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Introduction.

In our previous article [4], we developed a theory of methods for our specific
objective: to clarify the functional structure of ordinal diagrams. This theory
was symbolized by HP (hyper-principle) for the reason that it rendered the
foundations of a well-ordered structure far beyond $\epsilon_{0}$ . (For the structure of
order type $\epsilon_{0}$ we presented CP, the construction principle; see [2]). The theory
HP can be regarded, however, as a general theory of transfinite mechanisms
independent of ordinal diagrams, and it is of quite an interest in so far as a
mechanism in our notion is a computational system which produces an object
combined in one, given as an input a (transfinite) sequence of already produced
objects. This mechanism is again disposed into the universe of objects of our
concern. This is the idea behind HP.

Incidentally, what were called methods previously are here called mechanisms.
The reason for this as well as a delicate distinction between methods and mech-
anisms will be explained in the sequel to this paper.

Now, in this article, we propose an extension of HP, symbolized by TM[2]
(a two-storied theory of transfinite mechanisms), which is obtained from HP by
allowing substitutions of term-forms of HP for free variables in type-forms, and
hence the new universe (of mechanisms) is two-storied. That is, the objects in
the universe of HP are regarded as the mechanisms belonging to the fi.rst floor,
so to speak, and play the role of parameters to determine type-forms of the
mechanisms upstairs. The function variables appearing in the original type-

forms are then regarded as living in the basement.
In the sequel to this, an application of TM[2] will be presented; an exten-

sion of the transfinite definitions in [4] will be interpreted in TM[2].
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\S 1. First-floor-term-forms.

Let $I$ be a primitive recursive scheme such that for each $1=1,2,$ $\cdots,$ $I(l)$

represents the pair of a set and its order, say $(I_{t}, <^{t})$ , which admits an (a concrete)

accessibility proof. (See the introduction of [3] for the meaning of the accessi-
bility proof.)

DEFINITION 1.1. 1) Language $\mathcal{L}_{0}(I)$ . The language $\mathcal{L}_{0}(I)$ is the quantifier-

free part of the language of HA, Heyting arithmetic, augmented by function
variables. It may contain some special constants.

2) Terms and (quantifier-free) formulas of $\mathcal{L}_{0}(I)$ are defined as usual.
Terms may contain function variables.

Note. 1) In subsequent sections, we deal with the cases:where there are
just two accessible sets $I_{1}$ and $I_{2}$ . We do not lose anything essential by this
simplification.

2) We shall constantly refer to Part II of [4], and hence we cite some
definitions and their consequences therefrom with the asterisk affixed. For
instance, Definition $2.1^{*}$ stands for Definition 2.1 in Part II of [4]. The theory

we are to introduce is, in its essence, an extension of HP which admits sub-
stitutions of term-forms (of HP) of at-type or $fn$-type for the free variables in
type-forms.

3) The terms which are free of function variables are said to be $\mathcal{L}_{0}(I)-$

recursive.

DEFINITION 1.2. 1) The language $\mathcal{L}_{tp}(I)$ for type-forms is much the same
as the language $\mathcal{L}_{rp}$ in Definition 1.1*. It is based on the language of $\mathcal{L}_{0}(I)-$

terms and $\mathcal{L}_{0}(I)$-formulas (which are quantifier-free), and the previous $T$ and
$R$ be replaced respectively by $R^{1}$ and $R^{2}$ .

2) Type-forms, the variables in them and their reduction rules are the
same as those in the definition cited above, save that $R^{1}$ and $R^{2}$ need some
care.

2.1) Let $t=t(--)$ be an expression in the language $\mathcal{L}_{tp}(I)$ free of $R^{1}$ and $R^{2}$

with parameter $--$ let $s$ be a type-form without $9l^{1}$ and $R^{2}$ , and let $i$ stand for
an $\mathcal{L}_{0}(I)$-term of at-type which is supposed to be an element of $I_{1}$ . Define
$M(st;i)$ and $N(st;i)$ as follows.

$M(st;0)=s$ where $0$ is the initial element of $I_{1}$ ;

$N(st;i)=\Lambda jC[j<1i;\Lambda\xi_{1}\cdots\Lambda\xi_{t}M(st;j), ept]$ ,

where $\xi_{1},$
$\cdots,$

$\xi_{t}$ are some free variables in $M(st;j)$ different from $j$ ;
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$M(st;i)=t(N(s\iota;i))$ if $0<1i$ .
If $M(st;i)$ is a type-form for all $i$ in $I_{1}$ , then $9l^{1}[s\iota;i]$ is a type-form.

Define

$N(R^{1} ; st;i)=\Lambda jC[j<1i;\Lambda\xi_{1}\cdots\Lambda\xi_{t}9t^{I}[st;j], ept]$ .
$R^{1}[s$ ’ ; $i]$ is accompanied by the reduction rule:

$R^{1}[st;i]\Rightarrow C[i=0,0<1i;st(N(R^{1};st;i)), ept]$ .

The reduct will be abbreviated to $R^{1}(st;i)$ . The variables in $9l^{1}[st;i]$ are
the ones in $st$ and $i$ .

2.2) $R^{2}[tu;k]$ and its reduction rule are defined similarly, but with slight
modifications; $t$ and $u$ be free of $R^{2}$ (but possibly with $R^{1}$ ), $I_{1}$ and $<^{1}$ are
respectively replaced by $I_{2}$ and $<^{2}$ and $k$ is supposed to range over $I_{2}$ .

3.3) Let $s$ be a type-form and let $\phi$ be an $\mathcal{L}_{0}(I)$-term (of at-type or fn-
type). Then $\Pi(s;\phi)$ is a type-form. If $s$ is of the form $\Lambda xt(x)$ and $\phi$ is of
the same type as $x$ , then we place the reduction rule;

$\Pi(s;\phi)\Rightarrow t(\phi)$ .

Note. 1) Type-forms of the form $\Pi(s;\phi)$ (in 2.3) above) are not neces-
sarily meaningful. Such a waste will be adjusted later.

2) The T-type in [4] is a special case of the $R^{1}$ here.
3) The treatment of $T$ and $\Re$ in [4] was somewhat inarticulate. We are

correcting it subsequently.

DEFINITION 1.3. The complexity of a type-form $f$ denoted by $d(t)$ here, is
a notion similar to the $\gamma$-degree defined in \S 11 of [1]. Here we call it simply

the degree.
1) i.We first define an extension of $I_{p},$ $*I_{p},$ $p=1,2$ .

$I_{p^{\sim}}=\{i^{\sim} ; i\in I_{p}\}$ ,

$I_{p}^{*}=I_{p}\cup I_{p^{\sim}}$ ,

$*I_{p}=I_{p}^{*}\cup\{\infty_{p}\}$ ,

$i<p_{*}i^{\sim}<p_{*}j$ for any $i$ and $j$ in $I_{p}$ with $i<pj$ ,

$\infty_{p}$ is the maximal element in $*I$ with respect to $<p_{*}$

The order type of $*I$ is thus $2|I|+1$ . We assume the elements of $*I_{1}$ and $*I_{2}$

are coded so that the two sets of codes are disjoint. Define

$I_{0}=*I_{1}\cup*I_{2}$ ,
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where the order $<_{0}$ of $I_{0}$ is induced from $<1*and<2*and$ , if $i\in*I_{1}$ and $ k\in$

$*I_{2}$ , then $i<0k$ .
2) Next define $r(9t^{p};_{t})$ , the rank of $R^{p}$ in a type-form $t$ , which is an

element of $I_{0}$ .
2.1) Suppose $C[(\mathcal{A}), (u)]$ occurs in $t$ where $A_{t}$ is the condition $j<pi$ and

$ u\iota$ contains $R^{p}[st;j]$ , and where $i\in I_{p}$ and $j$ is either a variable or a numeral,

and for the latter case either $j\not\in I_{p}$ or $i\leqq pj$ . Then, for this occurrenc of
$R^{p},$ $r(R^{p} ; t)=i$ .

2.2) Suppose $R^{p}[s\iota;j]$ occurs in $t$ , where $j\in I_{p}$ and 2.1) is not the case.
Then for this occurrence of $R^{p},$ $r(R^{p} ; \iota)=j^{\sim}$ .

2.3) For any occurrence of $R^{p}$ in $t$ which does not fit either of above,
$r(R^{p} ; t)=\infty_{P}$ .

3) Let $\iota_{0}$ and $t$ be type-forms where $t$ is a part of $t_{0}$ . We define $d(t;_{t_{0}})$ ,

the degree of $t$ relative to $t_{0}$ , to be an element of $\omega^{I_{0}}$ . (Let the order of $\omega^{I_{0}}$

be denoted by $<_{\omega}.$ )

3.1) $d(t;t_{0})=1$ if $t$ is atomic.
3.2) $d(\Lambda_{Xt;t_{0}})=d(t;t_{0})+1$ .
3.3) $d(s\rightarrow\iota;i_{Q})=d(s;z_{0})\# d(\iota;_{t_{0}})$ .
3.4) $d(\Pi(s;\phi);t_{0})=d(s;_{t_{0}})+1$ .
3.5) $d(R^{p}[st;i];z_{0})=d(s;_{t_{0}})\#\omega^{r(9t:_{t_{0}}}p)$

3.6) $d(C[(\mathcal{A});(t)];t_{0})=d(t_{1} ; \iota_{0})\#\cdots\# d(t_{m+1} ; \iota_{0})$ .
4) Define $d(f)$ to be $d(t;_{t})$ .

PROPOSITION 1.1. If $s\Rightarrow t$ for hyper-types $s$ and $\iota$ , then $d(s)<\omega d(\iota)$ .

PROPOSITION 1.2. The notion of normality can be defined as in De.finition
1.2* except for the general cases of $\Pi(s;\phi)$ , which is to be settled in the sub-
sequent proof. The normalization theorem on hyper-types can be proved by

transfinite induction on $d$ . (See Proposition $1.2^{*}$ and $Corollary^{*}.$ )

PROOF. Apply Proposition 1.1. In case of $\Pi(s;\emptyset)$ where $s$ is not of the
form $\Lambda xt(x)$ , consider the normal form of $s$ say so, which exists by the induc-
tion hypothesis. If $s_{0}$ is of the form $\Lambda x\iota(x)$ and $\phi$ is of the same type as $x$ ,

then we define the reduction rule

$\Pi(s;\phi)\Rightarrow t(\phi)$ ;

otherwise $\Pi(s;\phi)$ will be said to be irrelevant, and regard this itself as normal.
By virtue of Proposition 1.1, $d(t(\phi))<\omega d(s_{0})<\omega d(s)<\omega d(\Pi(s;\phi))$ . This settles
the adjustment problem in 2) of the note to Definition 1.2.
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DEFINITION 1.4. We can define the objects of respective non-irrelevant hyper-
type (which will be called hyper-mechanisms) as in Definition $1.3^{*}$ by transfinite
induction on the degree. Due to the involvement of $\Re^{1}$ and $R^{2}$ , they are of
transfinite character.

DEFINITION 1.5. (See Definition 2.1*.) 1) The language $\mathcal{L}_{\iota m}(I)$ (for term-
forms) is $\mathcal{L}_{tp}(I)$ augmented by the variable-forms of associated type-form $s$

$X_{n}^{s}$ ,

for all $n$ and $s$ and special constant symbols $\mu,$
$\mathscr{Q}\lambda,$ $\Pi,$ $C$ .

2) The term-form of a certain type-form, free and bound variables and
variable-forms in it and the associated variables (in type-forms) are defined as
before.

3) A term-form which does not have associated free variables will be called
a hyper-term, and a hyper-term which does not have free variables of variable-
forms will be called a hyper-functional.

4) The constructional complexity of a term-form $\Phi$ , denoted by $*(\Phi)$ here,
is defined as before.

5) For each hyper-functional $\Phi$ , we introduce a (functional) symbol $Q_{\Phi}$ (or

$Q$ for short), which is to be interpreted to be the object represented by $\Phi$ , say
$J_{\Phi}$ (which will also be written as $J_{Q}$ ). $Q_{\Phi}$ is not an official term in the language.

6) The type-form of a term-form $\Phi$ will be written as $[\Phi]$ .

Note. The variables (of at-ype or of $fn$-type) in the original language are
to be distinguished from variable-forms of types respectively $N_{0}$ and $N_{0}\rightarrow N_{0}$ ,
although they are treated the same way in the formations of term-forms.

PROPOSITION 1.3. 1) Proposition $2.1^{*}$ holds.
2) If $\Phi$ and $\Psi$ are identical save for some bound variable-forms and, if

$Q$ and $R$ respectively correspond to $\Phi$ and $\Psi$, then $J_{Q}=J_{R}$ (the same object).

DEFINITION 1.6. 1) First assignments. Let $x\equiv x_{1},$ $\cdots,$ $x_{t}$ be a finite se-
quence of distinct variables and let $a_{k}$ be a closed $\mathcal{L}_{0}(I)$-term of the same type
as $x_{k},$ $1\leqq k\leqq l$. Put $a\equiv a_{1},$ $\cdots$ , $a_{l}$ . Then

$ax\equiv(x_{1}/a_{1}, \cdots, x_{l}/a_{l})$

will denote the (first) assignment of $a$ to $x$ .
2) Let $\Phi$ be any formal object. $ a\Phi$ will denote the result of replacement

of $x_{k}$ by $a_{k}$ in $\Phi$ , presuming that $x_{k}$ be not bound in $\Phi$ and that there be no
clashes of variables. If $x$ exhaust the free variables in $\Phi$ , then $a$ will be said
to be complete for $\Phi$ .

3) If the $\Phi$ above is a type-form $t$ , then $ a\iota$ will become a hyper-type under

$[$



102 Mariko YASUGI

a complete assignment $a$ .
4) If the $\Phi$ in 2) is a term-form, then $ a\Phi$ will become a hyper-term under

a complete assignment $a$ .
5) Second assignments. Let $y\equiv y_{1},$ $\cdots$ , $y_{m}$ be a finite sequence of distinct

variable-forms of hyper-types, and let $b\equiv b_{1},$
$\cdots,$

$b_{m}$ be a finite sequence of
functional symbols such that $b_{k}$ is of the same hyper-type as $y_{k},$ $1\leqq k\leqq m$ . Then

$by\equiv(y_{1}/b_{1}, \cdots, y_{m}/b_{m})$

will denote the (second) assignment of $b$ to $y$ .
6) Let $\Phi$ be any formal object, and let $a$ be complete for $\Phi$ . $ ba\Phi$ will

denote the result of replacement of $y_{k}$ by $b_{k}$ in $ a\Phi$ . If $y$ covers all the free
variable-forms in $\Phi$ , then $b$ will be said to be complete for $ a\Phi$ .

7) If $\Phi$ is a term-form and $a$ is complete for $\Phi$ , then $ ba\Phi$ can be defined
according to 4) and 6). If $b$ is complete for $ a\Phi$ , then $ ba\Phi$ will become a hyper-

functional (in the extended language).

COLLOLLAAY. 1) $Corollary^{*}$ holds; added is $aR^{p}[st;i]=R^{p}$ [ $a_{S}$ , at; $ai$].

2) $ba\Pi(\Phi;\Psi)=\Pi(ba\Phi;ba\Psi)$ ;
$ba\lambda X\Phi=\lambda aXba\Phi;baC[(\mathcal{A});(\Phi)]=C[a(\mathcal{A});ba(\Phi)]$ .

Note. As was noted above, free variables and variable-forms of type $N_{0}$

and $N_{0}\rightarrow N_{0}$ are distinguished, and so the variables are relevant to first assign-
ments, while variable-forms are relevant to second assignments. $\mathcal{L}_{0}(I)$-terms

are of course term-forms, and hence they can be substituted for variable-forms
if types are appropriate.

DEFINITION 1.7. 1) CNPR in \S 3*(the continuity principle) will be assumed.
2) The interpretation of a term-form $\Phi$ at a complete assignment $ba$ ,

$J(\Phi, b, a)$ , can be defined as in Definition 3.2*.
(1) Closed $\mathcal{L}_{0}(I)$-terms can be interpreted naturally.
(2) $\Phi$ is a variable-form $X^{s}$ . $ba$ determines a functional symbol $Q$ of

hyper-type as. Let $J(\Phi, b, a)$ be $J_{Q}$ .
(3) $J(\Pi(\Phi;\Psi), b, a)$ can be defined inductively as before.
(4) Consider $J(\lambda X\Phi;b, a)$ , where [X] (the type-form of $X$ ) $=s$ and $[\Phi]=’$ ,

$\iota$ being free of $X$. For each $Q$ a functional symbol of as,

$M_{Q}=J(\Phi, (b, aX/Q), a)$

has been defined as a hyper-mechanism of $ a\iota$ . Let $\Lambda l$ be the hyper-mechanism
(of $as\rightarrow at$ ) which associates with JQ for any such $Q$ the $M_{Q}$ above. Let
$J(\lambda X\Phi;b, a)$ be this $M$.
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(5) Consider $J(\lambda X\Phi ; b, a)$ as above where $X$ occurs (free) in $t$ . Then $\lambda X\Phi$

is of type-form $\Lambda x_{t}$ . For each $\phi$ a closed $\mathcal{L}_{0}(I)$-term of the same type as $X$,

put $c=(a, X/\phi)$ . Then
$M_{\phi}=J(\Phi, b, c)$

has been defined as a hyper-mechanism of $Ct$ . Define $J(\lambda X\Phi, b, a)$ to be the
mechanism $M$ which associates with each $\phi$ the $M_{\phi}$ above. $M$ is of hyper-type
$\Lambda Xat$ .

(6) $C[(\mathcal{A}), (\Phi)]$ can be interpreted as before.
(7) $\Pi(\mathscr{Q};Z)$ can be defined as before, and from this $JB$ will be defined.

The $S$ in $\mathcal{Z}$ is a variable (of $fn$-type) in $\mathcal{L}_{0}(I)$ . (See (11) in Definition 3.2*.)

PROPOSITION 1.4. The $J$ above is well-defined.

PROOF. We can follow the proof of Proposition 3.1*. CNPR and an in-
formal reasoning of the bar theorem are used. For the reader’s convenience,

CNPR (the continuity principle) is written out below.

CNPR$(L, S):\forall S^{\prime}(S^{\prime}(ap(L;S)=srap(L;S)rap(L;S^{\prime})=ap(L;S))$ ,

where $L$ is an arbitrary term-form of type-form $(N_{0}\rightarrow N_{0})\rightarrow N_{0},$ $S$ is an arbitrary
$\mathcal{L}_{0}(I)$-term of $fn$-type, $S^{\prime}$ is a variable of $fn$-type and $ap(L;S)$ represents the
application of $L$ to $S$ and $Stn$ represents the restriction of $S$ to length $n$ .

DEFINITION 1.8. The objects and expressions defined in this section (type-

forms, term-forms and hyper-mechanisms) will be said to first-floor.

\S 2. Second-floor-term-forms.

DEFINITION 2.1. 1) We assume henceforth the properties of first-floor-
objects defined in the first section.

2) Let $A$ be any $\mathcal{L}_{0}(I)$-formula. If $B$ is obtained from $A$ by replacing
some free variables by first-floor-term-forms (of appropriate type), then $B$ can
be interpreted in the semantics of first-floor-term-forms (see Definition 1.7). We
shall call such $B\mathcal{L}_{tm}(I)$-recursive.

3) Second-floor-type-forms and the variables and (first-floor-) variable-forms
in them as well as the associated variables are defined below. We denote the
underlying language of second-floor-type-forms by $2- \mathcal{L}_{tp}(I)$ . We shall omit the
adjective ”second-floor-,, when confusion is not likely.

3.1) An expression obtained from a first-floor-type form by replacing some
free variables by first-floor-term-forms (of appropriate type) is a second-floor-



104 Mariko YASUGI

type-form. As a special case, a first-floor-type-form is a type-form in the
extended sense.

3.2) Second-floor-type-forms are closed under the formation rules of first-
floor-type-forms except for $R^{1}$ and $R^{2}$ . In $R^{p}[s^{\prime}p^{\prime} ; i^{\prime}]$ as a second-floor-type-
form, $s^{\prime}\iota^{\prime}$ and $i^{\prime}$ are respectively obtained from $st$ and $i$ which are first-floor-
objects by replacement of some variables by first-floor-term-forms of appropriate
type; that is $R^{p}[s^{\prime}\iota^{\prime}, i^{\prime}]$ is admitted only through 3.1) above. $\mathcal{L}_{lm}(I)$-recursive
formulas are admitted for the (X) in $C[(A);(\iota)]$ , and, in the reduction rule
for $C[(A);(t)]$ , the truth value of $A_{t}$ (under assignments) can be evaluated
according to the semantics of first-floor-term-forms; see 2) above.

3.3) Let $t$ be a type-form in which $X$ a first-floor-variable-form is not bound.
Then $\Lambda Xf$ is a (second-floor-) type-form. Let $\phi$ be a first-floor-term-form of
the same type-form as $X$ whose variable-forms are not bound in $t$ , and let $p^{\prime}$

be obtained from $\iota$ by replacing all occurrences of $X$ by $\phi$ . Then $\Pi(\Lambda X\iota;\phi)$

is a type-form with the reduction rule

$\Pi(\Lambda X\iota;\phi)=p^{\prime}$ .
The (first-floor-) variable-form in this are those in $\Lambda X\iota$ and in $\phi$ .

3.4) For any $s$ which is not of the form $\Lambda X\iota,$ $\Pi(s;\phi)$ is still defined; see
2.2) in Definition 1.2 and the note to it.

3.5) The associated variables in a type-form $t$ are those in the first-floor-
type-forms of the variable-forms in $\iota$ .

4) A second-floor-type-form is a second-floor-hyper-type if it contains no
free first-floor-variable-forms (variables and associated variables inclusive).

Note. (1) In 3.3) above, if $X$ a variable-form occurs in $\iota$ , then it is in the
form $\phi(X)$ , where $\phi(X)is$ a first-floor-term-form of at-type or $fn$-type. So, for
each complete assignment to $\phi(X),$ $\phi(X)$ can be evaluated according to the
semantics of first-floor-term-forms.

(2) Here, too, $\Pi(s;\phi)$ is not necessarily meaningful. Adjustment will be

made later.
(3) As was stated in 3.2) above, $R^{p}[s^{J}\iota^{\prime} ; i^{\prime}]$ is of a special form. We

do not form this for arbitrary second-floor-type-forms $s^{\prime}$ and $p^{\prime}$ ; that is, $s^{\prime}$ and
$t^{\prime}$ do not contain $\Lambda X_{t}$ . It is possible, however, that an expression in them is
of (first-floor-) type-form which involves $R^{1}$ or $R^{2}$ .

PROPOSITION 1.1*holds for second-floor-type-forms if appropriately modified;

in 3.3) above, if $\Lambda x_{t}$ and $\phi$ are hyper-types, then the immediate reduct of
$\Pi(\Lambda x_{t} ; \phi)$ is also.
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DEFINITION 2.2. 1) The normality of a hyper-type is defined as in Defini-

tion $1.2^{*}$ with the following modifications.
1.1) For every variable-form in a hyper-type whose associated first-floor-

type-form $s$ is a (first-floor-) hyper-type, reduce $s$ to its normal form (which

uniquely exists by Proposition 1.2).

1.2) If 1.1) has been executed, then $\Lambda X\iota(X)$ is normal.
1.3) For $\Pi(s;\phi)$ which does not have the reduction rule, the normalization

problem will be settled subsequently.

2) We define $\epsilon(t)$ , the constructional complexity of $t$ a second-floor-type-

form relative to first-floor-objects.
2.1) $\epsilon(t)=1$ if $t$ is free of $\Lambda X$ ( $X$ a properly first-floor-variable-form). In

the subsequent cases we assume 2.1) is not the case.
2.2) $\epsilon(\Lambda X_{t})=\epsilon(t)+1$

2. 3) $\epsilon(s\rightarrow\iota)=\epsilon(s)+\epsilon(\iota)$

2.4) $\epsilon(\Pi(s;\phi))=\epsilon(s)+1$

2.5) $\epsilon(C[(d);(t)])=\epsilon(t_{1})+\cdots+\epsilon(\iota_{m+1})$

Note. Since $9l^{p}[s^{\prime}t^{\prime} ; i^{\prime}]$ does not contain $\Lambda X$, this fits the case 2.1).

PROPOSITION 2.1. 1) If $s$ and $\iota$ are hyper-types such that $s\Rightarrow t$ and $\epsilon(s)>1$ ,

then $\epsilon(\iota)<\epsilon(s)$ .
2) 2) Suppose $t^{J}$ is obtained from $t$ by substitution of a first-floor-term-form

for a variable-form. Then $\epsilon(t)=\epsilon(t^{\prime})$ .
3) The normalization theorem on hyper-types can be proved by induction on

$\epsilon$ , under the assumption of the semantics of first-floor-term-forms.

PROOF. 3) First execute 1.1) in the definition above. Suppose first for a
hyper-type $\iota\epsilon(t)=1$ holds. It $t$ is $C[(d);(\iota)]$ , then the truth value $A_{l}$ is deter-
mined in the semantics of first-floor-term-forms, and hence the reduct is uni-
quely determined. If $t$ is $R[st;i]$ and $i$ contains first-floor-term-forms, then
$i$ can be evaluated in the semantics of first-floor-term-forms. If $t$ is $\Pi(s;\phi)$ and
$\phi$ is a first-floor-hyper-functional, then $\phi$ can be evaluated. With these facts at

our disposal, we can follow the proof of Proposition 1.2 (relying on transfinite
induction on $d$ ).

Suppose next $\epsilon(f)>1$ . $\Lambda x_{t}$ itself is normal. Consider $\Pi(\Lambda lt(l);\phi)$ , which
is reduced to $\iota(\phi)$ . If a first-floor-type-form $s(l)$ is the associated type-form of
a first-floor-variable-form occurring in $t$ becomes $s(\phi)$ , then reduce this (if

necessary) to the normal form. Consider next $\Pi(\Lambda x_{t(X);\phi)}$ as $t$ , which is
reduced to $t(\phi)$ . $\phi$ belongs to first-floor, and hence
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$\epsilon(\iota(\phi))>\epsilon(t)$ .
In case of general $\Pi(s;\phi)$ , consider the normal form of $s$ as before.

DFFINITION 2.3. The objects of respective (second-floor-) hyper-type can be
defined as before. If $t$ is a hyper-type with $\epsilon(t)=1$ , the definition is similar to

that in Definition 1.3* by virtue of the semantics of first-floor-term-forms.
0therwise the desired objects can be defined by induction on $\epsilon$ , based upon the
first-floor-sementics. An object of hyper-type $\Lambda X\iota(X)$ with $[X]=s$ is a mech-
anism to associate with each $J_{\phi}$ , where $\phi$ is a first-floor-hyper-functional of
hyper-type $s$ an object of (second-floor-) hyper-type $t(\phi)$ . This is well-defined,

since $\epsilon(\iota(\phi))<\epsilon(\Lambda X\iota)$ .

DEFINITION 2.4. 1) We assume first-floor-term-forms and (second-floor-)

type-forms. We are to define second-floor-term-forms (which will simply be

called term-forms when confusion is no; likely) of certain type-forms, free and
bound variables and variable-forms (of first-floor and second-floor) in them, the
associated variables (of first grade) in first-floor-type forms occurring in the
first-floor-variable-forms which constitute type-forms and the associated first-

floor-variable-forms (of second grade) in type-forms. The underlying language

will be denoted by $2- \mathcal{L}_{lm}(I)$ . For any term-form $\Phi$ , its type-form will be

denoted by $[\Phi]$ .
Let $n$ be a natural number. The second-floor-variable-form of the associated

type-form $s$ written as $Y_{n}^{s}$ , is prepared for every $s$ .
(1) Each first-floor-term-form is a (second-floor-) term-form whose (first-

floor-) variable-forms are those occurring in it and whose associated variables
of first grade are those in its type-forms.

(2) Each variable-form $Y^{s}$ is an atomic term-form of type-form $s$ . It is
free in itself. The associated variables of first grade are those in type-forms

of the variable-forms occurring in $s$ and the associated variable-forms of second

grade are the variable-forms in $s$ .
(3) If $\Phi$ is a term-form of type-form $s\rightarrow\iota$ and if $\Psi$ is a term-form of type-

form $s$ then $\Pi(\Phi;\Psi)$ is a term-form of type-form $t$ .
(4) If $\Phi$ is a term-form of type-form $\Lambda X_{t(X)}$ with $[X]=s$ and if $\phi$ is a

first-floor-term-form of type-form $s$ then $\Pi(\Phi ; \phi)$ is a term-form of type-form
$\Pi(\Lambda X\iota(X);\phi)$ . The associated variables and variable-forms are those for $\Phi$

and for $\phi$ .
(5) If $Y$ is a variable-form (of first-floor or second-floor) with $[Y]=s$ and

$\Phi$ is a term-form with $[\Phi]=t$ , where $Y$ is not bound in $\Phi$ or $t$ , then $\lambda Y\Phi$ is
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a term-form, whose type-form is either $s\rightarrow t$ (when $Y$ does not occur in t) or
$\Lambda Yt$ (when $Y$ occurs in $\iota$ ). The variable-forms in $\lambda Y\Phi$ are the corresponding

ones in $\Phi$ except that $Y$ becomes bound. The associated variable-forms are
those for $\Phi$ and the variable-forms in $s$ .

(6) Let $(\mathcal{A})\equiv A_{1},$
$\cdots,$

$A_{m}$ be $\mathcal{L}_{lm}(I)$-recursive formulas, and let $(\Phi)\equiv\Phi_{1},$ $\cdots$ ,
$\Phi_{m},$ $\Phi_{m+1}$ be term-forms of type-forms $(\iota)\equiv f_{1},$ $\cdots$ , $t_{m},$ $t_{m+1}$ respectively. Then
$C[(\cup t);(\Phi)]$ is a term-form whose variable-forms are those in $(A)$ and in $(\Phi)$ .
The type-form is $C[(\cup t);(t)]$ , and the associated variable-forms are the variable-
forms in $(d)$ and the associated variable-forms for $(A)$ and $(\Phi)$ .

(7) Let $t_{0}$ be $(N_{0}\rightarrow N_{0})\rightarrow N_{0}$ , let $\iota_{1}(z),$
$\cdots,$

$\iota_{b}(z)$ be type-forms with a free at-
type variable $z$ , let $S$ be an $fn$-type variable and let $m$ and 1 be at-type vari-
ables. Define from these $p_{tl},$ $d=1,$ $\cdots,$

$b$ , as in Definition 2.1*. $Pa$ becomes a
(second-floor-) type-form. For any such $p^{\equiv}pa,$ $B^{p}$ is an atomic term-form with
$pd$ as its associated type-form, and whose associated variable-forms are the
variable-forms occurring free in $r_{1},$ $\cdots,$ $r_{b}$ . (See (11) in Definition 2.1* for
details.)

2) A term-form which does not have associated variable-forms is called a
(second-floor-) hyper-term.

3) A hyper-term which does not have free variable-forms is called a
(second-floor-) hyper-functional.

4) The constructional complexity of a term-form $\Phi$ will be denoted by
$*(\Phi)(<\omega)$ .

5) For each hyper-functional $\Phi$ , we introduce a (functional) symbol $Q_{\Phi}$

$(=Q)$ , which is to be interpreted to be the object represented by $\Phi$ , say $J_{\Phi}$

(which will also be written as $J_{Q}$ ). $Q_{\Phi}$ is not an official term in the language.

Note. The first-floor-variable-forms and the second-floor-variable-forms are
to be distinguished even if their type-forms happen to be identical (which are
of first-floor).

PROPOSITION 2.2. 1) Second-floor-term-forms are closed under substitutions.
2) If $\Phi$ and $\Psi$ are “essentially the same” and $Q$ and $R$ respectively correspond

to $\Phi$ and $\Psi$ , then $J_{Q}=J_{R}$ .

DEFINITION 2.5. We are to define assignments of functional symbols to

variable-forms in a manner similar to Definition 1.6. $1$ ) $\sim 7$ ) there are valid here.
8) Third assignments. Let $z\equiv z_{1},$ $\cdots$ , $z_{n}$ be a finite sequence of distinct

second-floor-variable-forms of hyper-types (with possibly functional symbols),

and let $c\equiv c_{1},$ $\cdots,$ $c_{n}$ be a finite sequence of functional symbols (of second-floor)
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such that $c_{k}$ is of the same hyper-type as $z_{k},$
$1\leqq k\leqq n$ . Then

$cz\equiv(z_{1}/c_{1}, \cdots, z_{n}/c_{n})$

will denote the (third) assignment of $c$ to $z$ .
9) Let $\Phi$ be any formal object, and let $ba$ be complete for $\Phi$ . Then $cba$

will denote the result of replacement of $c_{z}$ by $c_{k}$ in $ ba\Phi$ . If $z$ covers all the
free second-floor-variable-forms in $ ba\Phi$ , then $c$ will be said to be complete for
$ ba\Phi$ . In this case, if $\Phi$ is a second-floor-term-form, $ cba\Phi$ will become a second-
floor-hyper-functional (in the extended language).

Note. As was noted above, the first-floor-variable-forms and the second-
floor-ones are to be distinguished, so that the former are relevant to second
assignments, while the latter are relevant to third assignments.

DEFINITION 2.6. 1) CNPR$(L, S)$ (the continuity principle) will be assumed,

where $L$ is a second-floor-term-form and $S$ is a first-floor-term-foJm. (Compare

this with the continuity principle in the proof of Proposition 1.4.)

2) The interpretation of a term-form $\Phi$ at a complete assignment $cba$ ,

$J(\Phi, c, b, a)$ , can be defined similarly to the interpretation in Definition 1.7.
(1) For any first-floor-term-form $\Phi,$ $J(\Phi, b, a)$ has been defined in Definition

1.7.
(2) If $\Phi$ is a second-floor-variable-form $Y^{s}$ , then $cba$ determines a functional

symbol $c$ of hyper-type $bas$ . Let $J(\Phi, c, b, a)$ be $J_{c}$ .
(3) The cases where $\Phi$ is one of the forms $B,$ $\Pi(\Psi;x)$ and $C[(\mathcal{A});(\Psi)]$

can be dealt with as in Definition 3.2*, where the conditions $(_{\llcorner}4)$ can be inter-
preted in the semantics of first-floor-term-forms. The case where $\Phi$ is $\lambda Y\Psi$

and $[\Psi]$ is free of $Y$ can be dealt with similarly to the first-floor case. $Y$

ranges over the functional symbols of hyper-type $[baY]$ .
(4) Consider $\lambda X\Psi$ where $[X]=s$ and $[\Psi]=t(X)$ . $J(\lambda X\Psi;c, b, a)$ is the

mechanism $M$ which associates with each $J_{Q}$ , where $Q$ is the functional symbol

of a first-floor-hyper-functional $\chi$ of hyper-type as, the object $J(\Psi, c, d, a)$ , where
$d=(aX/Q, b)$ , the type-form of which is $t(\chi)$ . $M$ is of hyper-type $\Lambda aXbat(X)$ .

PROPOSITION 2.4. The $J$ above is well-defined. (See Proposition 1.4.)

DIFINITION 2.7. The set $U$ of the mechanisms in which the hyper-functionals
are interpreted consistently with respect to $J$ (see Definitions 1.7 and 2.6) will
be called the two-storied universe of transfinite mechanisms. $U$ contains the
realizations of closed $\mathcal{L}_{0}(I)$-terms, first-floor-hyper-functionals and second-floor-
hyper-functionals.
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\S 3. The hyper-principle for the two-storied universe of transfinite
mechanisms.

DEFINITION 3.1. 1) The language $\mathcal{L}_{2}$ we are to consider contains the
language $2- \mathcal{L}_{lm}(I)$ as well as the predicate constants $\Delta_{1}$ and $\Delta_{2}$ . The logical

connectives accepted are $\wedge,$ $\vdash$ and $\forall$ .
2) The formula-forms of $\mathcal{L}_{2}$ are defined as follows.
2.1) For any pair of term-forms $\Phi$ and $\Psi$ of type $N_{0},$ $\Phi=\Psi$ is an atomic

formula-form.
2.2) $\Delta_{\iota}(i, f_{l}, X_{l}),$ $l=1,2$ , is an atomic formula-form, where $i$ is of at-type,

$f_{l}$ stands for a finite sequence of term-forms of at-type or $fn$-type and $X_{l}$ stands
for a term-form, whose type-form will be specified in 3) below.

2.3) The class of formula-forms are closed with respect to $\wedge,$ $\vdash$ and $\forall X$,
$X$ any variable or variable-form.

3) For $[X_{l}]$ (the type-form of $X_{l}$ ) in 2.2), we shall explain how to determine
it with examples. We assume $f_{1}\equiv f_{2}\equiv f$, which is of $fn$-type. First let $l$ be 1.
Let us temporarily suppose that $--be$ a parameter which yields the type-form
of the $V_{0}$ in $\Delta_{1}(j, g, V_{0})$ (at $j<1i$ and any $g$); that is,

(1) $\Pi(\Xi;j, g)=[V_{0}](=v_{0}(--;j, g))$ if $j<1i$ .
Let us write $[V_{0} ; --]$ for this. Now define

(2) $\alpha(\Xi;i)=\Lambda j\Lambda gC[j<1i;v_{0}(\Xi;j, g), ept]$ ,

$\beta(--;i, f)=\Lambda j\Lambda x(v_{0}(\Xi;j, s(i, f, j, x))\rightarrow N_{0})$

for a term $s$ . $\alpha(\Xi;i)$ and $\beta(--;i, f)$ are expressions in the language $\mathcal{L}_{lp}(I)$

with parameter $--$ . Assume that these $\alpha$ and $\beta$ are re-assigned to $\Delta_{1}$ , and put

(3) $\iota\equiv t(--)=\Lambda mC[m=0, m=1;\alpha(--;i), \beta(--;i, f), ept]$ .
Define $M$ and $N$ by

(4) $M(ept, \iota, 0)=ept$ ,

$N(ept, t;i)=\Lambda kC[k<^{1}i;M(ept, t;k), ept]$ ,

$M(ept, t;i)=\iota(N(ep\iota, t;i))$ .
We can show that, for each $i$ in $I_{1},$ $M(ept, \iota;i)$ is a first-floor-type-form, and
hence $R^{1}[ept, t;i]$ can be admitted as a first-floor-type-form. Put

(5) $[X_{1}]=\gamma(i, f)=9l^{1}[ept, \iota;i]$

for the $X_{1}$ in $\Delta_{1}(i, f, X_{1})$ . $\gamma(i, f)$ consistently determines the type-form $of\sum X_{1}$

in $\Delta_{1}(i, f, X_{1})$ for all $i$ and $f$. (All the objects here are of first-floor.)
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Next let 1 be 2. Suppose that $\Theta$ be a parameter which yields the type-form

of the $U_{0}$ in $\Delta_{2}(J, f, U_{0})$ (at $j<2i$); that is,

(6) $\Pi(\Theta;j, f)=[U_{0}](=u_{0}(\Theta;j, f))$ if $j<2i$ .
Write $[U_{0} ; \Theta]$ for this. Define

(7) $\zeta(\Theta;i, f)=\Lambda j(\gamma(h_{3}(]), h_{4}(f))\rightarrow C[J<2i;u_{0}(\Theta;j, f), ept])$ ,

where $h_{3}$ is supposed to be a function which yields an element $h(j)$ of $I_{1}$ when
$j$ is an element of $I_{2}$ , and $h_{4}(f)$ is an $\mathcal{L}_{0}(I)$-term with $f$. Assume that this $\zeta$

is pre-assigned to $\Delta_{2}$ , and put

(S) $s\equiv s(\Theta)=\zeta(\Theta;i, f)$ .
Define $K$ and $L$ by

(9) $K(ept, s;0)=ept$ ,

$L(ept, s;i)=\Lambda lC[l<2i;K(ept, s;1), ept]$ ,

$K(ept, s;i)=s(L(ept, s;i))$ .
We can show that, for each $i$ in $I_{2},$ $K(ept, s;i)$ is a first-floor-type-form, and
hence $9^{2}[ept, s;i]$ can be admitted as a type-form. Put

(10) $[X_{2}]=\delta(i, f)=R^{2}[ept, s;i]$

for the $X_{2}$ in $\Delta_{2}(i, f, X)$ . $\delta(i, f)$ consistently determines the first-floor-type-

form of such $X_{2}$ for all $i$ and $f$.

DEFINITION 3.2. The axiom set $\iota A(I)$ of the $\mathcal{L}_{2}$-formula-forms consists of
$(a(I)-1)\sim(\llcorner A(I)-4)$ below.

$(A(I)-1)$ The reduction rules of type-forms (see Definitions 1.2 and 2.1).

$(A(I)-2)$ The axiom on $\Delta_{1}$ consists of two implications $(\Delta_{1.1})$ and $(\Delta_{1,2})$ .
Abiding with the spirit of 3) in Definition 3.1, we work here also on an example.

An expression of $\mathcal{L}_{2}$ with parameters, say $G_{1}$ , is pre-assigned to $\Delta_{1}$ . As an
example, suppose $G_{1}$ is of the form below.

$G_{1}\equiv G_{I}(i, f, V, N, \Sigma_{1})\equiv\forall j<1i\forall g(A(i, g)\vdash\Sigma_{1}(j, g, \Pi(V;j, g)))$

$\wedge\forall j<1i\forall x\forall V_{2}(\Sigma_{1}(j, s, V_{2})\vdash B(\Pi(N;j, x, V_{2}), i, f, j, x))$ ,

where $s\equiv s(i, f, j, x)$ is an $\mathcal{L}_{0}(I)$-term, $A$ and $B$ are $\mathcal{L}_{0}(I)$-recursive, and the
type-forms of the variable-forms are listed below. Put

$\xi(i, f)=\Lambda kC[k<^{1}i;R^{1}[ept, \iota;k],$ $ept$].

$[V]=\alpha(\xi(i, f);i)$ ,
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$[N]=\beta(\xi(i, f);i,$ $f$),

$[V_{2}]=v_{0}(\xi(i, f);j,$ $s$ ).

All the expressions are of first-floor. Also are pre-assigned first-floor-term-
forms as below.

$V^{*}=\lambda X\lambda j\lambda gC[J<1i;\Pi(X;0, j, g), ept]$ ,

$N^{*}=\lambda X\lambda_{J}\lambda x\lambda V{}_{2}C[]<1i;\Pi(X;1, j, x, V_{2}),$ $ept$],

$X^{*}=\lambda V\lambda N(V, N)$ ,

where $[X]=\gamma(i, f)$ and (V, $N$ ) denotes the pair of $V$ and $N$. Now, wit $[X_{1}]=$

$\gamma(i, f),$ $(\Delta_{1.1})$ and $(\Delta_{1.2})$ are presented below.

$(\Delta_{1.1})$ $\Delta_{1}(i, f, X_{1})\vdash G_{1}(i, f, \Pi(V^{*} ; X_{1}), \Pi(N^{*} ; X_{1}), \Delta_{1})$

$(\Delta_{I.2})$ $G_{1}(i, f, V, N, \Delta_{1})\vdash\Delta_{1}(i, f, \Pi(X^{*}, V, N))$

$(_{t}A(I)-3)$ The axiom on $\Delta_{2}$ consists of two implications $(\Delta_{2.1})$ and $(\Delta_{2,2})$ .
An expression of $\mathcal{L}_{2}$ with parameters, say $G_{2}$ , is preassigned to $\Delta_{2}$ . As an
example, suppose $G_{2}$ is of the form below.

$G_{2}\equiv G_{2}(i, f, W, \Sigma_{1}, \Sigma_{2})$

$\equiv\forall J\forall T[\forall V_{1}(\Sigma_{1}(h_{1}(i), h_{2}(f),$ $V_{1}$ ) $\vdash\Pi(J;V_{1})<2i$

$\wedge\Sigma_{2}(\Pi(J;V_{1}), f, \Pi(T;V_{1})))\vdash C]$

$\wedge\forall_{J<}2i\forall V_{2}(\Sigma_{1}(h_{3}(j), h_{4}(f),$ $V_{2}$ ) $\vdash\Sigma_{2}(j, f, \Pi(W;j, V_{3}))$ ,

where $h_{1}(i)$ and $h_{2}(f)$ are $\mathcal{L}_{0}(I)$-terms and $C$ is $\mathcal{L}_{0}(I)$-recursive. Put

$\eta(i, f, k)=C[k<^{2}i;R^{2}[ept, s;k],$ $ept$].

$[J]=\gamma(h_{1}(i), h_{2}(f))\rightarrow N_{0}$ ,

$[T]=\Lambda V{}_{1}C[\Pi(J;V_{1})<2i;\eta(i, f, \Pi(J;V_{1}))]$

$[V,]=\gamma(h_{1}(i), h_{2}(f))$ ,

$[V_{2}]=\gamma(h_{3}(]), h_{4}(f))$ ,

$[W]=\Lambda j([V_{2}]\rightarrow\eta(i, f, j))=\Lambda j(\gamma(h_{3}(j), h_{4}(f))\rightarrow\eta(i, f, j))$

$=R^{2}(ept, s;i)$ .

Notice:that $T$ is of second-floor. Now, also are pre-assigned the following

first-floor-term-forms.

$W^{*}=\lambda X\lambda_{J}\lambda V_{2}C[]<2i;\Pi(X;j, V_{2}),$ $ept$],

$X^{*}=\lambda W\cdot W$ ,
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where $[X]=\delta(i, f)$ . Now, with $[X_{2}]=\delta(i, f)$ , $(\Delta_{2,1})$ and $(\Delta_{2.2})$ are presented

below.
$(\Delta_{2.1})$ $\Delta_{2}(i, f, X_{2})\vdash G_{2}(i, f, \Pi(W^{*} ; X_{2}), \Delta_{1}, \Delta_{2})$

$(\Delta_{2.2})$ $G_{2}(i, f, W, \Delta_{1}, \Delta_{2})\vdash\Delta_{2}(i, f, \Pi(X^{*} ; W))$

Notice that
$\delta(i, f)\Rightarrow\Lambda j(\gamma(h_{3}(j), h_{4}(f))-\eta(i, f, j))=[W]$ .

$(_{\cup}t(I)-4)$ A formal presentation of the continuity principle, CNPR$(L;S)$ ,

where $L$ is of second-floor, while $S$ is of first-floor.

DEFINITION 3.3. 1) The semantics of $\mathcal{L}_{2}$-formula-forms is defined as
follows.

1.1) Assignments of functional symbols to variables and variable-forms
defined in Definitions 1.6 and 2.5 are assumed.

1.2) The interpretations of term-forms at complete assignments defined in
Definitions 1.7 and 2.6 are assumed.

1.3) Assignments to the free occurrences of variables and variable-forms
in a formula-form can be defined naturally.

1.4) A formula-form $\Phi=\Psi$ , where $\Phi$ and $\Psi$ are term-forms of type $N_{0}$ , is
true under a complete assignment $d$ if $J$( $\Phi$ ; d) and $J(\Psi;d)$ are the same objects.

1.5) The logical connectives $\wedge,$ $\vdash$ and $\forall$ are interpreted classically. The
$X$ in a quantifier $\forall X$ ranges over the set of mechanisms in $U$ of hyper-type
$[dX]$ ($d$ a complete assignment for the type-form of $X$ ). Recall that assign-
ments must be discriminated according to the floor $X$ belongs to; if $X$ is a
first-floor-variable-form, then the second assignment is eligible, while if it is of
second-floor, then the third assignment is eligible.

1.6) As for $\Delta_{l}$ , consider $\Delta_{1}$ first. Suppose for every $j<1i$ and every
assignment to $g$ and $U$ , the truth value of $\Delta_{1}(], g, U)$ has been determined.
Then the truth value of $G_{1}(i, f, V, N, \Delta_{1})$ is determined with respect to every
complete assignment, since it suffices to check $\Delta_{1}(], g, U)$ for $j<1i$ . Now define
the truth value of $\Delta_{1}(i, f, X)$ to be that of $G_{1}(i, f, \Pi(V^{*}, X_{1}), \Pi(N^{*} ; X_{1}), \Delta_{1})$ ;
that is, by equating the premise and the consequence of $\vdash$ in $(\Delta_{1\prime 1})$ . $\Delta_{2}$ can be
dealt with similarly. That is, assuming the truth values of $\Delta_{1}$ and $\Delta_{2}(j, g, V)$

for all $j<2i,$ $\prime t\circ.fine$ the truth value of $\Delta_{2}(i, f, X)$ to be that of

$G_{2}(i, f, \Pi(W^{*} ; X_{2}), \Delta_{1}, \Delta_{2})$ .
2) The theories of second-floor-type-forms, of second-floor-term-forms and

of $\mathcal{L}_{2}$-formula-forms, including the axiom set, the assumption CNPR, the inter-
pretations and the two-storied universe $U$, will be all put into one principle,
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the hyper-principle for the two-storied universe of transfinite mechanisms, and
will be symbolized by TM[2].

3) A formula-form of $\mathcal{L}_{2}$ is said to be $TM[2]$ -valid if it becomes true under
every complete assignment.

LEMMA. Suppose $\Phi$ and $\Psi$ are term-forms which become the same objects
under every complete assignment. Then a formula $A(\Phi)$ is equivalent to $A(\Psi)$

with respect to every complete assignment.

THEOREM. The axioms $(\mathcal{A}(I)-2)\sim(\mathcal{A}(I)-4)$ are $TM[2]$ -valid.

PROOF. $(A(I)-4)$ is valid by the assumption in Definition 2.6.
$(_{\zeta}A(I)-2)(\Delta_{1,1})$ is valid by definition. As for $(\Delta_{1,2})$ , suppose $G_{1}(i, f, V, N, \Delta_{1})$

is true. Since
$\Pi(X^{*} ; V, N)=(V, N)$ ,

the consequence of $(\Delta_{1,2})$ is $\Delta_{1}(i, f, (V, N))$ .
$\Pi$ ( $V^{*};$ (V, $N)$ ) $=\lambda_{J}\lambda gC[j<Ii;\Pi(V;j, g), ept]$ ,

$\Pi$ ( $N^{*};$ (V, $N)$ ) $=\lambda_{J}\lambda x\lambda V_{2}C[]<1i;\Pi(N;j, x, V_{2}),$ $ept$].

So,
$G_{1}$ ( $i,$ $f,$ $\Pi(V^{*},$ $(V,$ $N)),$ $\Pi(N^{*};$ (V, $N)),$ $\Delta_{1}$ ) $\equiv G_{1}(i, f, V, N, \Delta_{1})$ ,

which is true by assumption. So, the equivalence in $(\Delta_{1,1})$ implies $\Delta_{1}(i, f, (V, N))$ .
$(_{\llcorner}fl(I)-3)(\Delta_{2,1})$ is valid by definition. As for $(\Delta_{2,2})$ , suppose $G_{2}(i,$ $f,$ $W,$ $\Delta_{1},$ $\Delta_{2}\rangle$

is true. Since
$\Pi(X^{*} ; W)=W$ ,

the consequence of $(\Delta_{2,2})$ is $\Delta_{2}(i, f, W)$ .

$\Pi(W^{*} ; W)=\lambda_{J}\lambda V{}_{2}C[]<2i;\Pi(W;j, V_{2}),$ $ept$],

and so,
$G_{2}(i, f, \Pi(W^{*} ; W), \Delta_{1}, \Delta_{2})\equiv G_{2}(i, f, W, \Delta_{1}, \Delta_{2})$ ,

which is true by assumption. So, the equivalence in $(\Delta_{2.1})$ implies $\Delta_{2}(i, f, W)$ .
Note. The axioms $(d(I)-2)$ and $(_{\llcorner}n(I)-3)$ are the central theme of TM[2],

since, they describe the mechanism of transfinite inductive definitions in their
concrete contexts.

References

[1] Takeuti, G. and Yasugi, M., The ordinals of the systems of second order arithmetic
with the provably $\Delta_{2}^{1}$ -comprehension axiom and with the $\Delta_{2}^{1}$ -comprehension



114 Mariko YASUGI

axiom respectively, Japanese J. of Math., 41 (1973), 1-67.
[2] Yasugi, M., Construction principle and transfinite induction up to $\epsilon_{0}$ , J. Austral.

Math. Soc., Ser. A, 32 (1982), 24-47.
[3] Yasugi, M., Groundedness property and accessibility of ordinal diagrams, J. Math.

Soc. Japan, 37 (1985), 1-16.
[4] Yasugi, M., Hyper-principle and the functional structure of ordinal diagrams,

Comm. Math. Univ. St. Pauli, 34 (1985), 227-263 (the opening part); 35
(1986), 1-37 (the concluding part).

Faculty of Science
Kyoto Sangyo University
Kita-ku
Kyoto, Japan 603


	A TWO-STORIED UNIVERSE ...
	Introduction.
	\S 1. First-floor-term-forms.
	\S 2. Second-floor-term-forms.
	\S 3. The hyper-principle ...
	THEOREM. The ...

	References


