)=d_{n}(P)$ }. If $n\geqq 2,$ $d_{n}(P)=2n(g-1)$ and
$d_{1}(P)=2g-2$ , then $G$ coincides with $G_{1}$ . In all other cases, $G$ is a submanifold
of $\chi$ of dimension $3g-3+D_{n}-d_{n}(P)$ .

(2) Put $W=$ { $Q\in\chi Q$ near $P:w_{n}(Q)=w_{n}(P)$ }. Suppose $w_{n}(P)\leqq D_{n}-1$ . If
$n\geqq 2,$ $w_{n}(P)=(2n-2)(g-1)-1$ and $d_{1}(P)=2g-2$ , then $W$ coincides with $G_{1}$ . In
all other cases, $W$ is a submanifold of $\chi$ of dimension $3g-2-D_{n}+w_{n}(P)$ .

Let $V\rightarrow T$ denote the “universal” curve over the Teichm\"uller space para-
metrizing Teichm\"uller surfaces of genus $g$ . In [4], we defined complex sub-
spaces $W_{k}^{r}(K^{n})$ of $V$. Although we only considered $k\leqq D_{n}$ in [4], the definition
makes sense for any value of $k$ and we make no restriction here. (Also, we
take this opportunity to point out that the two $+3\prime s$ on page 3 of [4] should
be $-3\prime s.$ ) It is easy to see, as in [5], that the underlying sets of the $W_{k}^{r}(K^{n})$

satisfy the following:
(1) If $k\leqq D_{n}$ , then

$|W_{k}^{r}(K^{n})|=$ { $(t,$ $P)$ ; at $P\in V_{l}$ , there are at least $r$ non-n-gaps $\leqq k$ }.

(2) If $k\geqq D_{n}$ , then

$|W_{k}^{r}(K^{n})|=$ { $(t,$ $P)$ : at $P\in V_{t}$ , there are at least $r$ n-gaps $>k$ }.

We will write $W_{k}(K^{n})$ for $W_{k}^{1}(K^{n})$ . As a consequence of Laufer’s Theorem,

we have

THEOREM 2.
(1) Suppose $k\leqq D_{n}$ and $k\neq(2n-2)(g-1)$ . Then $W_{k}(K^{n})\backslash W_{k-1}(K^{n})$ , if non-

empty, is smooth of pure dimension $3g-3-D_{n}+k$ . If $k=2(n-2)(g-1)$ , then
$W_{k}(K^{n})\backslash (W_{k-1}(K^{n})\cup W_{2g-2}(K))$ , if nonempty, is smooth of pure dimension $3g-3-$

$D_{n}+k$ , while if a component of $W_{k}(K^{n})\backslash W_{k-1}(K^{n})$ is contained in $W_{2g-2}(K)$ , then
that component has dimension $2g-1$ .

(2) Suppose $k\geqq D_{n}$ and $k\neq 2n(g-1)$ . Then $W_{k}(K^{n})\backslash W_{k+1}(K^{n})$ , if nonempty,
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is smooth of pure dimension $3g-3+D_{n}-k$ . If $k=2n(g-1)$ , then $W_{k}(K^{n})\backslash (W_{k+1}(K^{n})$

$\cup W_{2g- 2}(K))$ , if nonempty, is smooth of pure dimension $3g-3+D_{n}-k$ , while if a
component of $W_{k}(K^{n})\backslash W_{k+1}(K^{n})$ is contained in $W_{2g-2}(K)$ , then that component
$has_{A}^{-}dimension2g-1$ .

PROOF. The only point which may not be obvious is the observation that
$W_{2g- 2}(K)$ has pure dimension $2g-1$ by [5, Thm. 2].

COROLLARY 1. Suppose $g\geqq 3$ . If $k\neq D_{n}$ , then $dimW_{k}(K^{n})<3g-3$ .

PROOF. Suppose $k=(2n-2)(g-1)<D_{n}$ and a component of $W_{k}(K^{n})\backslash W_{k-1}(K^{n})$

is contained in $W_{2g-2}(K)$ . By Theorem 2, this component has dimension $2g-1$

and this is less than $3g-3$ since $g$ is greater than two. Now, every component

of $W_{2}(K^{n})$ has dimension less than $3g-3$ . It follows from this and Theorem 2
that every component of $W_{3}(K^{n})$ has dimension less than $3g-3$ and, continuing
this reasoning, it is then easy to see that every component of $W_{k}(K^{n})$ for $k<D_{n}$

has dimension less than $3g-3$ .
Similarly, if $k=2n(g-1)$ and a component of $W_{k}(K^{n})\backslash W_{k+1}(K^{n})$ is contained

in $W_{2g-2}(K)$ , then that component has dimension $2g-1<3g-3$ . Now, every
component of $W_{2n(g-1)}(K^{n})$ has dimension less than $3g-3$ . It follows from this
and Theorem 2 that every component of $W_{2n(g-1)-1}(K^{n})$ has dimension less than
$3g-3$ and, continuing in this manner, every component of $W_{k}(K^{n})$ for $k>D_{n}$

has dimension less than $3g-3$ . $\blacksquare$

Our main result is

THEOREM 3. Suppose $g\geqq 3$ . Then a generic Riemann surface of genus $g$ has
only normal Weierstrass points of order $n$ for all $n\geqq 1$ . In particular, for all
$n\geqq 1$ and all $g\geqq 3$ , there exist compact Riemann surfaces of genus $g$ with normal
Weierstrass points of order $n$ .

PROOF. By Corollary 1, no component of $W_{k}(K^{n})\backslash W_{k- 1}(K^{n})$ , for $k<D_{n}$ can
dominate the Teichm\"uller space. Hence on a generic Riemann surface of genus
$g$, the first non-n-gap at each Weierstrass point of order $n$ must be $D_{n}$ . Also,
for $k>D_{n}$ , no component of $W_{k}(K^{n})\backslash W_{k+1}(K^{n})$ can dominate the Teichm\"uller

space. Hence on a generic Riemann surface of genus $g$ , the last n-gap at each
Weierstrass point of order $n$ must be $D_{n}+1$ . $\blacksquare$

We now consider the case $g=2$ . In this case, as we observed in [4],
$|W_{3}(K^{2})|=|W_{2}(K^{2})|=|W_{2}(K)|$ (and we showed that $W_{3}(K^{2})$ is not reduced).
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The key observation, in terms of Laufer’s Theorem, when $g=2$ is that now
$2g-1=3g-3$ . Now, if $n\geqq 2$ , then each of the six classical Weierstrass points

on a curve of genus 2 has weight 3 as a Weierstrass point of order $n$ and the
total weight of Weierstrass points of order $n$ on such a curve is $2(2n-1)^{2}$ .
Note that if $n\geqq 3$ , then the total weight of Weierstrass points of order $n$ is
greater than 18 and so there must be Weierstrass points of order $n$ which do
not belong to $W_{2}(K)$ . By applying Laufer’s Theorem as in the proof of Corol-
lary 1, one may see that $\dim W_{k}(K^{n})\backslash W_{2}(K)<3g-3=3$ if $k\neq D_{n}$ , and so by

reasoning as in the proof of Theorem 3 we obtain

THEOREM 4. For $n\geqq 3$ , a generic Riemann surface of genus 2 has six Weier-
strass points of order $n$ of weight 3 each and $2(2n-1)^{2}-18$ normal Weierstrass
points of order $n$ .

To conclude, we will indicate how the theory of Weierstrass points on
singular curves may also be used to demonstrate the existence of normal higher

order Weierstrass points. Suppose $X_{0}$ is an irreducible projective curve of arith-
metic genus $g$ with only nodes and cusps as singularities. Let $\omega$ denote the
sheaf of dualizing differentials on $X_{0}$ . By [9] there exists a flat proper map
$\pi:S\rightarrow C$ from a smooth surface $S$ to a smooth curve $C$ and a point $c\in C$ such
that $X_{0}$ is the fiber of $\pi$ over $c$ . Restricting to a neighborhood of $c$ we may,
and will, assume that all other fibers of $\pi$ are smooth curves. Then $S$ is a
family of Gorenstein curves over $C$ and there exists a bundle $\omega_{S/C}$ of relative
dualizing differentials whose restriction to $X_{0}$ is $\omega$ .

Now suppose there exists a point $P\in X_{0}$ which is a normal Weierstrass
point of $\omega^{n}$ in the sense of [6]. Then by [7] for all points $c^{\prime}\in C$ sufficiently

close to $c$ , there will be a (normal) Weierstrass point of weight one of the $n$ th
tensor power of the canonical bundle on the smooth curve which is the fiber of
$\pi$ over $c^{\prime}$ .

The idea here is that if $X_{0}$ is a simple curve, for example a rational curve,
then the higher order Weierstrass points on $X_{0}$ will be computable, at least in
theory. To illustrate this, let $X_{0}$ denote a rational curve with three simple
cusps. Then it was shown in [8] that each of the cusps is a Weierstrass point
of order 2 of weight 35 and that there are three normal Weierstrass points of
order 2. By the reasoning described above, this gives an alternate proof of
the existence of normal Weierstrass points of order 2 on a smooth curve of
genus 3.
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