TILTING MODULES, DOMINANT DIMENSION AND EXACTNESS OF DUALITY FUNCTORS

By

R.R. Colby

Dedicated to Professor Hiroyuki Tachikawa for his sixtieth birthday

Let R and S be rings and let ${ }_{R} W_{S}$ be a bimodule. We shall denote both the functors $\operatorname{Hom}_{R}(-, W): R$-Mod $\rightarrow \operatorname{Mod}-S$ and $\operatorname{Hom}_{S}(-, W): \operatorname{Mod}-S \rightarrow R$-Mod by Δ_{W} and the composition of the two, in either order, by Δ_{W}^{2}. Recall that (for fixed W) there is a natural transformation $\delta: 1_{R \cdot \operatorname{Mod}} \rightarrow \Delta_{W}^{2}$, defined via the usual evaluation maps $\delta_{M}: M \rightarrow \Delta_{W}^{2}(M)$. An R-module M is called W-reflexive (W-torsionless) in case δ_{M} is an isomorphism (a monomorphism). Then, an R-module M is W torsionless if and only if it is isomorphic to a submodule of a direct product of copies of ${ }_{R} W$. Also recall that ${ }_{R} W_{S}$ is balanced in case $R \cong \operatorname{End}_{S}(W)$ and $S \cong$ $\operatorname{End}_{R}(W)^{o p}$ canonically, and that ${ }_{R} W_{S}$ defines a Morita Duality if it is balanced and both ${ }_{R} W$ and W_{S} are injective cogenerators (see [1], [3] or [10], for an account of Morita Duality).

We begin by studying exactness properties of the functor Δ_{W}^{2}. The case $W=R$ has been extensively studied in ([4], [5], [6] and [7]) and Theorem 1, Lemma 2, Proposition 3 and Proposition 4 are generalizations of results obtained there. A finite dimensional algebra R of positive dominant dimension possesses (what we consider to be) a canonical pair of tilting left and right modules ${ }_{R} U$ and V_{R}. Associated with these are the endomorphism rings $S=\operatorname{End}_{R}(U)^{o p}$ and $T=\operatorname{End}_{R}(V)$, and the bimodule ${ }_{r} W_{S}={ }_{r}\left(V \otimes_{R} U\right)_{S}$. We relate exactness properties of the functors $\Delta_{U}, \Delta_{V}, \Delta_{W}$ and their squares to dominant dimension. For these canonically chosen tilting modules we show that

1) if dom. dim. $R \geqq 2$ then Δ_{U}^{2} preserves monomorphisms both in Mod-S and in R-Mod;
2) if dom. dim. $R \geqq 3$ then Δ_{U}^{3} is left exact on Mod- S and the functors Δ_{W}^{2} preserve monomorphisms in Mod-S and in T-Mod. In this case, if $\Delta_{W}: T$-Mod \leftrightarrow Mod-S : Δ_{W} defines a Morita Duality, then R is $Q F$ (and conversely);
3) if dom. dim. $R \geqq 4$ then the functors Δ_{W}^{2} are left exact on both Mod-S and on T-Mod.

We shall denote the injective envelope of a module M by $E(M)$ and, if M is an R-module, we denote the annihilator in M of a subset I of R by $\operatorname{Ann}_{M}(I)$.

Theorem 1. Let ${ }_{R} W_{S}$ be a bimodule with $R=\operatorname{End}_{S}(W)$. Let I denote the ideal of all endomorphisms in R which factor through injective S-modules. The following are equivalent:

1) W_{S} cogenerates $E\left(W_{S}\right)$.
2) If $M \in \operatorname{Mod}-S$ is W-reflexive then $E\left(M_{S}\right)$ is W-torsionless.
3) $\Delta_{W}^{2}:$ Mod-S \rightarrow Mod-S preserves monomorphisms.
4) $\mathrm{Ann}_{W}(I)=0$.

Proof. We modify the proof of [7, Theorem 1]. Let $E_{S}=E\left(W_{s}\right)$ and denote the injection of W_{S} into E_{S} by i. We first prove that 1) implies 4). Suppose that W_{S} cogenərates E_{S}. There is a sequence

$$
W \xrightarrow{i} E \xrightarrow{j} W^{x}
$$

in Mod-S where j is a monomorphism. For $x \in X$ let $p_{x}: W^{X} \rightarrow W$ be the canonical projection and let $b_{x}=p_{x} \circ j \circ i \in I$. Then if $K=\Sigma\left\{R b_{x}: x \in X\right\}, K \subseteq I$ and note that $\mathrm{Ann}_{W}(K)=0$. Hence we also have $\mathrm{Ann}_{W}(I)=0$. Next, assume condition 4). Suppose $\alpha: M \rightarrow N$ is a monomorphism in Mod- S and consider the induced exact sequence

$$
\Delta_{W}(N) \xrightarrow{\Delta_{W}(\alpha)} \Delta_{W}(M) \xrightarrow{\beta} \operatorname{Coker} \Delta_{W}(\alpha) \longrightarrow 0
$$

in R-Mod. If $f \in \Delta_{W}(M)$ and $r \in I$ then $r \circ f$ factors through an injective so there exists $\bar{f} \in \operatorname{Hom}_{S}(N, W)$ such that $\bar{f} \circ \alpha=r \circ f$. That is $I \Delta_{W}(M) \cong \operatorname{Im} \Delta_{W}(\alpha)=\operatorname{Ker} \beta$. Thus we have

$$
I \operatorname{Coker}\left(\Delta_{W}(\alpha)\right)=I \beta\left(\Delta_{W}(M)\right)=\beta\left(I \Delta_{W}(M)\right)=0 .
$$

Now let $\phi \in \Delta_{W}\left(\operatorname{Coker} \Delta_{W}(\alpha)\right)$. Since

$$
I \phi\left(\operatorname{Coker} \Delta_{W}(\alpha)\right)=\psi\left(I \operatorname{Coker}\left(\Delta_{W}(\alpha)\right)=0\right.
$$

and $\operatorname{Ann}_{W}(I)=0$ by 4) we obłain that $\phi=0$. Thus $\Delta_{W}\left(\operatorname{Coker} \Delta_{W}(\alpha)\right)=0$ so $\Delta_{W}^{2}(\alpha)$ is a monomorphism. This completes the proof that 4) implies 3). That 3) implies 2) follows from the observation that a non-zero kernel of $\delta_{E\left(M_{S}\right)}$ would have to intersect M non-trivially, and it is clear that 2) implies 1).

Straightforward modification of the proof of [4, Theorem 2] provides a proof of the following lemma.

Lemma 2. Let ${ }_{R} W_{S}$ be a balanced bimodule and assume that the functor Δ_{W}^{2} preserves monomorfhisms in Mod-S. Let

$$
0 \longrightarrow{ }_{R} W \longrightarrow{ }_{R} E_{1} \longrightarrow{ }_{R} E_{2}
$$

be an injective copresentation of ${ }_{R} W$. If ${ }_{R} W$ cogenerates ${ }_{R} E_{1}$ and ${ }_{R} E_{2}$, then $\Delta_{W}^{2}:$ Mod- $S \rightarrow$ Mod-S is left exact.

In case $W=R$, the equivalence of conditions 1) and 3) of the following result was observed in [6, Remark (d)].

Proposition 3. Let ${ }_{R} W_{S}$ be a balanced bimodule. The following are equivalent.

1) W_{S} is injective.
2) If α is a monomorphism in Mod-S then $\Delta_{W}^{3}(\alpha)$ is an epimorphism in R-Mod.
3) $\Delta_{W}^{2}: \operatorname{Mod}-S \rightarrow \operatorname{Mod}-S$ preserves monomorphisms and $\Delta_{W}^{2}: R$-Mod $\rightarrow R$-Mod is right exact.

In particular, if ${ }_{R} W_{S}$ is a balanced bimodule, then both W_{S} and ${ }_{R} W$ are injective if and only if both the Δ_{W}^{2} functors are exact.

Proof. If is clear that condition 1) implies condition 3). Assume condition 3) and let $\alpha: M \rightarrow N$ be a monomorphism in Mod-S. Since $\Delta_{\bar{W}}^{2}(\alpha)$ is a monomorphism, we have $\Delta_{W}\left(\operatorname{Coker}\left(\Delta_{W}(\alpha)\right)=0\right.$. Hence $\Delta_{W}^{2}\left(\operatorname{Coker}\left(\Delta_{W}(\alpha)\right)=0\right.$ too so $\Delta_{W}^{3}(\alpha)$ is an epimorphism. Now assume condition 2). If $\alpha: M \rightarrow S$ is a monomorphism in Mod-S we obtain an exact sequence

$$
\Delta_{W}(S) \xrightarrow{\Delta_{W}(\alpha)} \Delta_{W}(M) \longrightarrow \operatorname{Coker} \Delta_{W}(\alpha) \longrightarrow 0
$$

in R-Mod. Using 2), the W-reflexivity of $\Delta_{W}(S)=W$, and the fact that $\Delta_{W}(M)$ is W-torsionless, the commutativity and exact rows and columns of the diagram

show that Coker $\Delta_{W}(\alpha)=0$ so $\Delta_{W}(\alpha)$ is an epimorphism. Thus 1) holds.
We remark that if R and S are finite dimensional algebras, and ${ }_{R} W$ and W_{S} are finitely generated, then Theorem 1, Lemma 2, and Proposition 3 remain true if we replace Mod- S and R-Mod by mod- S and R-mod, respectively.

Recall that $U \in R$-Mod has dominant dimension at least n (dom. $\operatorname{dim} .{ }_{R} U \geqq n$) if there is an exact sequence

$$
0 \longrightarrow{ }_{R} U \longrightarrow{ }_{R} E_{1} \longrightarrow \cdots \longrightarrow_{R} E_{n}
$$

where each E_{i} is both projestive and injective. If R is a finite dimensional algebra the dominant dimensions of ${ }_{R} R$ and R_{R} are equal (see [8], [9], [10]) and this number is called the dominant dimension of the algebra R. Such algebras of dominant dimension greater than or equal to one are also known as $Q F-3$ algebras. A ring R is a left $Q F-3$ ring if it has a minimal faithful left module, i. e. a module which is isomorphic to a direct summand of every faithful module (see [10], for example). Of course, a minimal faithful module is both projective and injective and is isomorphic to a left ideal $R e$ for some idempotent $e \in R$.

Proposition 4. Suppose R is a finite dimensional algebra over a field and that dom. dim. $R \geqq 2$. Let ${ }_{R} E$ be a minimal faithful left R-module with $S=$ $\operatorname{End}_{R}(E)^{\rho p}$. The following are equivalent:

1) R is $Q F$.
2) E_{S} is injective.
3) Δ_{E}^{2} is right exact on R-Mod.

Proof. Recall that ${ }_{R} E_{S}$ is a balanced bimodule [10, Proposition 7.1]. Condition 2) implies condition 1) since E_{S} is a generator in Mod-S, hence if E_{S} is injective, S is $Q F$ and E_{S} is a progenerator, so R is Morita equivalent of S. Clearly condition 1) implies condition 3) since in this case ${ }_{R} E$ is a progenerator so both ${ }_{R} E$ and E_{S} are injective. Assume condition 3). By Proposition 3(3) and the remark following, to prove 2) it suffices to show that Δ_{E}^{2} preserves monomorphisms in mod-S. If M is a finitely generated (hence finitely presented) module in mod- S, then since S is E-reflexive and Δ_{E}^{2} is right exact on Mod- S (${ }_{R} E$ is injective) it follows that M is E-reflexive. Thus Δ_{E}^{R} is exact (hence preserves monomorphisms) on mod-S.

Recall that $U \in R$-Mod is a tilting module in case U has projective dimension at most one $\left(\operatorname{pd}_{R} U \leqq 1\right), \operatorname{Ext}_{R}^{1}(U, U)=0$, and there is an exact sequence $0 \rightarrow_{R} R \rightarrow$ ${ }_{R} U_{1} \rightarrow{ }_{R} U_{2} \rightarrow 0$ where $U_{1}, U_{2} \in$ add- U. We refer to [2] and the references given there for basic results concerning tilting modules. We next note that rings of positive dominant dimension have a canonical tilting module.

Proposition 5. Suppose R is a finite dimensional algebra over a field with dom. dim. $R \geqq n$ where $n \geqq 1$, and let $U=E \bigoplus E\left({ }_{R} R\right) / R$ where ${ }_{R} E$ is a minimal faithful left R-module. Then ${ }_{R} U$ is a tilting module and dom. $\operatorname{dim} .{ }_{R} U \geqq n-1$.

Proof. Let ${ }_{R} Q=E\left({ }_{R} R\right)$. Since ${ }_{R} E$ is both projective and injective $\operatorname{Ext}_{R}(U, U)$ $=0$ will follow from $\operatorname{Ext}_{R}^{1}(Q / R, Q / R)=0$. Since ${ }_{R} Q$ is injective and $\operatorname{pd}_{R}(Q / R)$ $\leqq 1$, this is guaranteed by the exactness of the sequence

$$
0=\operatorname{Ext}^{1}(Q / R, Q) \longrightarrow \operatorname{Ext}^{1}(Q / R, Q / R) \longrightarrow \operatorname{Ext}^{2}(Q / R, R)=0
$$

which is induced by the exact sequence $0 \rightarrow_{R} R \rightarrow_{R} Q \rightarrow_{R}(Q / R) \rightarrow 0$. This latter exact sequence has both Q and Q / R in add U and since Q is projective it is clear that $\operatorname{pd}_{R} U \leqq 1$. Finally, since dom. dim. $R \geqq n$ and Q is projective and injective, it is clear that dom. $\operatorname{dim} .{ }_{R}(Q / R) \geqq n-1$ so dom. $\operatorname{dim} .{ }_{R} U \geqq n-1$ as well.

Lemma 6. If ${ }_{R} U$ is a tilting module then $\operatorname{Ker} \operatorname{Tor}_{1}^{R}(-, U)$ is closed under taking submodules.

Proof. Since $\mathrm{pd}_{R} U \leqq 1$, there is an exact sequence $0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow U \rightarrow 0$ in R Mod with P_{i} projective. Suppose $0 \rightarrow M \rightarrow N$ is exact in $\operatorname{Mod}-R$ and $\operatorname{Tor}_{1}^{R}(N, U)$ $=0$. These two sequences innduce the commutative diagram

which, since P_{1} and P_{2} are projective, has exact rows and columns and from which $\operatorname{Tor}_{1}^{R}(M, U)=0$ follows.

Lemma 7. Suppose ${ }_{R} U$ and V_{R} are tilting left and right modules, respectively. Let $S=\operatorname{End}_{R}(U)^{o p}$ and $T=\operatorname{End}_{R}(V)$. If V_{R} is a submodule of a flat module, $\operatorname{Ext}_{T}^{1}(V, V)=0$, and ${ }_{T} V_{R}$ is a balanced bimodule, then there are canonical isomorphisms $\operatorname{Hom}_{T}\left(V, V \otimes_{R} U\right) \cong U_{S}$ and $\operatorname{Hom}_{T}\left(V \otimes_{R} U, V \otimes_{R} U\right) \cong S$.

Proof. It suffices to establish the first isomorphism since, then, we have canonical isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{T}\left(V \otimes_{R} U, V \otimes_{R} U\right) & \cong \operatorname{Hom}_{R}\left(U, \operatorname{Hom}_{T}\left(V, V \otimes_{R} U\right)\right. \\
& \cong \operatorname{Hom}_{R}(U, U) \\
& \cong S
\end{aligned}
$$

Using the hypothesis on ${ }_{R} V$ and Lemma 6, we have that $\operatorname{Tor}_{1}^{R}(V, U)=0$ so by our hypothesis that $\operatorname{Ext}_{T}^{1}(V, V)=0$ (hence $\operatorname{Ext}_{T}^{1}\left(V, V \otimes P_{2}\right)=0$) an exact sequence

$$
0 \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow U \longrightarrow 0
$$

in R-Mod with P_{i} projective induces an exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{T}\left(V, V \otimes P_{2}\right) \longrightarrow \operatorname{Hom}_{T}\left(V, V \otimes P_{1}\right) \longrightarrow \operatorname{Hom}_{T}(V, V \otimes U) \longrightarrow 0
$$

so since ${ }_{R} P_{1}$ and ${ }_{R} P_{2}$ are finitely generated and projective and ${ }_{T} V_{R}$ is balanced, the natural isomorphisms $\operatorname{Hom}_{T}\left(V, V \otimes P_{i}\right) \cong P_{i}$ induce the required isomorphism $\operatorname{Hom}_{T}(V, V \otimes U) \cong U$.

Lemma 8. Suppose that $V_{R} \in \bmod -R$ is a submodule of a flat module and that ${ }_{R} U$ is a tilting module with dom. dim. ${ }_{R} U \geqq 2$. Let $T=\operatorname{End}_{R}(V)$. Then ${ }_{T} V$ and ${ }_{T}\left(V \otimes_{R} U\right)$ finitely cogenerate each other.

Proof. By Lemma $6 \operatorname{Tor}_{1}^{R}(V, U)=0$ so an exact sequence $0 \rightarrow R \rightarrow U_{1} \rightarrow U_{2} \rightarrow 0$ in R-Mod with $U_{i} \in$ add- U induces an exact sequence $0 \rightarrow_{T}(V \otimes R) \rightarrow_{T}\left(V \otimes U_{1}\right)$. Thus, since $U_{1} \in \operatorname{add}-U$ there is an injection of ${ }_{T} V$ into ${ }_{T}(V \otimes U)^{n}$ for some n. Since dom. dim. ${ }_{R} U \geqq 2$ there is an exact sequence $0 \rightarrow U \rightarrow E_{1} \rightarrow E_{2}$ in R-Mod with E_{i} projective and injective. Hence, since E_{2} is projective, by Lemma 6 we obtain an injection of $T_{T}(V \otimes U)$ into ${ }_{T}\left(V \otimes E_{1}\right)$, and, since E_{1} is projective, one of ${ }_{T}\left(V \otimes E_{1}\right)$ into ${ }_{T} V^{m}$ for some m.

Suppose R is a finite dimensional algebra over a field. Then, if ${ }_{R} U$ is a tilting module and $S=\operatorname{End}_{R}(U)^{o p}$ then U_{S} is also a tilting module, ${ }_{R} U_{S}$ is a balanced bimodule, and R and S have the same number of isomorphism classes of simple modules [2, Theorem 1.5] (our references to [2] do not require the standing hypothesis of algebraic closure made there).

Theorem 9. Suppose R is a finite dimensional algebra over a field and that dom. dim. $R \geqq 1$. Let F_{R} be a minimal faithful right module, let ${ }_{R} U$ be a tilting left module, and $S=\operatorname{End}_{R}(U)^{o p}$. Then $\left(F \otimes_{R} U\right)_{S}$ is an injective module. Consequently if dom. dim. ${ }_{R} U \geqq 1$, then the functors Δ_{U}^{3} preserve monomorphisms both in Mod-S and in R-Mod. Furthermore, if dom. dim. ${ }_{R} U \geqq 2$ then Δ_{U}^{2} is left exact on Mod-S.

Proof. Let $H_{S}=E\left(\left(F \otimes_{R} U\right)_{S}\right)$. The evaluation $\operatorname{Hom}_{s}(U, H) \otimes_{R} U_{S} \rightarrow H_{S}$ is an isomorphism by [2, Proposition 1.5a] and the evaluation $\operatorname{Hom}_{S}\left(U, F \otimes_{R} U\right) \otimes_{R} U_{S}$ $\rightarrow F \otimes_{R} U_{S}$ is an isomorphism since F_{R} is finitely generated and projective and R is the endomorphism ring of U_{S}. Since the injective module $\operatorname{Hom}_{S}\left(U, F \bigotimes_{R} U\right)_{R}=$ F_{R} is a direct summand of $\operatorname{Hom}_{S}(U, H),\left(F \otimes_{R} U\right)_{S}$ is a direct summand of the injective module $\operatorname{Hom}_{S}(U, H) \bigotimes_{R} U_{S}=H_{S}$. Thus $\left(F \bigotimes_{R} U\right)_{S}$ is injective. In order to prove the remaining assertions, identify F_{R} with a right ideal $f R$ and let $R e$ be a minimal faithful left R-module where f and e are idempotents of R. Considering $R=\operatorname{End}_{S}(U), f$ is the canonical projection of U_{S} onto $F \otimes_{R} U_{S}$ so we have $f R \cong I$ where I is the ideal of Theorem 1. Suppose dom. dim. ${ }_{R} U \geqq 1$. Since $f R_{R}$ is faithful and ${ }_{R} U$ is R-torsionless, $\operatorname{Ann}_{U}(f R)=0$ so $\operatorname{Ann}_{U}(I)=0$ also. Thus
Δ_{U}^{3} preserves monomorphisms in Mod-S by Theorem 1 (4). Also, since dom. dom. $R \geqq 1,{ }_{R} R e$ cogenerates ${ }_{R} R$ hence also ${ }_{R} U$ (since ${ }_{R} U$ is a snbmodule of a projective). Thus Δ_{U}^{i} preserves monomorphisms in R-Mod by Theorem 1] (1) and [2, Corollary to Theorem 2.1]. The final assertion follows from Lemma 2 since the minimal faithful left R-module cogenerates any projective and is a direct summand of ${ }_{R} U$.

Proposition 10. Suppose R is a finite dimensional algebra over a field. Assume that ${ }_{R} U$ and V_{R} are tilting left and right modules respectively, that V_{R} is torsionless and that dom. dim. ${ }_{R} U \geqq 2$ The following are equivalent:

1) ${ }_{T} V$ is injective.
2) ${ }_{T} V$ is a cogenerator.
3) $T_{T}(V \otimes U)$ is a cogenerator.
4) R is $Q F$.

Proof. Suppose T has n simple modules. By [2, Theorem 2.1], ${ }_{r} V$ has n isomorphism classes of indecomposable direct summands. Hence, if ${ }_{T} V$ is injective, every indecomposable injective is a direct summand of ${ }_{T} V$ so ${ }_{T} V$ is a cogenerator. Similarly, if ${ }_{T} V$ is a cogenerator, ${ }_{T} V$ is injective since it has n isomorphism classes of indecomposable injective direct summands. Thus conditions 1) and 2) are equivalent and their equivalence with 3) follows from Lemma 8. Now ${ }_{T} V_{R}$ is a balanced bimodule so if 1) and 2) hold then ${ }_{T} V_{R}$ defines a Morita Duality. Hence V_{R} is injective. Again by [2, Theorem 2.1], V_{R} has exactly n isomorphism classes of indecomposable direct summands and this is the number of simple R-modules. Thus R is $Q F$. Finally, condition 4) implies conditions 1) and 2) by [2, Corollary to Theorem 2.1].

Theorem 11. Suppose R is a finite dimensional algebra over a field and that dom. $\operatorname{dim} .{ }_{R} R \geqq 1$. Suppose ${ }_{R} U$ and V_{R} are tilting left and right R-modules, respectively, each having dominant dimension at least 1. Let $S=\operatorname{End}_{R}(U)^{o p}, T=$ $\operatorname{End}_{R}(V)$, and ${ }_{T} W_{S}={ }_{T}\left(V \bigotimes_{R} U\right)_{S}$. Then ${ }_{T} W_{S}$ is a balanced bimodule, $\Delta_{W}\left({ }_{T} V\right)=U_{S}$, and $\Delta_{W}\left(U_{S}\right)={ }_{T} V$. Furthermore,

1) If dom. dom. ${ }_{R} U \geqq 2$ and dom. dim. $V_{R} \geqq 2$, then the functors Δ_{W}^{2} preserve monomorphisms both in Mod-S and in T-Mod,
2) If dom. dom. ${ }_{R} U \geqq 3$ and dom. dim. $V_{R} \geqq 3$, then the functors $\Delta_{W}^{?}$ are left exact both in Mod-S and T-Mod, and
3) If dom. dom. ${ }_{R} U \geqq 2$ and dom. dim. $V_{R} \geqq 2$ then R is $Q F$ if and only if Δ_{W} : T-Mod \leftrightarrow Mod-S : Δ_{W} defines a Morita Duality.

Proof. The first assertion follows from Lemma 7. Suppose dom. dom. ${ }_{R} U$ $\geqq 2$ and dom. dim. $V_{R} \geqq 2$. By Theorem $9 \Delta_{V}^{?}$ is left exact on T-Mod and Δ_{U}^{3} is left exact on Mod-S. Hence by Theorem 1, U_{S} cogenerates $E\left(U_{S}\right)$ and ${ }_{r} V$ cogenerates $E\left({ }_{T} V\right)$. By Lemma $8 E\left({ }_{T} V\right)$ cogenerates $E\left(_{T} W\right)$ so ${ }_{T} V$ cogenerates $E\left({ }_{T} W\right)$, but then, since ${ }_{T} W$ cogenerates ${ }_{T} V,_{r} W$ cogenerates $E\left({ }_{T} W\right)$. Thus Δ_{W}^{2} preserves monomorphisms in Mod-S by Theorem 1. Similarly, Δ_{W}^{2} preserves monomorphisms in T-Mod. Next assume that dom. dim. ${ }_{R} U \geqq 3$ and dom. dim. $V_{R} \geqq 3$. Let F_{R} be a minimal faithful right R-module. There is an exact sequence

$$
0 \longrightarrow V_{R} \longrightarrow F_{R}^{1} \longrightarrow F_{R}^{\prime} \longrightarrow F_{R}^{3}
$$

where $F_{R}^{j} \in \operatorname{add}-F_{R}$. Applying Lemma 6 twice, we conclude that the induced sequence

$$
0 \longrightarrow W_{S} \longrightarrow\left(F^{1} \otimes_{R} U\right)_{S} \longrightarrow\left(F^{2} \otimes_{R} U\right)_{S}
$$

is exact. Since $\left(F \bigotimes_{R} U\right)_{s}$ is injective by Theorem 9 and since F_{R} is isomorphic to a direct summand of V_{R} by [2, corollary to Theorem 2.1] we conclude that Δ_{W}^{2} is left exact on T-Mod by Lemma 2. Similarly, Δ_{W}^{2} is left exact on Mod-S. Statement 3) follows from Proposition 10.

Example. Let A be the algebra of 3×3 lower triangular matrices over an field and let $R=A / J^{2}$ where J is the radical of A. Then R has dominant dimension 2 (and is not $Q F$). Computation shows that, with notation as in Theorem 11 and ${ }_{R} U, V_{R}$ chosen as in Proposition 5 (and having dominant dimension 1), $\Delta_{W}: T$-Mod $\leftrightarrow \operatorname{Mod}-S: \Delta_{W}$ does define a Morita Duality.

References

[1] Anderson, F.W. and Fuller, K. R., "Rings and Categories of Modules," SpringerVerlag, Inc., New York, 1973.
[2] Bongartz, K., Tilted algebras, Springer LNM 903 (1981), 16-32.
[3] Cohn, P.M., "Morita equivalence and duality," Mathematical Notes, Queen Mary College, University of London, 1966.
[4] Colby, R.R. and Fuller, K.R., Exactness of the double dual, Proc. Amer. Math. Soc. 82 (1981), 521-526.
[5] Colby, R.R. and Fuller, K. R., Exactness of the double dual and Morita duality for Grothendieck categories, J. Algebra 82 (1983), 546-558.
[6] Colby, R.R. and Fuller, K.R., On rings whose double dual functors preserve mono-morphism-a generalization of QF-3 rings, J. Pure Appl. Algebra 28 (1983), 223-234.
[7] Colby, R.R. and Fuller, K.R., QF-3' rings and Morita duality, Tsukuba J. Math. 8 (1984), 183-188.
[8] Morita, K., Duality in QF-3 rings, Math. Z. 108 (1969), 237-252.
[9] Mueller, B. J., The classification of algebras by dominant dimension, Canad. J. Math. Soc. 20 (1968), 398-409.
[10] Tachikawa, H., "Quasi Frobenius rings and generalizations," Springer LNM 351, Springer-Verlag, Inc., Berlin and New York, 1973.

Department of Mathematics
University of Hawaii
Honolulu, HI 96734
U.S. A.

