EXISTENCE OF ALL THE ASYMPTOTIC λ-TH MEANS FOR CERTAIN ARITHMETICAL CONVOLUTIONS

By
Y.-F.S. Petermann*

To A.F.-P.

Abstract

Let E designate either of the classical error terms for the summatory functions of the arithmetical functions $\phi(n) / n$ and $\sigma(n) / n$ (ϕ is Euler's function and σ the divisor function).

By following an idea of Codecà's [3] and by refining some of his estimates we prove that $|E|$ has asymptotic λ-th order means for all positive real numbers λ. We also prove that E has asymptotic k-th order means for all positive integers k, and that this mean is zero whenever k is odd.

The results obtained can be applied to functions other than E as well, such as the functions P and Q of Hardy and Littlewood [8], or the divisor functions $G_{-1, k}$ [9].

1. Introduction.

We consider

$$
\begin{align*}
& H(x)=\sum_{n \leqq x} \frac{\phi(n)}{n}-\frac{6}{\pi^{2}} x, \tag{1.1}\\
& F(x)=\sum_{n \leqq x} \frac{\sigma(n)}{n}-\frac{\pi^{2}}{6} x+\frac{1}{2} \log x+\frac{\gamma}{2}+1, \tag{1.2}\\
& Q(x)=\sum_{n \leqq x} \frac{1}{n} \sin (x / n), \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
P(x)=\sum_{n \leq x} \frac{1}{n} \cos (x / n) \tag{1.4}
\end{equation*}
$$

where ϕ denotes Euler's function, $\boldsymbol{\sigma}(n)$ the sum of the positive divisors of n, and γ Euler's constant. These functions are unbounded; more precisely we

[^0]know that $[13,5]$
\[

$$
\begin{equation*}
H(x)=\Omega(\log \log \log x) \tag{1.5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
H(x)=\Omega_{ \pm}(\log \log \log \log x), \tag{1.6}
\end{equation*}
$$

that $[12,2]$

$$
\begin{equation*}
F(x)=\Omega_{-}(\log \log x) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup F(x)=+\infty, \tag{1.8}
\end{equation*}
$$

and that $[8,4]$
and

$$
\begin{equation*}
P(x)=\Omega_{+}(\log \log x) \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
Q(x)=\Omega_{ \pm}\left((\log \log x)^{1 / 2}\right) . \tag{1.10}
\end{equation*}
$$

However, H [13], F [14] and Q [15] are known to have an asymptotic first mean ; $F[16]$ and $H[1]$ even have square means. By λ-th mean we mean

Definition. For a real function E defined on $[1,+\infty$) and a real positive number λ we call-as long as the involved limit exists-

$$
\begin{equation*}
M(E, \lambda)=\lim _{x \rightarrow \infty} \frac{1}{x} \int_{1}^{x} E^{\lambda}(t) d t \tag{1.11}
\end{equation*}
$$

the asymptotic λ-th mean of E.
In a recent article [3], P. Codecà obtains for any positive real number λ

$$
\begin{equation*}
\int_{1}^{x}|E(t)|^{\lambda} d t=O_{\lambda}(x), \tag{1.12}
\end{equation*}
$$

if E is one of the functions defined in (1.1) through (1.4). In this paper we prove that in fact, for the same E,

$$
\begin{equation*}
M(E, k) \text { exists for all positive integers } k, \tag{1.13}
\end{equation*}
$$

and that

$$
\begin{equation*}
M(|E|, \lambda) \text { exists for all positive real numbers } \lambda \tag{1.14}
\end{equation*}
$$

(Theorems 1 and 2).
We conclude this introduction by noting that quantitative estimates of the constants $M(|E|, \lambda)$ for large λ are worth seeking for: in the case where $E=H$ for instance, they might provide precious information on the behaviour of the distribution function

$$
\begin{equation*}
D_{H}(s)=\lim _{x \rightarrow \infty} \frac{1}{x}|\{n \leqq x, H(n) \geqq s\}| \tag{1.15}
\end{equation*}
$$

[10], which by a result of Erdös and Shapiro's [6] exists and is continuous. D_{H} in turn has a close relationship with the function $X_{H}(x)$ that counts the number of changes in sign of H in the interval ($1, x$) [11].

Since $M(|E|, \lambda)=M(E, \lambda)$ for $\lambda=2 k$ with k a positive integer, this case seems easier to handle; as yet we can only estimate the related $M(E, 2 k+1)$ if $E=H, F$ or Q, for all nonnegative integers k (Theorem 3).

2. Notation and statement of the results.

We denote by α a real bounded sequence that satisfies, for some real constant K,

$$
\begin{equation*}
\sum_{n \leqq x} \alpha(n)=K x+o(x), \tag{2.1}
\end{equation*}
$$

and by f a real periodic function with period T, of bounded variation, such that

$$
\int_{0}^{T} f(t) d t=0
$$

If the real function g, defined on $[1,+\infty)$, satisfies

$$
\begin{equation*}
g(x)=\sum_{n \leq x} \frac{\alpha(n)}{n} f(x / n)+o(1), \tag{2.3}
\end{equation*}
$$

then we shall say that $g \in C(\alpha, f)$.
For the functions defined in (1.1) and (1.2), for instance, elementary calcula-tion-with, in the case of H, an application of the prime number theoremshows that
and

$$
\begin{equation*}
H \in C(-\mu, \psi) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
F \in C(-1, \psi) \tag{2.5}
\end{equation*}
$$

where μ is Moebius' function, $\phi(y)=\{y\}-1 / 2$ (with $\{y\}$ the fractional part of y), and 1 denotes the arithmetic function with constant value one. As for the functions of (1.3) and (1.4), we have by definition

$$
\begin{equation*}
Q \in C(1, \sin) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P \in C(1, \cos) . \tag{2.7}
\end{equation*}
$$

Much better information on such a function can be obtained if the corresponding sum (2.3) can be truncated. We shall say that $g \in C(\alpha, f)$ belongs to $C_{z}(\alpha, f)$ if, for K as in (2.1), we have

$$
\begin{equation*}
g(x)=\sum_{n \leq z} \frac{\alpha(n)}{n} f(x / n)+K \int_{1}^{\infty} \frac{f(u)}{u} d u+o(1) \tag{2.8}
\end{equation*}
$$

for some increasing and unbounded function $z=z(x)=o(x)(x \rightarrow \infty)$. In the sequel these conditions on z will be assumed; if in addition z satisfies $z(x)=o\left(x^{\varepsilon}\right)$ for all positive ε, we shall say that z is slowly varying. Also, we shall refer to the constant on the right side of (2.8) by $K(g)$.

For instance we have
Theorem 1. There is a slowly varying function z such that

$$
\begin{array}{ll}
H \in C_{\mathrm{z}}(-\mu, \psi) & (K(H)=0) \\
F \in C_{\mathrm{z}}(-1, \psi) & \left(K(F)=-\frac{1}{2} \log 2 \pi+1\right) \\
Q \in C_{2}(1, \sin) & \left(K(Q)=\int_{1}^{\infty} \frac{\sin u}{u} d u\right), \tag{2.11}
\end{array}
$$

and

$$
\begin{equation*}
P \in C_{z}(1, \cos) \quad\left(K(P)=\int_{1}^{\infty} \frac{\cos u}{u} d u\right) \tag{2.12}
\end{equation*}
$$

Assertion (1.13) is thus a consequence of the following theorem easily deducible by induction from Codecà's Theorem 1 [3].

Theorem A. If $g \in C_{z}(\alpha, f)$ for some α, f and slowly varying z, then

$$
\begin{equation*}
M(g, k) \text { exists for all positive integers } k . \tag{2.13}
\end{equation*}
$$

In order to obtain assertion (1.14) we need more, namely
Theorem 2. If g satisfies the hypotheses of Theorem A, then

$$
\begin{equation*}
M(|g|, \lambda) \text { exists for all positive real numbers } \lambda . \tag{2.14}
\end{equation*}
$$

In the proof of Theorem 2, we shall use another result of Codecà's [3, (5.5) and Theorem 2].

Theorem B. If g satisfies the hypotheses of Theorem A and if

$$
\begin{equation*}
g_{y}(x)=\sum_{n \leq y} \frac{\alpha(n)}{n} f(x / n), \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\lim _{x \rightarrow \infty} \frac{1}{x} \int_{1}^{x}\left|g_{z}(t)-g_{N}(t)\right|^{\lambda} d t\right)=0, \tag{2.16}
\end{equation*}
$$

and (as a consequence) g_{z} is a B^{λ} almost periodic function.
Note that we also have (this will be used later)

$$
\begin{equation*}
\int_{1}^{x}\left|g_{N}(t)\right|^{2} d t=O_{\lambda}(x), \tag{2.17}
\end{equation*}
$$

where the implied constant does not depend on N.
Also note that the last assertion of Theorem B implies, with Theorem 1, that the functions H, F, Q and P are B^{λ} almost periodic for all positive real
numbers λ.
The following theorem determines the value of $M(E, 2 k+1)$ as mentioned before:

Theorem 3. If g satisfies the hypotheses of Theorem A, and if

$$
\begin{equation*}
f(t)=-f(-t) \tag{2.18}
\end{equation*}
$$

except possibly on a set of measure zero, then

$$
\begin{equation*}
M(g-K(g), 2 k+1)=0 \quad(k=0,1,2 \cdots) \tag{2.1.}
\end{equation*}
$$

Other applications. The functions (recall (2.5))

$$
G_{a, k}(x)=\sum_{n \sum_{\sqrt{ } \bar{x}} n^{a} \psi_{k}(x / n), ~}^{\text {and }}
$$

where $\psi_{k}(y)=B_{k}(\{y\})$ is the k-th Bernoulli polynomial "modulo 1", are closely related to various divisor problems (see for instance [9]). Theorem 2 is applicable to $G_{-1, k}$ for all k, and Theorem 3 for all odd k. (We shall omit the proof of this for $k>1$, very similar to that for $k=1$: Walfisz'argument [17, Chapter III] can be easily generalised if one uses the Fourier expansion for ψ_{k} instead of that for $\psi=\psi_{1}$.)

3. Proof of Theorem 1.

Most of the material needed in the proof essentially exists in the literature [3, 7, 9, 17], and rather than repeat lengthy arguments, we choose, to save space, to refer systematically to it.
a) Proof of (2.9): H. First we have

$$
\begin{equation*}
\sum_{x \exp (-\sqrt{\log x})<n \leq x} \frac{\mu(n)}{n} \psi(x / n)=o(1) \tag{3.1}
\end{equation*}
$$

instead of Codecà's weaker [3, Lemma 5], where he shows that the left side of (3.1) is $O(1)$; the same argument, with a stronger version [17, p. 146] of the prime number theorem than the one he uses shows that in fact it is $o(1)$.

Next we have, for some slowly varying function $z=z(x)$,

$$
\begin{equation*}
\sum_{z<n \leqq x \exp (-\sqrt{\log x})} \frac{\mu(n)}{n} \psi(x / n)=o(1) . \tag{3.2}
\end{equation*}
$$

This is essentially Hilfssätze 4 and 5 of [17, pp 141-144]: one may replace $B Q v^{-2}$ on the right side of (22) by $B Q v^{-8 / 3}$, thus improving the conclusion of Hilfssatz 4 ; by using this better estimate to improve (31), one eventually obtains (3.2) instead of Hilfssatz 5. Note that although this argument of Walfisz' uses the assumption that x is an integer, this is a superfluous hypothesis, since

$$
\begin{equation*}
\sum_{y<n \leq x} \frac{\mu(n)}{n} \psi(x / n)=\sum_{y<n \leq x} \frac{\mu(n)}{n} \psi([x] / n)+O\left(y^{-1}\right) . \tag{3.3}
\end{equation*}
$$

Assertion (2.9) now follows from (2.4), (3.1) and (3.2).
b) Proof of $(2.10):$ F. First we have

$$
\begin{equation*}
\sum_{\sqrt{ } x<n \leq x} \frac{1}{n} \phi(x / n)=\frac{1}{2} \log (2 \pi)-1+o(1): \tag{3.4}
\end{equation*}
$$

this is a special case of [9, Theorem 2]. Then, for some slowly varying z,

$$
\begin{equation*}
\sum_{z<n \sqrt{x}} \frac{1}{n} \psi(x / n)=o(1): \tag{3.5}
\end{equation*}
$$

this can be easily derived from the proof of Satz 1 in [17, p. 94-95] by being less generous in estimate (28) p. 95.
c) Proof of (2.11) and (2.12): P and Q. By [7, p. 9] we have

$$
\begin{equation*}
\exp (\log x / \log \log x)<n \leq \sqrt{x} \frac{1}{n} \exp (i x / n)=o(1) . \tag{3.6}
\end{equation*}
$$

Next, an application of the Euler-Mac Laurin sum formula yields, for $1>\varepsilon>x^{-1 / 2}$,

$$
\begin{equation*}
\sum_{\varepsilon x<n \leq x} \frac{1}{n} \exp (i x / n)=\int_{1}^{\infty} \frac{e^{i u}}{u} d u+O\left(\varepsilon^{-2} x^{-1}+\varepsilon\right) . \tag{3.7}
\end{equation*}
$$

Finally, for $\varepsilon>x^{-1 / 2}$ we have

$$
\begin{equation*}
\sum_{\sqrt{x}<n \leq \varepsilon x} \frac{1}{n} \exp (i x / n)=O\left(\varepsilon^{1 / 4}\right), \tag{3.8}
\end{equation*}
$$

which can easily be obtained from the unnumbered estimate [7, p. 8]

$$
\begin{equation*}
\sum_{a \leq n \leq b \leq 2 a} \frac{1}{n} \exp (i x / n)=O\left((a / x)^{1 / 4}\right) \quad(a>\sqrt{x}>6) . \tag{3.9}
\end{equation*}
$$

(2.11) and (2.12) now follow from (3.6), (3.7), (3.8) if $\varepsilon=\varepsilon(x):=x^{-1 / 3}$.

4. Proof of Theorem 2.

Let $\bar{g}_{N}(t):=g_{N}(t)+K(g)$. If ν and ε are positive real numbers, then it follows from Theorem B that for some $N_{0}=N_{0}(\nu, \varepsilon)$, whenever $N \geqq N_{0}$ and x is sufficiently large, we have

$$
\begin{equation*}
\int_{1}^{x}\left|g(t)-\bar{g}_{N}(t)\right|^{\nu} d t \leqq \varepsilon x . \tag{4.1}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\int_{1}^{x}|g(t)|^{\lambda} d t=\int_{1}^{x}\left|\bar{g}_{N}(t)\right|^{\lambda} d t+x R_{\lambda, N}(x), \tag{4.2}
\end{equation*}
$$

where $\lim _{N \rightarrow \infty} \lim _{x \rightarrow \infty} \sup \left|R_{\lambda, N}(x)\right|=0$. Indeed if k is the (positive) integer such that $k-1<\lambda \leqq k, \varepsilon>0$, and N is an integer large enough to satisfy (4.1) for $\nu=2 \mu$, where $\mu:=\lambda / k$, then by Schwarz inequality,

$$
\begin{align*}
\left.\int_{1}^{x}| | g(t)\right|^{\lambda}-\left|\bar{g}_{N}(t)\right|^{\lambda} \mid d t \leqq & \left(\int_{1}^{x}\left(|g(t)|^{\mu}-\left|\bar{g}_{N}(t)\right|^{\mu}\right)^{2} d t\right)^{1 / 2} \\
& \times\left(\int_{1}^{x}\left(\sum_{n=0}^{k-1}|g(t)|^{\mu n}\left|\bar{g}_{N}(t)\right|^{\mu(k-1-n)}\right)^{2} d t\right)^{1 / 2} \\
= & : \sqrt{\alpha \beta}, \quad \text { say. } \tag{4.3}
\end{align*}
$$

Since $\mu \leqq 1$, we have $\left||g(t)|^{\mu}-\left|\bar{g}_{N}(t)\right|^{\mu}\right| \leqq\left|g(t)-\bar{g}_{N}(t)\right|^{\mu}$, whence by (4.1)

$$
\begin{equation*}
\alpha \leqq \varepsilon x . \tag{4.4}
\end{equation*}
$$

And $\beta \leqq k^{2}\left(\int_{1}^{x}|g(t)|^{2 \mu(k-1)} d t+\int_{1}^{x}\left|\bar{g}_{N}(t)\right|^{2 \mu(k-1)} d t\right)$, whence by Theorem A and a direct consequence of (2.17),

$$
\begin{equation*}
\beta=O(x) \tag{4.5}
\end{equation*}
$$

In view of (4.3) and (4.4), this concludes the proof of (4.2).
We proceed to prove Theorem 2. Since g_{N} is a periodic function, so is $\left|\bar{g}_{N}\right|^{2}$. Hence

$$
\begin{equation*}
\int_{1}^{x}\left|\bar{g}_{N}(t)\right|^{2} d t \sim K_{N} x \quad(x \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

where by (2.17) the sequence $\left\{K_{N}\right\}_{N=1}^{\infty}$ is bounded, and has thus a subsequence $\left\{K_{N_{i}}\right\}_{i=1}^{\infty}$ that converges to some constant C_{λ}. By (4.2) we must then have

$$
\begin{equation*}
\int_{1}^{x}|g(t)|^{\lambda} d t \sim C_{\lambda} x \quad(x \rightarrow \infty) \tag{4.7}
\end{equation*}
$$

(and in fact the whole sequence $\left\{K_{N}\right\}$ converges to C_{λ}).

5. Proof of Theorem 3.

We have [3, (4.1) and (4.2)]

$$
\begin{equation*}
\int_{1}^{x} g_{z}^{m}(t) d t=\sum_{1 \leq n_{j} \leq z} \alpha\left(n_{1}\right) \cdots \alpha\left(n_{m}\right) \int_{\lambda / N}^{x / N} f\left(N_{1} u\right) \cdots f\left(N_{m} u\right) d u \tag{5.1}
\end{equation*}
$$

where $N:=n_{1} \cdots n_{m}, N_{j}:=N / n_{j}(j=1, \cdots, m)$, and $\lambda:=\max \left(w\left(n_{1}\right), \cdots, w\left(n_{m}\right)\right)$, w denoting the inverse of z. For $j=1, \cdots, m$, the function $f_{j}(u):=f\left(N_{j} u\right)$ is periodic of period T / N_{j}, and so is thus $G(u):=f_{1}(u) \cdots f_{m}(u)$, with period $P:=$ $T /\left(N_{1}, \cdots, N_{m}\right)$. Now by (2.18) $f_{j}(u)=-f_{j}(-u)(j=1, \cdots, m)$, and thus, if m is odd, $G(u)=-G(-u)$, except possibly on a set of measure zero. Hence, for all real numbers a,

$$
\begin{equation*}
\int_{a}^{a+P} G(u) d u=0 \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) we obtain (2.19), since G and α are bounded, and since z is slowly varying.

Acknowledgement. I wish to thank the referee for his or her comments.

References

[1] Chowla, S., Contributions to the analytic theory of numbers, Math. Z. 35 (1932), 279-299.
[2] Codecà, P., On the properties of oscillation and almost periodicity of certain convolutions, Rend. Sem. Mat. Univ. Padova 71 (1984), 103-119.
[3] -_ On the B^{λ} almost periodic behaviour of certain arithmetical convolutions, Rend. Sem. Mat. Univ. Padova 72 (1984), 373-387.
[4] Delange, H., Sur la fonction $\sum_{n=1}^{\infty} \frac{1}{n} \sin (x / n)$, Théorie analytique et élémentaire des nombres, Caen 29-30 sept. 1980, Journées arithmétiques SMF-CNRS.
[5] Erdös, P. and Shapiro, H. N., On the changes of sign of a certain error function, Canad. J. Math. 3 (1951) 375-385.
[6] -. The existence of a distribution function for an error term related to the Euler function, Canad. J. Math 7 (1955) 63-75.
[7] Flett, T. M., On the function $\sum_{n=1}^{\infty} \frac{1}{n} \sin (t / n)$, J. London Math. Soc. 25 (1950) 5-19.
[8] Hardy, G.H. and Littlewood, J.E., Notes on the theory of series (XX) : on Lambert series, Proc. London Math. Soc. (2) 41 (1936) 257-270.
[9] Ishibashi, M. and Kanemitsu, S., Fractional part sums and divisor functions I, Number theory and combinatorics, ed. J. Akiyama et al. 1985 World Sci. Publ. Co, 119-183.
[10] Pétermann, Y.-F.S., Oscillations and changes of sign of error terms related to Euler's function and to the sum-of-divisors function, Thèse de doctorat, Genève 1985.
[11] - Changes of sign of error terms related to Euler's function and to divisor functions, Comment. Math. Helv. 61 (1986) 84-101.
[12] -, An Ω-theorem for an error term related to the sum-of-divisors function, Mh. Math. 103 (1987) 145-157.
[13] Pillai, S.S. and Chowla, S., On the error terms in some asymptotic formulae in the theory of numbers I, J. London Math. Soc. 5 (1930) 95-101.
[14] ——— II, J. Indian Math. Soc. 18 (1930) 181-184.
[15] Segal, S. L., On $\sum \frac{1}{n} \sin (x / n)$, J. London Math. Soc. (2) 4 (1972) 385-393.
[16] Walfisz, A., Teilerprobleme. Zweite Abhandlung, Math. Z. 34 (1932) 448-472.
[17] -, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin 1963.

$$
\begin{array}{ll}
\text { Department of Mathematics, } & \text { Université de Genève, } \\
\text { Faculty of Science, } & \text { Section de Mathématiques, } \\
\text { Kyushu University 33, } & 2-4 \text { rue du Lièvre, C. P. 240, } \\
\text { Fukuoka } 380 . & \text { CH-1211 Genève } 24 .
\end{array}
$$

[^0]: Received December 4, 1986. Revised May 20, 1987.

 * Supported by the exchange program of the Japan Society for the Promotion of Science and the Swiss National Science Foundation, and by a grant from the Fonds Marc Birkigt (Genève). This work was done while I was visiting the Mathematics Department of Kyushu University (Fukuoka).

