TILTING MODULES, DOMINANT DIMENSION AND EXACTNESS OF DUALITY FUNCTORS

By

R.R. Colby

Dedicated to Professor Hiroyuki Tachikawa for his sixtieth birthday

Let R and S be rings and let $_{R}W_{S}$ be a bimodule. We shall denote both the functors $\operatorname{Hom}_{R}(_, W)$: R-Mod \rightarrow Mod-S and $\operatorname{Hom}_{S}(_, W)$: Mod- $S \rightarrow R$ -Mod by Δ_{W} and the composition of the two, in either order, by Δ_{W}^{2} . Recall that (for fixed W) there is a natural transformation $\delta : 1_{R \cdot Mod} \rightarrow \Delta_{W}^{2}$, defined via the usual evaluation maps $\delta_{M} : M \rightarrow \Delta_{W}^{2}(M)$. An R-module M is called W-reflexive (W-torsionless) in case δ_{M} is an isomorphism (a monomorphism). Then, an R-module M is Wtorsionless if and only if it is isomorphic to a submodule of a direct product of copies of $_{R}W$. Also recall that $_{R}W_{S}$ is balanced in case $R \cong \operatorname{End}_{S}(W)$ and $S \cong$ $\operatorname{End}_{R}(W)^{op}$ canonically, and that $_{R}W_{S}$ defines a Morita Duality if it is balanced and both $_{R}W$ and W_{S} are injective cogenerators (see [1], [3] or [10], for an account of Morita Duality).

We begin by studying exactness properties of the functor Δ_W^2 . The case W=R has been extensively studied in ([4], [5], [6] and [7]) and Theorem 1, Lemma 2, Proposition 3 and Proposition 4 are generalizations of results obtained there. A finite dimensional algebra R of positive dominant dimension possesses (what we consider to be) a canonical pair of tilting left and right modules $_RU$ and V_R . Associated with these are the endomorphism rings $S=\operatorname{End}_R(U)^{op}$ and $T=\operatorname{End}_R(V)$, and the bimodule $_TW_S=_T(V\otimes_R U)_S$. We relate exactness properties of the functors Δ_U , Δ_V , Δ_W and their squares to dominant dimension. For these canonically chosen tilting modules we show that

1) if dom. dim. $R \ge 2$ then Δ_{U}^2 preserves monomorphisms both in Mod-S and in R-Mod;

2) if dom. dim. $R \ge 3$ then Δ_U^2 is left exact on Mod-S and the functors Δ_W^2 preserve monomorphisms in Mod-S and in T-Mod. In this case, if Δ_W : T-Mod \leftrightarrow Mod-S: Δ_W defines a Morita Duality, then R is QF (and conversely);

3) if dom. dim. $R \ge 4$ then the functors Δ_W^2 are left exact on both Mod-S and on T-Mod.

We shall denote the injective envelope of a module M by E(M) and, if M is an *R*-module, we denote the annihilator in M of a subset I of R by $Ann_{\mathcal{M}}(I)$. Received September 1, 1987.

R.R. Colby

THEOREM 1. Let $_{R}W_{S}$ be a bimodule with $R = \text{End}_{S}(W)$. Let I denote the ideal of all endomorphisms in R which factor through injective S-modules. The following are equivalent:

- 1) W_s cogenerates $E(W_s)$.
- 2) If $M \in Mod-S$ is W-reflexive then $E(M_s)$ is W-torsionless.
- 3) Δ_{W}^{2} : Mod-S \rightarrow Mod-S preserves monomorphisms.

4) $\operatorname{Ann}_{W}(I)=0.$

PROOF. We modify the proof of [7, Theorem 1]. Let $E_s = E(W_s)$ and denote the injection of W_s into E_s by *i*. We first prove that 1) implies 4). Suppose that W_s cogenerates E_s . There is a sequence

$$W \xrightarrow{i} E \xrightarrow{j} W^X$$

in Mod-S where j is a monomorphism. For $x \in X$ let $p_x: W^X \to W$ be the canonical projection and let $b_x = p_x \circ j \circ i \in I$. Then if $K = \sum \{Rb_x: x \in X\}$, $K \subseteq I$ and note that $\operatorname{Ann}_W(K) = 0$. Hence we also have $\operatorname{Ann}_W(I) = 0$. Next, assume condition 4). Suppose $\alpha: M \to N$ is a monomorphism in Mod-S and consider the induced exact sequence

$$\Delta_{\mathcal{W}}(N) \xrightarrow{\Delta_{\mathcal{W}}(\alpha)} \Delta_{\mathcal{W}}(M) \xrightarrow{\beta} \operatorname{Coker} \Delta_{\mathcal{W}}(\alpha) \longrightarrow 0$$

in *R*-Mod. If $f \in \Delta_W(M)$ and $r \in I$ then $r \circ f$ factors through an injective so there exists $\overline{f} \in \operatorname{Hom}_S(N, W)$ such that $\overline{f} \circ \alpha = r \circ f$. That is $I\Delta_W(M) \subseteq \operatorname{Im} \Delta_W(\alpha) = \operatorname{Ker} \beta$. Thus we have

$$I\operatorname{Coker}(\Delta_{W}(\alpha)) = I\beta(\Delta_{W}(M)) = \beta(I\Delta_{W}(M)) = 0.$$

Now let $\phi \in \Delta_W(\operatorname{Coker} \Delta_W(\alpha))$. Since

$$I\phi(\operatorname{Coker}\Delta_{W}(\alpha)) = \psi(I\operatorname{Coker}(\Delta_{W}(\alpha))) = 0$$

and $\operatorname{Ann}_W(I)=0$ by 4) we obtain that $\phi=0$. Thus $\Delta_W(\operatorname{Coker} \Delta_W(\alpha))=0$ so $\Delta_W^2(\alpha)$ is a monomorphism. This completes the proof that 4) implies 3). That 3) implies 2) follows from the observation that a non-zero kernel of $\delta_{E(M_S)}$ would have to intersect M non-trivially, and it is clear that 2) implies 1).

Straightforward modification of the proof of [4, Theorem 2] provides a proof of the following lemma.

LEMMA 2. Let $_{R}W_{s}$ be a balanced bimodule and assume that the functor Δ_{W}^{2} preserves monomorphisms in Mod-S. Let

$$0 \longrightarrow {}_{R}W \longrightarrow {}_{R}E_{1} \longrightarrow {}_{R}E_{2}$$

be an injective copresentation of $_{R}W$. If $_{R}W$ cogenerates $_{R}E_{1}$ and $_{R}E_{2}$, then Δ_{W}^{2} : Mod-S \rightarrow Mod-S is left exact.

In case W=R, the equivalence of conditions 1) and 3) of the following result was observed in [6, Remark (d)].

PROPOSITION 3. Let $_{R}W_{S}$ be a balanced bimodule. The following are equivalent.

- 1) W_s is injective.
- 2) If α is a monomorphism in Mod-S then $\Delta^{\mathfrak{g}}_{W}(\alpha)$ is an epimorphism in R-Mod.
- 3) Δ_{W}^{2} : Mod-S \rightarrow Mod-S preserves monomorphisms and Δ_{W}^{2} : R-Mod \rightarrow R-Mod is right exact.

In particular, if $_{\mathbb{R}}W_{S}$ is a balanced bimodule, then both W_{S} and $_{\mathbb{R}}W$ are injective if and only if both the Δ_{W}° functors are exact.

PROOF. If is clear that condition 1) implies condition 3). Assume condition 3) and let $\alpha: M \to N$ be a monomorphism in Mod-S. Since $\Delta_W^2(\alpha)$ is a monomorphism, we have $\Delta_W(\operatorname{Coker}(\Delta_W(\alpha))=0$. Hence $\Delta_W^2(\operatorname{Coker}(\Delta_W(\alpha))=0$ too so $\Delta_W^3(\alpha)$ is an epimorphism. Now assume condition 2). If $\alpha: M \to S$ is a monomorphism in Mod-S we obtain an exact sequence

$$\Delta_{W}(S) \xrightarrow{\Delta_{W}(\alpha)} \Delta_{W}(M) \longrightarrow \operatorname{Coker} \Delta_{W}(\alpha) \longrightarrow 0$$

in *R*-Mod. Using 2), the *W*-reflexivity of $\Delta_W(S) = W$, and the fact that $\Delta_W(M)$ is *W*-torsionless, the commutativity and exact rows and columns of the diagram

show that $\operatorname{Coker} \Delta_W(\alpha) = 0$ so $\Delta_W(\alpha)$ is an epimorphism. Thus 1) holds.

We remark that if R and S are finite dimensional algebras, and $_{R}W$ and W_{S} are finitely generated, then Theorem 1, Lemma 2, and Proposition 3 remain true if we replace Mod-S and R-Mod by mod-S and R-mod, respectively.

Recall that $U \in R$ -Mod has dominant dimension at least n (dom. dim. $_{R}U \ge n$) if there is an exact sequence

 $0 \longrightarrow {}_{R}U \longrightarrow {}_{R}E_{1} \longrightarrow \cdots \longrightarrow {}_{R}E_{n}$

where each E_i is both projective and injective. If R is a finite dimensional algebra the dominant dimensions of RR and R_R are equal (see [8], [9], [10]) and this number is called the dominant dimension of the algebra R. Such algebras of dominant dimension greater than or equal to one are also known as QF-3 algebras. A ring R is a left QF-3 ring if it has a minimal faithful left module, i. e. a module which is isomorphic to a direct summand of every faithful module (see [10], for example). Of course, a minimal faithful module is both projective and injective and is isomorphic to a left ideal Re for some idempotent $e \in R$.

PROPOSITION 4. Suppose R is a finite dimensional algebra over a field and that dom. dim. $R \ge 2$. Let _RE be a minimal faithful left R-module with $S = \text{End}_{R}(E)^{\circ p}$. The following are equivalent:

- 1) R is QF.
- 2) E_s is injective.
- 3) Δ_E° is right exact on R-Mod.

PROOF. Recall that $_{R}E_{S}$ is a balanced bimodule [10, Proposition 7.1]. Condition 2) implies condition 1) since E_{S} is a generator in Mod-S, hence if E_{S} is injective, S is QF and E_{S} is a progenerator, so R is Morita equivalent of S. Clearly condition 1) implies condition 3) since in this case $_{R}E$ is a progenerator so both $_{R}E$ and E_{S} are injective. Assume condition 3). By Proposition 3(3) and the remark following, to prove 2) it suffices to show that Δ_{E}^{2} preserves monomorphisms in mod-S. If M is a finitely generated (hence finitely presented) module in mod-S, then since S is E-reflexive and Δ_{E}^{2} is right exact on Mod-S ($_{R}E$ is injective) it follows that M is E-reflexive. Thus Δ_{E}^{2} is exact (hence preserves monomorphisms) on mod-S.

Recall that $U \in R$ -Mod is a *tilting module* in case U has projective dimension at most one $(pd_RU \leq 1)$, $Ext_R^1(U, U) = 0$, and there is an exact sequence $0 \rightarrow_R R \rightarrow_R U_1 \rightarrow_R U_2 \rightarrow 0$ where $U_1, U_2 \in add - U$. We refer to [2] and the references given there for basic results concerning tilting modules. We next note that rings of positive dominant dimension have a canonical tilting module.

PROPOSITION 5. Suppose R is a finite dimensional algebra over a field with dom. dim. $R \ge n$ where $n \ge 1$, and let $U = E \oplus E(R)/R$ where RE is a minimal faithful left R-module. Then RU is a tilting module and dom. dim. $RU \ge n-1$.

PROOF. Let $_{R}Q = E(_{R}R)$. Since $_{R}E$ is both projective and injective $\operatorname{Ext}_{R}^{1}(U, U)$ =0 will follow from $\operatorname{Ext}_{R}^{1}(Q/R, Q/R) = 0$. Since $_{R}Q$ is injective and $\operatorname{pd}_{R}(Q/R) \leq 1$, this is guaranteed by the exactness of the sequence Tilting Modules, Dominant Dimension

$$0 = \operatorname{Ext}^{1}(Q/R, Q) \longrightarrow \operatorname{Ext}^{1}(Q/R, Q/R) \longrightarrow \operatorname{Ext}^{2}(Q/R, R) = 0$$

which is induced by the exact sequence $0 \to_R R \to_R Q \to_R (Q/R) \to 0$. This latter exact sequence has both Q and Q/R in add-U and since Q is projective it is clear that $pd_R U \leq 1$. Finally, since dom. dim. $R \geq n$ and Q is projective and injective, it is clear that dom. dim. $_R(Q/R) \geq n-1$ so dom. dim. $_R U \geq n-1$ as well.

LEMMA 6. If _RU is a tilting module then Ker $\text{Tor}_{1}^{R}(-, U)$ is closed under taking submodules.

PROOF. Since $pd_R U \leq 1$, there is an exact sequence $0 \rightarrow P_2 \rightarrow P_1 \rightarrow U \rightarrow 0$ in *R*-Mod with P_i projective. Suppose $0 \rightarrow M \rightarrow N$ is exact in Mod-*R* and Tor₁^{*R*}(*N*, *U*) = 0. These two sequences innduce the commutative diagram

$$0 \longrightarrow N \otimes P_{2} \longrightarrow N \otimes P_{1}$$

$$\uparrow \qquad \uparrow$$

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(M, U) \longrightarrow M \otimes P_{2} \longrightarrow M \otimes P_{1}$$

$$\uparrow \qquad \uparrow$$

$$0 \qquad 0$$

which, since P_1 and P_2 are projective, has exact rows and columns and from which $\operatorname{Tor}_1^R(M, U)=0$ follows.

LEMMA 7. Suppose _RU and V_R are tilting left and right modules, respectively. Let $S = \operatorname{End}_{R}(U)^{\circ p}$ and $T = \operatorname{End}_{R}(V)$. If V_R is a submodule of a flat module, $\operatorname{Ext}_{T}^{1}(V, V) = 0$, and _TV_R is a balanced bimodule, then there are canonical isomorphisms Hom_T(V, V \otimes_{R} U) \cong U_S and Hom_T(V \otimes_{R} U, V \otimes_{R} U) \cong S.

PROOF. It suffices to establish the first isomorphism since, then, we have canonical isomorphisms

$$\operatorname{Hom}_{T}(V \otimes_{R} U, V \otimes_{R} U) \cong \operatorname{Hom}_{R}(U, \operatorname{Hom}_{T}(V, V \otimes_{R} U))$$
$$\cong \operatorname{Hom}_{R}(U, U)$$
$$\cong S.$$

Using the hypothesis on $_{R}V$ and Lemma 6, we have that $\operatorname{Tor}_{1}^{R}(V, U)=0$ so by our hypothesis that $\operatorname{Ext}_{T}^{1}(V, V)=0$ (hence $\operatorname{Ext}_{T}^{1}(V, V\otimes P_{2})=0$) an exact sequence

$$0 \longrightarrow P_2 \longrightarrow P_1 \longrightarrow U \longrightarrow 0$$

in R-Mod with P_i projective induces an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{T}(V, V \otimes P_{2}) \longrightarrow \operatorname{Hom}_{T}(V, V \otimes P_{1}) \longrightarrow \operatorname{Hom}_{T}(V, V \otimes U) \longrightarrow 0$

so since $_{R}P_{1}$ and $_{R}P_{2}$ are finitely generated and projective and $_{T}V_{R}$ is balanced, the natural isomorphisms $\operatorname{Hom}_{T}(V, V \otimes P_{i}) \cong P_{i}$ induce the required isomorphism $\operatorname{Hom}_{T}(V, V \otimes U) \cong U$.

LEMMA 8. Suppose that $V_R \in \text{mod-}R$ is a submodule of a flat module and that $_RU$ is a tilting module with dom. dim. $_RU \ge 2$. Let $T = \text{End}_R(V)$. Then $_TV$ and $_T(V \otimes_R U)$ finitely cogenerate each other.

PROOF. By Lemma 6 $\operatorname{Tor}_{1}^{R}(V, U)=0$ so an exact sequence $0 \to R \to U_{1} \to U_{2} \to 0$ in *R*-Mod with $U_{i} \in \operatorname{add} U$ induces an exact sequence $0 \to_{T}(V \otimes R) \to_{T}(V \otimes U_{1})$. Thus, since $U_{1} \in \operatorname{add} U$ there is an injection of $_{T}V$ into $_{T}(V \otimes U)^{n}$ for some *n*. Since dom. dim. $_{R}U \ge 2$ there is an exact sequence $0 \to U \to E_{1} \to E_{2}$ in *R*-Mod with E_{i} projective and injective. Hence, since E_{2} is projective, by Lemma 6 we obtain an injection of $_{T}(V \otimes U)$ into $_{T}(V \otimes E_{1})$, and, since E_{1} is projective, one of $_{T}(V \otimes E_{1})$ into $_{T}V^{m}$ for some *m*.

Suppose R is a finite dimensional algebra over a field. Then, if $_{R}U$ is a tilting module and $S=\operatorname{End}_{R}(U)^{\circ p}$ then U_{S} is also a tilting module, $_{R}U_{S}$ is a balanced bimodule, and R and S have the same number of isomorphism classes of simple modules [2, Theorem 1.5] (our references to [2] do not require the standing hypothesis of algebraic closure made there).

THEOREM 9. Suppose R is a finite dimensional algebra over a field and that dom. dim. $R \ge 1$. Let F_R be a minimal faithful right module, let $_RU$ be a tilting left module, and $S = \operatorname{End}_R(U)^{op}$. Then $(F \otimes_R U)_S$ is an injective module. Consequently if dom. dim. $_RU \ge 1$, then the functors Δ_U° preserve monomorphisms both in Mod-S and in R-Mod. Furthermore, if dom. dim. $_RU \ge 2$ then Δ_U° is left exact on Mod-S.

PROOF. Let $H_s = E((F \otimes_R U)_s)$. The evaluation $\operatorname{Hom}_s(U, H) \otimes_R U_s \to H_s$ is an isomorphism by [2, Proposition 1.5a] and the evaluation $\operatorname{Hom}_s(U, F \otimes_R U) \otimes_R U_s \to F \otimes_R U_s$ is an isomorphism since F_R is finitely generated and projective and R is the endomorphism ring of U_s . Since the injective module $\operatorname{Hom}_s(U, F \otimes_R U)_R = F_R$ is a direct summand of $\operatorname{Hom}_s(U, H)$, $(F \otimes_R U)_s$ is a direct summand of the injective module $\operatorname{Hom}_s(U, H) \otimes_R U_s = H_s$. Thus $(F \otimes_R U)_s$ is injective. In order to prove the remaining assertions, identify F_R with a right ideal fR and let Re be a minimal faithful left R-module where f and e are idempotents of R. Considering $R = \operatorname{End}_s(U)$, f is the canonical projection of U_s onto $F \otimes_R U_s$ so we have $fR \subseteq I$ where I is the ideal of Theorem 1. Suppose dom. dim. $_RU \ge 1$. Since FR_R is faithful and $_RU$ is R-torsionless, $\operatorname{Ann}_U(fR) = 0$ so $\operatorname{Ann}_U(I) = 0$ also. Thus

 Δ_U° preserves monomorphisms in Mod-S by Theorem 1(4). Also, since dom. dom. $R \ge 1$, _RRe cogenerates _RR hence also _RU (since _RU is a submodule of a projective). Thus Δ_U° preserves monomorphisms in R-Mod by Theorem 1(1) and [2, Corollary to Theorem 2.1]. The final assertion follows from Lemma 2 since the minimal faithful left R-module cogenerates any projective and is a direct summand of _RU.

PROPOSITION 10. Suppose R is a finite dimensional algebra over a field. Assume that $_{R}U$ and V_{R} are tilting left and right modules respectively, that V_{R} is torsionless and that dom. dim. $_{R}U \ge 2$ The following are equivalent:

- 1) $_TV$ is injective.
- 2) $_TV$ is a cogenerator.
- 3) $_T(V \otimes U)$ is a cogenerator.
- 4) R is QF.

PROOF. Suppose T has n simple modules. By [2, Theorem 2.1], $_{T}V$ has n isomorphism classes of indecomposable direct summands. Hence, if $_{T}V$ is injective, every indecomposable injective is a direct summand of $_{T}V$ so $_{T}V$ is a cogenerator. Similarly, if $_{T}V$ is a cogenerator, $_{T}V$ is injective since it has n isomorphism classes of indecomposable injective direct summands. Thus conditions 1) and 2) are equivalent and their equivalence with 3) follows from Lemma 8. Now $_{T}V_{R}$ is a balanced bimodule so if 1) and 2) hold then $_{T}V_{R}$ defines a Morita Duality. Hence V_{R} is injective. Again by [2, Theorem 2.1], V_{R} has exactly n isomorphism classes of indecomposable direct summands and this is the number of simple R-modules. Thus R is QF. Finally, condition 4) implies conditions 1) and 2) by [2, Corollary to Theorem 2.1].

THEOREM 11. Suppose R is a finite dimensional algebra over a field and that dom. dim. $_{R}R \ge 1$. Suppose $_{R}U$ and V_{R} are tilting left and right R-modules, respectively, each having dominant dimension at least 1. Let $S=\operatorname{End}_{R}(U)^{op}$, T= $\operatorname{End}_{R}(V)$, and $_{T}W_{S}=_{T}(V \otimes_{R}U)_{S}$. Then $_{T}W_{S}$ is a balanced bimodule, $\Delta_{W}(_{T}V)=U_{S}$, and $\Delta_{W}(U_{S})=_{T}V$. Furthermore,

- 1) If dom. dom. $_{R}U \ge 2$ and dom. dim. $V_{R} \ge 2$, then the functors Δ_{W}^{2} preserve monomorphisms both in Mod-S and in T-Mod,
- 2) If dom. dom. $_{R}U \ge 3$ and dom. dim. $V_{R} \ge 3$, then the functors Δ_{W}° are left exact both in Mod-S and T-Mod, and
- 3) If dom. dom. $_{R}U \ge 2$ and dom. dim. $V_{R} \ge 2$ then R is QF if and only if Δ_{W} : T-Mod \leftrightarrow Mod-S: Δ_{W} defines a Morita Duality.

PROOF. The first assertion follows from Lemma 7. Suppose dom. dom. $_{R}U \ge 2$ and dom. dim. $V_R \ge 2$. By Theorem 9 Δ_V^2 is left exact on T-Mod and Δ_U^2 is left exact on Mod-S. Hence by Theorem 1, U_S cogenerates $E(U_S)$ and $_{T}V$ cogenerates $E(_{T}V)$. By Lemma 8 $E(_{T}V)$ cogenerates $E(_{T}W)$ so $_{T}V$ cogenerates $E(_{T}W)$, but then, since $_{T}W$ cogenerates $_{T}V$, $_{T}W$ cogenerates $E(_{T}W)$. Thus Δ_W^2 preserves monomorphisms in Mod-S by Theorem 1. Similarly, Δ_W^2 preserves monomorphisms in T-Mod. Next assume that dom. dim. $_{R}U \ge 3$ and dom. dim. $V_R \ge 3$. Let F_R be a minimal faithful right R-module. There is an exact sequence

$$0 \longrightarrow V_R \longrightarrow F_R^1 \longrightarrow F_R^3 \longrightarrow F_R^3$$

where $F_R^i \in \text{add-}F_R$. Applying Lemma 6 twice, we conclude that the induced sequence

$$0 \longrightarrow W_{S} \longrightarrow (F^{1} \bigotimes_{\mathbb{R}} U)_{S} \longrightarrow (F^{2} \bigotimes_{\mathbb{R}} U)_{S}$$

is exact. Since $(F \otimes_R U)_S$ is injective by Theorem 9 and since F_R is isomorphic to a direct summand of V_R by [2, corollary to Theorem 2.1] we conclude that Δ_W^2 is left exact on *T*-Mod by Lemma 2. Similarly, Δ_W^2 is left exact on Mod-S. Statement 3) follows from Proposition 10.

EXAMPLE. Let A be the algebra of 3×3 lower triangular matrices over an field and let $R = A/J^2$ where J is the radical of A. Then R has dominant dimension 2 (and is not QF). Computation shows that, with notation as in Theorem 11 and $_RU$, V_R chosen as in Proposition 5 (and having dominant dimension 1), Δ_W : T-Mod \leftrightarrow Mod-S: Δ_W does define a Morita Duality.

References

- [1] Anderson, F. W. and Fuller, K. R., "Rings and Categories of Modules," Springer-Verlag, Inc., New York, 1973.
- [2] Bongartz, K., Tilted algebras, Springer LNM 903 (1981), 16-32.
- [3] Cohn, P. M., "Morita equivalence and duality," Mathematical Notes, Queen Mary College, University of London, 1966.
- [4] Colby, R.R. and Fuller, K.R., Exactness of the double dual, Proc. Amej. Math. Soc. 82 (1981), 521-526.
- [5] Colby, R. R. and Fuller, K. R., Exactness of the double dual and Morita duality for Grothendieck categories, J. Algebra 82 (1983), 546-558.
- [6] Colby, R. R. and Fuller, K. R., On rings whose double dual functors preserve monomorphism—a generalization of QF-3 rings, J. Pure Appl. Algebra 28 (1983), 223-234.
- [7] Colby, R. R. and Fuller, K. R., QF-3' rings and Morita duality, Tsukuba J. Math.
 8 (1984), 183-188.
- [8] Morita, K., Duality in QF-3 rings, Math. Z. 108 (1969), 237-252.
- [9] Mueller, B. J., The classification of algebras by dominant dimension, Canad. J. Math. Soc. 20 (1968), 398-409.

[10] Tachikawa, H., "Quasi Frobenius rings and generalizations," Springer LNM 351, Springer-Verlag, Inc., Berlin and New York, 1973.

> Department of Mathematics University of Hawaii Honolulu, HI 96734 U.S.A.