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Let $R$ and $S$ be rings and let $RW_{s}$ be a bimodule. We shall denote both
the functors $Hom_{R}(-, W):R- Mod\rightarrow Mod- S$ and $Hom_{S}(-, W):Mod\rightarrow S\rightarrow R$-Mod by $\Delta_{W}$

and the composition of the two, in either order, by $\Delta_{W}^{2}$ . Recall that (for fixed
$W)$ there is a natural transformation $\delta:1_{RMod}\rightarrow\Delta_{W}^{2}$ , defined via the usual evalua-
tion maps $\delta_{M}$ : $M\rightarrow\Delta_{W}^{2}(M)$ . An R-module $M$ is called W-reflexive (W-torsionless)

in case $\delta_{M}$ is an isomorphism (a monomorphism). Then, an R-module $M$ is W-
torsionless if and only if it is isomorphic to a submodule of a direct product of
copies of $RW$. Also recall that $RW_{s}$ is balanced in case $R\cong End_{S}(W)$ and $ S\cong$

$End_{R}(W)^{op}$ canonically, and that $RW_{s}$ defines a Morita Duality if it is balanced
and both $RW$ and $W_{S}$ are injective cogenerators (see [1], [3] or [10], for an
account of Morita Duality).

We begin by studying exactness properties of the functor $\Delta_{W}^{2}$ . The case
$W=R$ has been extensively studied in ([4], [5], [6] and [7]) and Theorem 1,
Lemma 2, Proposition 3 and Proposition 4 are generalizations of results obtained
there. A finite dimensional algebra $R$ of positive dominant dimension possesses
(what we consider to be) a canonical pair of tilting left and right modules $RU$

and $V_{R}$ . Associated with these are the endomorphism rings $S=End_{R}(U)^{0p}$ and
$T=End_{R}(V)$ , and the bimodule $\tau W_{S}=r(V\otimes_{R}U)_{S}$ . We relate exactness properties
of the functors $\Delta_{U},$ $\Delta_{V},$ $\Delta_{W}$ and their squares to dominant dimension. For these
canonically chosen tilting modules we show that

1) if dom. $dim$ . $R\geqq 2$ then $\Delta_{U}^{2}$ preserves monomorphisms both in Mod-S and
in R-Mod;

2) if dom. $dim$ . $R\geqq 3$ then $\Delta_{U}^{o}$ is left exact on Mod-S and the functors $\Delta_{W}^{2}$

preserve monomorphisms in Mod-S and in T-Mod. In this case, if $\Delta_{W}$ : T-Mod
$\leftrightarrow Mod- S:\Delta_{W}$ defines a Morita Duality, then $R$ is $QF$ (and conversely);

3) if dom. $dim$ . $R\geqq 4$ then the functors $\Delta_{W}^{2}$ are left exact on both Mod-S
and on T-Mod.

We shall denote the injective envelope of a module $M$ by $E(M)$ and, if $M$ is
an R-module, we denote the annihilator in $M$ of a subset $I$ of $R$ by $Ann_{M}(I)$ .
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THEOREM 1. Let $RW_{s}$ be a bimodule with $R=End_{S}(W)$ . Let I denote the
ideal of all endomorphisms in $R$ which factor through injective S-modules. The
following are equivalent:

1) $W_{S}$ cogenerates $E(W_{S})$ .
2) If $M\in Mod- S$ is W-reflexive then $E(M_{S})$ is W-torsionless.
3) $\Delta_{W}^{2}$ : $Mod- S\rightarrow Mod- S$ preserves monomorphisms.
4) $Ann_{W}(I)=0$ .

PROOF. We modify the proof of [7, Theorem 1]. Let $E_{S}=E(W_{S})$ and
denote the injection of $W_{S}$ into $E_{S}$ by $i$ . We first prove that 1) implies 4).

Suppose that $W_{S}$ cogenerates $E_{S}$ . There is a sequence

$WEW^{X}\underline{i}\underline{j}$

in Mod-S where $j$ is a monomorphism. For $x\in X$ let $p_{x}$ : $W^{x}\rightarrow W$ be the canon-
ical projection and let $b_{x}=p_{x}\circ j\circ i\in I$ . Then if $K=\sum\{Rb_{x} : x\in X\}$ , $K\subseteqq I$ and
note that $Ann_{W}(K)=0$ . Hence we also have $Ann_{W}(I)=0$ . Next, assume condi-
tion 4). Suppose $\alpha:M\rightarrow N$ is a monomorphism in Mod-S and consider the in-
duced exact sequence

$\Delta_{W}(\alpha)$ $\beta$

$\Delta_{W}(N)-\Delta_{W}(M)-$ Coker $\Delta_{W}(\alpha)-0$

in R-Mod. If $f\in\Delta_{W}(M)$ and $r\in I$ then $r\circ f$ factors through an injective so there
exists $\overline{f}\in Hom_{S}(N, W)$ such that $f\circ\alpha=r\circ f$ . That is $ I\Delta_{W}(M)\subseteqq{\rm Im}\Delta_{W}(\alpha)=Ker\beta$ .
Thus we have

$I$ Coker $(\Delta_{W}(\alpha))=I\beta(\Delta_{W}(M))=\beta(I\Delta_{W}(M))=0$ .
Now let $\phi\in\Delta_{W}(Coker\Delta_{W}(\alpha))$ . Since

$I\phi(Coker\Delta_{W}(\alpha))=\psi(I$ Coker $(\Delta_{W}(\alpha))=0$

and $Ann_{W}(I)=0$ by 4) we oblain that $\phi=0$ . Thus $\Delta_{W}(Coker\Delta_{W}(\alpha))=0$ so $\Delta_{W}^{2}(\alpha)$

is a monomorphism. This completes the proof that 4) implies 3). That 3) im-
plies 2) follows from the observation that a non-zero kernel of $\delta_{E(M_{S})}$ would
have to intersect $M$ non-trivially, and it is clear that 2) implies 1).

Straightforward modification of the proof of [4, Theorem 2] provides a
proof of the following lemma.

LEMMA 2. Let $RW_{s}$ be a balanced bimodule and assume that the functor $\Delta_{W}^{2}$

preserves monomorphisms in Mod-S. Let

$0-RW-E-E_{2}$
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be an injective copresentation of $RW$ . If $RW$ cogenerates $RE1$ and $RE2$ , then
$\Delta_{W}^{2}$ : $Mod- S\rightarrow Mod- S$ is left exact.

In case $W=R$ , the equivalence or conditions 1) and 3) of the following re-
sult was observed in [6, Remark $(d)$ ].

PROPOSITION 3. Let $RW_{s}$ be a balanced bimodule. The following are equiv-
alent.

1) $W_{S}$ is injective.
2) If $\alpha$ is a monomorphism in Mod-S then $\Delta_{W}^{3}(\alpha)$ is an epimorphism in R-Mod.
3) $\Delta_{W}^{2}$ : $Mod- S\rightarrow Mod- S$ preserves monomorphisms and $\Delta_{W}^{9}$ : $R- Mod\rightarrow R$-Mod is right

exact.

In particular, if $RW_{s}$ is a balanced bimodule, then both $W_{S}$ and $RW$ are injective

if and only if both the $\Delta_{W}^{9}$ functors are exact.

PROOF. If is clear that condition 1) implies condition 3). Assume condition
3) and let $\alpha;M\rightarrow N$ be a monomorphism in Mod-S. Since $\Delta_{W}^{2}(\alpha)$ is a mono-
morphism, we have $\Delta_{W}(Coker(\Delta_{W}(\alpha))=0$ . Hence $\Delta_{\tilde{W}}^{9}$(Coker $(\Delta_{W}(\alpha))=0$ too so $\Delta_{W}^{3}(\alpha)$

is an epimorphism. Now assume condition 2). If $\alpha:M\rightarrow S$ is a monomorphism
in Mod-S we obtain an exact sequence

$\Delta_{W}(S)\Delta_{W}(M)\underline{\Delta_{W}(\alpha)}-Coker\Delta_{W}(\alpha)-0$

in R-Mod. Using 2), the W-reflexivity of $\Delta_{W}(S)=W$ , and the fact that $\Delta_{W}(M)$

is W-torsionless, the commutativity and exact rows and columns of the diagram

$\Delta_{W}^{3}(S)-\Delta_{W^{3}}(M)-0$

$\cong\uparrow$ $\uparrow$

$\Delta_{W}(S)\rightarrow\Delta_{W}(M)\rightarrow Coker\Delta_{W}(\alpha)\rightarrow 0$

$\uparrow$

$0$

show that $Coker\Delta_{W}(\alpha)=0$ so $\Delta_{W}(\alpha)$ is an epimorphism. Thus 1) holds.
We remark that if $R$ and $S$ are finite dimensional algebras, and $RW$ and $W_{s}$

are finitely generated, then Theorem 1, Lemma 2, and Proposition 3 remain
true if we replace Mod-S and R-Mod by mod-S and R-mod, respectively.

Recall that $U\in R$-Mod has dominant dimension at least $n$ (dom. $dim$ . $RU\geqq n$ )

if there is an exact sequence

$0-RU-RE_{1^{-\cdots-R}}E_{n}$
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where each $E_{i}$ is both projective and injective. If $R$ is a finite dimensional
algebra the dominant dimensions of $RR$ and $R_{R}$ are equal (see [8], [9], [10]) and
this number is called the dominant dimension of the algebra $R$ . Such algebras

of dominant dimension greater than or equal to one are also known as QF-3
algebras. A ring $R$ is a left QF-3 ring if it has a minimal faithful left module,
$i.e$ . a module which is isomorphic to a direct summand of every faithful module
(see [10], for example). Of course, a minimal faithful module is both projective

and injective and is isomorphic to a left ideal $Re$ for some idempotent $e\in R$ .

PROPOSITION 4. Suppose $R$ is a finite dimensional algebra over a field and
that $dom$ . $dim$ . $R\geqq 2$ . Let $RE$ be a minimal faithful left R-module with $S=$

$End_{R}(E)^{0p}$ . The following are equivalent;

1) $R$ is $QF$.
2) $E_{S}$ is injective.
3) $\Delta_{E}^{9}$ is right exact on R-Mod.

PROOF. Recall that $RE_{s}$ is a balanced bimodule [10, Proposition 7.1].

Condition 2) implies condition 1) since $E_{S}$ is a generator in Mod-S, hence if $E_{s}$

is injective, $S$ is $QF$ and $E_{s}$ is a progenerator, so $R$ is Morita equivalent of $S$ .
Clearly condition 1) implies condition 3) since in this case $RE$ is a progenerator

so both $RE$ and $E_{S}$ are injective. Assume condition 3). By Proposition 3(3) and
the remark following, to prove 2) it suffices to show that $\Delta_{E}^{2}$ preserves mono-
morphisms in mod-S. If $M$ is a finitely generated (hence finitely presented)

module in mod-S, then since $S$ is E-reflexive and $\Delta_{E}^{Q}$ is right exact on Mod-S
( $E$ is injective) it follows that $M$ is E-reflexive. Thus $\Delta_{E}^{\eta}$ is exact (hence

preserves monomorphisms) on mod-S.
Recall that $U\in R$-Mod is a tilting module in case $U$ has projective dimension

at most one $(pd_{R}U\leqq 1),$ $Ext_{R}^{1}(U, U)=0$ , and there is an exact sequence $ 0\rightarrow_{R}R\rightarrow$

$RU_{1}\rightarrow_{R}U_{2}\rightarrow 0$ where $U_{1},$ $U_{2}\in add- U$ . We refer to [2] and the references given
there for basic results concerning tilting modules. We next note that rings of
positive dominant dimension have a canonical tilting module.

PROPOSITION 5. Suppose $R$ is a finite dimensional algebra over a field with
$dom$ . $dim$ . $R\geqq n$ where $n\geqq 1$ , and let $U=E\oplus E(RR)/R$ where $RE$ is a minimal

faithful left R-module. Then $RU$ is a tilting module and $dom$ . $dim$ . $RU\geqq n-1$ .

PROOF. Let $RQ=E(RR)$ . Since $RE$ is both projective and injective $Ext_{R}^{1}(U, U)$

$=0$ will follow from $Ext_{R}^{1}(Q/R, Q/R)=0$ . Since $RQ$ is injective and $pd_{R}(Q/R)$

$\leqq 1$ , this is guaranteed by the exactness of the sequence
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$0=Ext^{1}(Q/R, Q)\rightarrow Ext^{1}(Q/R, Q/R)-Ext^{2}(Q/R, R)=0$

which is induced by the exact sequence $0\rightarrow_{R}R\rightarrow_{R}Q\rightarrow_{R}(Q/R)\rightarrow 0$ . This latter
exact sequence has both $Q$ and $Q/R$ in add-U and since $Q$ is projective it is
clear that $pd_{R}U\leqq 1$ . Finally, since dom. $dim$ . $R\geqq n$ and $Q$ is projective and in-
jective, it is clear that dom. $dim$ . $R(Q/R)\geqq n-1$ so dom. $dim$ . $RU\geqq n-1$ as well.

LEMMA 6. If $RU$ is a tilting module then $KerTor_{1}^{R}(-, U)$ is closed under
taking submodules.

PROOF. Since $pd_{R}U\leqq 1$ , there is an exact sequence $0\rightarrow P_{2}\rightarrow P_{1}\rightarrow U\rightarrow 0$ in R-
Mod with $P_{i}$ projective. Suppose $0\rightarrow M\rightarrow N$ is exact in Mod-R and $Tor_{1}^{R}(N, U)$

$=0$ . These two sequences innduce the commutative diagram

$0\rightarrow N\otimes P_{2}\rightarrow N\otimes P_{1}$

$\uparrow$ $\uparrow$

$ 0-Tor_{1}^{R}(M, U)\rightarrow M\otimes P_{2}\uparrow-M\otimes P_{1}\uparrow$

$0$ $0$

which, since $P_{1}$ and $P_{2}$ are projective, has exact rows and columns and from
which $Tor_{1}^{R}(M, U)=0$ follows.

LEMMA 7. Suppose $RU$ and $V_{R}$ are tilting left and right modules, respectively.
Let $S=End_{R}(U)^{op}$ and $T=End_{R}(V)$ . If $V_{R}$ is a submodule of a flat module,
$Ext_{T}^{1}(V, V)=0$ , and $\tau V_{R}$ is a balanced bimodule, then there are canonical isomor-
phisms $Hom_{T}(V, V\otimes_{R}U)\cong U_{S}$ and $Hom_{T}(V\otimes_{R}U, V\otimes_{R}U)\cong S$ .

PROOF. It suffices to establish the first isomorphism since, then, we have
canonical isomorphisms

$Hom_{T}(V\otimes_{R}U, V\otimes_{R}U)\cong Hom_{R}(U,$ $Hom_{T}(V, V\otimes_{R}U)$

$\cong Hom_{R}(U, U)$

$\cong S$ .
Using the hypothesis on $RV$ and Lemma 6, we have that $Tor_{1}^{R}(V, U)=0$ so by
our hypothesis that $Ext_{T}^{1}(V, V)=0$ (hence $Ext_{T}^{1}(V,$ $V\otimes P_{2})=0$) an exact sequence

$0\rightarrow P_{2}-P_{1^{-}}U\rightarrow 0$

in R-Mod with $P_{i}$ projective induces an exact sequence

$0-Hom_{T}(V, V\otimes P_{2})-Hom_{T}(V, V\otimes P_{1})\rightarrow Hom_{T}(V, V\otimes U)-0$
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so since ${}_{R}P_{1}$ and ${}_{R}P_{2}$ are finitely generated and projective and $\tau V_{R}$ is balanced,
the natural isomorphisms $Hom_{T}(V, V\otimes P_{i})\cong P_{i}$ induce the required isomorphism
$Hom_{T}(V, V\otimes U)\cong U$ .

LEMMA 8. Suppose that $V_{R}\in mod - R$ is a submodule of a flat module and that
$RU$ is a tilting module with $dom$ . $dim$ . $RU\geqq 2$ . Let $T=End_{R}(V)$ . Then $TV$ and
$\tau(V\otimes_{R}U)$ finitely cogenerate each other.

PROOF. By Lemma 6 $Tor_{1}^{R}(V, U)=0$ so an exact sequence $0\rightarrow R\rightarrow U_{1}\rightarrow U_{2}\rightarrow 0$

in R-Mod with $U_{i}\in add- U$ induces an exact sequence $0\rightarrow_{T}(V\otimes R)\rightarrow\tau(V\otimes U_{1})$ .
Thus, since $U_{1}\in add- U$ there is an injection of $TV$ into $T(V\otimes U)^{n}$ for some $n$ .
Since dom. $dim$ . $RU\geqq 2$ there is an exact sequence $0\rightarrow U\rightarrow E_{1}\rightarrow E_{2}$ in R-Mod with
$E_{i}$ projective and injective. Hence, since $E_{2}$ is projective, by Lemma 6 we
obtain an injection of $\tau(V\otimes U)$ into $\tau(V\otimes E_{1})$ , and, since $E_{1}$ is projective, one of
$\tau(V\otimes E_{1})$ into $\tau^{V^{m}}$ for some $m$ .

Suppose $R$ is a finite dimensional algebra over a field. Then, if $RU$ is a
tilting module and $S=End_{R}(U)^{op}$ then $U_{S}$ is also a tilting module, $RU_{s}$ is a
balanced bimodule, and $R$ and $S$ have the same number of isomorphism classes
of simple modules [2, Theorem 1.5] (our references to [2] do not require the
standing hypothesis of algebraic closure made there).

THEOREM 9. Suppose $R$ is a finite dimensional algebra over a field and that
$dom$ . $dim$ . $R\geqq 1$ . Let $F_{R}$ be a minimal jaithful right module, let $RU$ be a tilting

left module, and $S=End_{R}(U)^{op}$ . Then $(F\otimes_{R}U)_{S}$ is an injective module. Con-
sequently if $dom$ . $dim$ . $RU\geqq 1$ , then the functors $\Delta_{U}^{9}$ preserve monomorphisms both
$in$ Mod-S and in R-Mod. Furthermore, if $dom$ . $dim$ . $RU\geqq 2$ then $\Delta_{U}^{2}$ is left exact
$on$ Mod-S.

PROOF. Let $H_{S}=E((F\otimes_{R}U)_{S})$ . The evaluation $Hom_{s}(U, H)\otimes_{R}U_{S}\rightarrow H_{S}$ is an
isomorphism by [2, Proposition 1. $5a$] and the evaluation $Hom_{s}(U, F\otimes_{R}U)\otimes_{R}U_{S}$

$\rightarrow F\otimes_{R}U_{S}$ is an isomorphism since $F_{R}$ is finitely generated and projective and $R$

is the endomorphism ring of $U_{s}$ . Since the injective module $Hom_{S}(U, F\otimes_{R}U)_{R}=$

$F_{R}$ is a direct summand of $Hom_{S}(U, H),$ $(F\otimes_{R}U)_{S}$ is a direct summand of the
injective module $Hom_{S}(U, H)\otimes_{R}U_{S}=H_{S}$ . Thus $(F\otimes_{R}U)_{S}$ is injective. In order
to prove the remaining assertions, identify $F_{R}$ with a right ideal $fR$ and let $Re$

be a minimal faithful left R-module where $f$ and $e$ are idempotents of $R$ . Con-
sidering $R=End_{S}(U),$ $f$ is the canonical projection of $U_{S}$ onto $F\otimes_{R}U_{S}$ so we have
$fR\subseteqq I$ where $I$ is the ideal of Theorem 1. Suppose dom. $dim$ . $RU\geqq 1$ . Since
$fR_{R}$ is faithful and $RU$ is R-torsionless, $Ann_{U}(fR)=0$ so $Ann_{U}(I)=0$ also. Thus



Tilting Modules, Dominant Dimension 447

$\Delta_{U}^{9}$ preserves monomorphisms in Mod-S by Theorem 1 (4). Also, since dom. dom.
$R\geqq 1,$ $RRe$ cogenerates $RR$ hence also $RU$ (since $RU$ is a snbmodule of a projec-
tive). Thus $\Delta_{U}^{9}$ preserves monomorphisms in R-Mod by Theorem 1 (1) and [2,
Corollary to Theorem 2.1]. The final assertion follows from Lemma 2 since the
minimal faithful left R-module cogenerates any projective and is a direct sum-
mand of $RU$ .

PROPOSITION 10. Suppose $R$ is a finite dimensional algebra over a field.
Assume that $RU$ and $V_{R}$ are tilting left and right modules respectively, that $V_{R}$ is
torsionless and that $dom$ . $dim$ . $RU\geqq 2$ The following are equivalent:

1) $TV$ is injective.
2) $\tau V$ is a cogenerator.
3) $T(V\otimes U)$ is a cogenerator.
4) $R$ is $QF$.

PROOF. Suppose $T$ has $n$ simple modules. By [2, Theorem 2.1], $TV$ has $n$

isomorphism classes of indecomposable direct summands. Hence, if $TV$ is injec-
tive, every indecomposable injective is a direct summand of $TV$ so $TV$ is a
cogenerator. Similarly, if $TV$ is a cogenerator, $TV$ is injective since it has $n$

isomorphism classes of indecomposable injective direct summands. Thus condi-
tions 1) and 2) are equivalent and their equivalence with 3) follows from Lemma

8. Now $\tau V_{R}$ is a balanced bimodule so if 1) and 2) hold then $\tau V_{R}$ defines a
Morita Duality. Hence $V_{R}$ is injective. Again by [2, Theorem 2.1], $V_{R}$ has
exactly $n$ isomorphism classes of indecomposable direct summands and this is the
number of simple R-modules. Thus $R$ is $QF$. Finally, condition 4) implies

conditions 1) and 2) by [2, Corollary to Theorem 2.1].

THEOREM 11. Suppose $R$ is a finite dimensional algebra over a field and that
$dom$ . $dim$ . $RR\geqq 1$ . Suppose $RU$ and $V_{R}$ are tilting left and right R-modules, re-
spectively, each having dominant dimension at least 1. Let $S=End_{R}(U)^{op},$ $T=$

$End_{R}(V)$ , and $\tau W_{S}=\tau(V\otimes_{R}U)_{S}$ . Then $\tau W_{S}$ is a balanced bimodule, $\Delta_{W}(\tau V)=U_{S}$ ,

and $\Delta_{W}(U_{S})=\tau V$ . Furthermore,

1) If $dom$ . $dom$ . $RU\geqq 2$ and $dom$ . $dim$ . $V_{R}\geqq 2$ , then the functors $\Delta_{W}^{2}$ preserve
monomorphisms both in Mod-S and in T-Mod,

2) If $dom$ . $dom$ . $RU\geqq 3$ and $dom$ . $dim$ . $V_{R}\geqq 3$ , then the functors $\Delta_{W}^{q}$ are left exact
both in Mod-S and T-Mod, and

3) If $dom$ . $dom$ . $RU\geqq 2$ and $dom$ . $dim$ . $V_{R}\geqq 2$ then $R$ is $QF$ if and only if $\Delta_{W}$ :
$T- Mod\leftrightarrow Mod- S:\Delta_{W}$ defines a Morita Duality.
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PROOF. The first assertion follows from Lemma 7. Suppose dom. dom. $RU$

$\geqq 2$ and dom. $dim$ . $V_{R}\geqq 2$ . By Theorem 9 $\Delta_{V}^{9}$ is left exact on T-Mod and $\Delta_{U^{}}^{9}$ is
left exact on Mod-S. Hence by Theorem 1, $U_{S}$ cogenerates $E(U_{S})$ and $TV$

cogenerates $E(TV)$ . By Lemma 8 $E(TV)$ cogenerates $E(TW)$ so $\tau^{V}$ cogenerates
$E(TW)$ , but then, since $TW$ cogenerates $TV,$ $TW$ cogenerates $E(TW)$ . Thus A&
preserves monomorphisms in Mod-S by Theorem 1. Similarly, $\Delta_{W}^{2}$ preserves
monomorphisms in T-Mod. Next assume that dom. $dim$ . $RU\geqq 3$ and dom. $dim$ .
$V_{R}\geqq 3$ . Let $F_{R}$ be a minimal faithful right R-module. There is an exact sequence

$0-V_{R}-F_{R^{1}}-F_{R^{9}}-F_{R^{3}}$

where $F_{R^{i}}\in add- F_{R}$ . Applying Lemma 6 twice, we conclude that the induced
sequence

$0\rightarrow W_{S}\rightarrow(F^{1}\otimes_{R}U)_{S}\rightarrow(F^{2}\otimes_{R}U)_{S}$

is exact. Since $(F\otimes_{R}U)_{S}$ is injective by Theorem 9 and since $F_{R}$ is isomorphic

to a direct summand of $V_{R}$ by [2, corollary to Theorem 2.1] we conclude that
$\Delta_{W}^{2}$ is left exact on T-Mod by Lemma 2. Similarly, $\Delta_{W}^{2}$ is left exact on Mod-S.
Statement 3) follows from Proposition 10.

EXAMPLE. Let $A$ be the algebra of $3\times 3$ lower triangular matrices over an
field and let $R=A/J^{2}$ where $J$ is the radical of $A$ . Then $R$ has dominant
dimension 2 (and is not $QF$ ). Computation shows that, with notation as in
Theorem 11 and $RU,$ $V_{R}$ chosen as in Proposition 5 (and having dominant dimen-
sion 1), $\Delta_{W}$ : $T- Mod\leftrightarrow Mod- S:\Delta_{W}$ does define a Morita Duality.
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