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1. Introduction.

The characterization of the harmonic, Einstein and super-Einstein spaces by

means of the first or the second mean values (or the relations between them)

for small geodesic spheres in a Riemannian manifold is recently studied by

many authors ([3], [7], [10], [17], etc.). Among them, $0$ . Kowalski [10]

characterized the three spaces by the degree of concordance of the two mean
values in some sense, proposing new classes of spaces which should be located
between the harmonic and the super-Einstein spaces. On the other hand M.
Pinsky [12] verified that the stochastic mean values are also useful for the
characterization of the Einstein spaces.

In this paper, we study the above three mean values more in detail and
fill the blanks in the previous works (Theorem 2 below). The main tool for
our proof is Schauder’s estimate, which enables us to treat $C^{\infty}$ manifolds even
more easily than Cauchy-Kowalewski’s method for $C^{\omega}$ manifolds used in most
of the previous papers. We also introduce some other new conditions which
also characterize the above three spaces, that is, the conditions (M2), (M4) and
$(L2)-(L4)$ (see section 2 for the definitions). The condition (M2) is a variation
of (M3) given in [3]. But it seems to be more natural than (M3) in connection
with (M1). The conditions (M4) and (L4) are closely related to Helgason’s
expansion in [8: p. 435]. Indeed, the above three mean values coincide with
Helgason’s, if the manifold is an Euclidean space or a globally symmetric space
of rank one, and we are interested in to what extent the Laplacian determines
the mean values. Our results include the assertion; one of the operators induced
by the three mean values is expanded by means of a sequence of polynomials

of Laplacian if and only if the manifold is harmonic (Theorem 2 (1)). As a
by-product, we also obtain some sufficient conditions for a $C^{6}$ manifold to be
analytic (Theorem 1). In the course of our proof, we partially answer for
smooth manifolds to Kowalski’s conjecture given in [10] (Theorem 3).
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In section 2, we state our results and list the related previous works in
detail. Our main results are stated in Theorem 2. In section 3, we give the
proof of Theorems 1 and 3. Section 4 is devoted to the proof of Parts (2) and
(3) of Theorem 2. The proof of Part (1) of Theorem 2 will be given in section
5. The most pages there are exhausted for the proof of the necessity of the
conditions (M4) and (L4) for the harmonicity of the manifold, where we will
make use of Cauchy-Kowalewski’s method.

We would like to express our hearty gratitude to Professors L. Vanhecke,

0. Kowalski and T. Sunada for their valuable comments.

2. Statement of results.

Let $(M, g)$ be an n-dimensional connected $C^{\infty}$ Riemannian manifold with
$n\geqq 3$ and $B_{m}(\epsilon)$ be the geodesic ball in $M$ at center $m\in M$ with small radius
$\epsilon>0$. The first mean value $M_{m}(\epsilon, f)$ for a real valued continuous function $f$ is
defined by

$M_{m}(\epsilon, f)=(vol(\partial B_{m}(\epsilon)))^{-1}\int_{\partial B_{m}(\epsilon)}f(\omega)d\sigma(\omega)$ ,

where $ d\sigma$ stands for the volume element on the geodesic sphere $\partial B_{m}(\epsilon)$ . Simi-
larly, the second mean value $L_{m}(\epsilon, f)$ for an $f$ is defined by

$L_{m}(\epsilon, f)=(vol(S^{n-1}(1)))^{-1}\int_{S^{n-1_{(1)}}}(f\circ\exp_{m}(\epsilon u))du$ ,

where $\exp_{m}$ is the exponential map at $m\in M$ and $du$ is the usual volume
element on the $(n-1)$-dimensional unit sphere $S^{n-1}(1)$ .

In his paper [10], $0$ . Kowalski conjectured the next

KOWALSKI’S CONJECTURE. For an analytic manifold $(M, g)$ , the following
conditions are mutually equivalent:

(i) for each $m\in M$, the mean value formula
$M_{m}(\epsilon, f)=f(m)+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all harmonic functions $f$ near $m$ ;
(ii) for each $m\in M$, the mean value formula

$L_{m}(\epsilon, f)=f(m)+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all harmonic functions $f$ near $m$ ;
(iii) for each $m\in M$, the estimate

$M_{m}(\epsilon, f)=L_{m}(\epsilon, f)+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$
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holds for all harmonic functions $f$ near $m$ ;
(iv) for each $m\in M$, the estimate

$M_{m}(\epsilon, f)=L_{m}(\epsilon, f)+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all functions $f$ of class $C^{2k+2}$ near $m$ .

In the above, $k$ is a natural number or $\infty$ and, in the case of $ k=\infty$ , the
formulae are understood to hold without remainder terms.

Let $X=(X(t), P_{m})(m\in M)$ be a Brownian motion on $(M, g),$ $i$ . $e$ . the diffu-
sion process on $(M, g)$ whose infinitesimal operator is the Laplacian $\Delta$ on $(M, g)$

(see [9] or [14] for the precise definitions). Let also $T_{\epsilon}$ be the first exit time
from the geodesic ball $B_{m}(\epsilon),$ $i$ . $e$ . $T_{\epsilon}=\inf\{t>0:X(t)\not\in B_{m}(\epsilon)\}$ . The stochastic
mean value for an $f$ and the mean exit time from $B_{m}(\epsilon)$ are defined by $E_{m}f(X(T_{\epsilon}))$

and $E_{m}T_{\epsilon}$ respectively, where $E_{m}$ denotes the expectation with respect to the
probability measure $P_{m}$ .

Also we set $r(p)=d(m, p)$ the distance between $m$ and $p,$ $A_{m}(\epsilon)=vol(\partial B_{m}(\epsilon))$

the volume of the geodesic sphere $\partial B_{m}(\epsilon)$ and

$\Phi_{m}(\epsilon)=\int_{0}^{\epsilon}A_{m}^{-1}(s)ds\int_{0}^{s}A_{m}(t)dt$ .

Finally a function $f$ is called bi-harmonic near $m$ if it is defined and smooth
in a neighbourhood of $m$ and $\Delta f$ is harmonic there.

In this paper we are also concerned with the following conditions:
(M1) for each $m\in M$, the estimate

$M_{m}(\epsilon, f)=E_{m}f(X(T_{\epsilon}))+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all functions $f$ of class $C^{2k+2}$ near $m$ ;
(M2) for each $m\in M$, the mean value formula

$M_{m}(\epsilon, f)=f(m)+(E_{m}T_{\epsilon})\Delta f(m)+O(\epsilon^{2h+2})$ $(\epsilon\rightarrow 0)$

holds for all bi-harmonic functions $f$ near $m$ ;
(M3) for each $m\in M$, the mean value formula

$M_{m}(\epsilon, f)=f(m)+\Phi_{m}(\epsilon)\Delta f(m)+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all bi-harmonic functions $f$ near $m$ ;
(M4) there exists a sequence of polynomials $p_{j},$ $j=1,2,$ $\cdots$ , $k$ without constant

terms such that, for each $m\in M$, the expansion

$M_{m}(\epsilon, f)=f(m)+\sum_{j=1}^{k}p_{j}(\Delta)f(m)\epsilon^{2j}+O(\epsilon^{2k+2})$ $(\epsilon\rightarrow 0)$

holds for all functions $f$ of class $C^{2k+2}$ near $m$ .



134 Masanori K\^oZAKl and Yukio OGURA

The conditions $(L1)-(L4)$ are defined in the same way as $(M1)-(M4)$ are
done respectively with the first mean value $M_{m}(\epsilon, f)$ replaced by the second
one $L_{m}(\epsilon, f)$ .

In the case of $ k=\infty$ , the conditions (M4) and (L4) are understood to hold
for all analytic functions $f$ at $m$.

First we note the following

THEOREM 1. Let $(M, g)$ be an n-dimensional connected $C^{6}$ Riemannian mani-
fold with $n\geqq 3$ . Suppose further that one of the conditions $(i)-(iv),$ $(M1)-(M4)$

and $(L1)-(L4)$ holds with $k=2$ . Then $(M, g)$ is an Einstein space. Especially it
is an analytic space.

We note that the conclusions of Theorem 1 are also valid for $C^{4.\alpha}$ manifolds
and for the conditions $(i)-(iv),$ $(M1)-(M4),$ $(L1)-(L4)$ with the remainder terms
replaced by $O(\epsilon^{4+\alpha})$ for some $0<\alpha\leqq 1$ (and in the conditions (iv), (M1) and (L1)
$C^{6}$ class replaced by $C^{4.\alpha}$ class) by almost the same proof as in the sequel.

For an $m\in M$, let $(U;x^{1}, x^{2}, \cdots, x^{n})$ be a normal coordinate system around
$m$ , and denote by $(g_{ij})$ and $(R_{ijkl})$ the metric tensor and the curvature tensor
with respect to the normal frame $(\partial/\partial x^{1}, \partial/\partial x^{2}, \cdots, \partial/\partial x^{n})$ . The Ricci tensor
and the scalar curvature are denoted by $(\rho_{ij})$ and $\tau$ respectively; $\rho_{ij}=R^{u_{iuj}}$ ,
$\tau=\rho_{u}^{u}$ We also denote the length of a tensor $T=(T_{i_{1}i_{2}\cdots i_{p}})$ by $|T|$ , $i$ . $e$ .
$|T|^{2}=T_{i_{1}i_{2}\cdots i_{p}}T^{i_{1}i_{2}\cdots i_{P}}$ . Some other symbols such as $\langle\nabla f, \nabla\tau\rangle,$ $\langle\nabla^{2}f, \rho\rangle$ , etc. are
the same as in [7].

We call an Einstein space super-Einstein if $|R|$ is constant and $R_{ipqr}R_{J^{pqr}}=$

$|R|^{2}g_{ij}/n$ . Similarly, we call the space $(M, g)$ harmonic if, for each $m\in M$,

there exist an $\epsilon>0$ and a function $F:(0, \epsilon)\rightarrow R$ such that the function $f(n)=$

$F(d(m, n))$ is harmonic in $B_{m}(\epsilon)\backslash \{m\}$ .
The main objective of this paper is the following

THEOREM 2. Let $(M, g)$ be an n-dimensional connected $C^{\omega}$ Riemannian mani-

fold with $n\geqq 3$ . Then the following assertions hold.
(1) Each of the conditions $(i)-(iv),$ $(M1)-(M4)$ and $(L1)-(L4)$ with $ k=\infty$ is

necessary and sufficient for that $(M, g)$ be a harmonic space.
(2) Each of the conditions $(i)-(iv),$ $(M1)-(M4)$ and $(L1)-(L4)$ with $k=2$ is

necessary and sufficient for that $(M, g)$ be an Einstein space.
(3) Each of the conditions $(i)-(iv),$ $(M1)-(M4)$ and $(L1)-(L4)$ with $k=3$ is

necessary and sufficient for that $(M, g)$ be a super-Einstein space.
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Combining Theorems 1, 2 and [2: Theorem 5.1], we can easily prove the
following

COROLLARY 1. The assertions (1) $-(3)$ in Theorem 2 are also valid for an
n-dimensional connected $C^{\infty}$ Riemannian manifold with $n\geqq 3$ , except for the suffi-
ciency of (M4) and (L4) in the assertion (1).

For the proof of Theorems 1 and 2, we need the next theorem.

THEOREM 3. Let $(M, g)$ be an n-dimensional connected $C^{\infty}$ Riemannian mani-

fold with $n\geqq 3$ and fix a $k\in\{1,2, \cdots, \infty\}$ . Then the following assertions hold.
(1) The condition (i) is necessary and sufficient for (M1).

(2) The condition (ii) is necessary and sufficient for (L1).

(3) The condition (iii) is necessary and sufficient for (iv).

As is noted in sect. 1, several parts of the above Theorems are not new.
We list the related previous works as far as we know. (1) The equivalence

of (i) with $ k=\infty$ and the harmonicity of the manifold was obtained by T. J.
Willmore [17]. (2) The equivalence of (M3) with $ k=\infty$ and the harmonicity

of the manifold was obtained by A. Friedman [3]. He also proved the equiva-

lence of (M3) with $k=2$ and that $(M, g)$ is an Einstein space. (3) The equiva-
lence of (i) with $k=2$ and that $(M, g)$ is Einsteinian was obtained by A. Gray

and T. J. Willmore [7] for $C^{\omega}$ manifolds. They also proved the equivalence of
(i) with $k=3$ and that $(M, g)$ is super-Einsteinian. (4) All the assertions in
Theorem 2 concerning the conditions $(ii)-(iv)$ were proved by $0$ . Kowalski
[10] for $C^{\omega}$ manifolds. (5) $0$ . Kowalski [11] proved the assertion (3) of
Theorem 3 for $C^{\omega}$ manifolds. (6) M. Pinsky [12] showed that each of the
conditions (M1) and (L1) with $k=2$ is equivalent to that $(M, g)$ is an Einstein
space for $C^{\omega}$ manifolds. (7) We were inspired the condition (L4) by T. Sunada
(private communication), which is easily verified to hold for an Euclidean space
and a globally symmetric space of rank one from [8: Chap. X, Proposition
2.10] and [16: Lemma 5.4].

3. Proof of Theorems 1 and 3.

We will prove Theorem 3 first.

PROOF OF THEOREM 3. First we will show the assertion (3). Since the
necessity is obvious, we will only prove the sufficiency of the condition (iii).

Fix a natural number $k$ and an $m\in M$, and let $(U;x^{1}, x^{2}, \cdots, x^{n})$ be the normal
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coordinate system around $m$ . For a function $h$ of class $C^{k}$ in $U$ and an open
set $V$ in $U$ , we set

$|h|_{C^{k}(V)}=\sum_{j=0}^{k}\sum_{i_{1},i_{2}.\cdot i_{j}}...\sup_{p\in V}|\partial_{i_{1}}\partial_{i_{2}}\cdots\partial_{i_{j}}h(p)|$

where $\partial_{i}=\partial/\partial x^{i}$ . It is well known that there exist two sequences $\{M_{m.j}\}_{j=1,2\ldots..k}$

and $\{L_{m.j}\}_{j=1.2,\cdots,k}$ of linear differential operators satisfying the following con-
dition; for each $\epsilon_{1}>0$ with $\overline{B}_{m}(\epsilon_{1})\subset U$ , one can choose a positive constant $K_{1}$

such that

$M_{m}(\epsilon, h)=h(m)+\sum_{j=1}^{k}M_{m,j}h(m)\epsilon^{2j}+P_{m.k}(h)\epsilon^{2k+2}$ ,

(3.1) where $|P_{m,k}(h)|\leqq K_{1}|h|_{C2k+2(B_{m}(\epsilon))}$ ,

$L_{m}(\epsilon, h)=h(m)+\sum_{J=1}^{k}L_{m,j}h(m)\epsilon^{2j}+Q_{m.k}(h)\epsilon^{2k+2}$ ,

where $|Q_{m.k}(h)|\leqq K_{1}|h|_{C2k+2(B_{m}(e))}$ ,

for all $\epsilon\in(0, \epsilon_{1})$ and all functions $h$ in $C^{2k+2}(B_{m}(\epsilon_{1}))$ (see [7] and [11]).

Now assume that the condition (iii) holds and choose a function $f$ of class
$C^{2k+2}$ near $m$ . We may assume that $f$ is defined in $U$ and belongs to $C^{2k+2}(U)$ .
It then follows that

(3.2) $ K_{2}\equiv|f|_{C^{2}k+2(U)}<+\infty$ .
Further, for each $\epsilon\in(0, \epsilon_{1})$ , the function $u_{\epsilon}$ defined by

$u_{\epsilon}(p)=E_{p}f(X(T_{\epsilon}))$ , $p\in B_{m}(\epsilon)$ ,

is harmonic in $B_{m}(\epsilon)$ , continuous in $\overline{B}_{m}(\epsilon)$ and satisfies

$u_{\epsilon}(\xi)=f(\xi)$ , $\xi\in\partial B_{m}(\epsilon)$ .
Hence we have from the condition (iii) and the relations in (3.1) that

$|M_{m}(r, u_{\epsilon})-L_{m}(r, u_{\epsilon})|\leqq 2K_{1}r^{2k+2}|u_{\epsilon}|_{C2k+2(B_{m}(\epsilon))}$

for all $r\in(O, \epsilon)$ first and then, by letting $ r\uparrow\epsilon$ , that

(3.3) $|M_{m}(\epsilon, f)-L_{m}(\epsilon, f)|\leqq 2K_{1}\epsilon^{2k+2}|u_{\epsilon}|_{C^{2}k+2(B_{m}(\epsilon))}$ .
But due to Schauder’s estimate (see [4: (6.80) and Problem 6.2], $e$ . $g.$ ), it
follows that

(3.4) $|u_{\epsilon}|_{C^{2}k+2(B_{m}(\epsilon))}\leqq K_{3}|f|_{C2k+2(B_{m}(\epsilon))}$

for some positive constant $K_{3}$ . Now the formulae $(3.2)-(3.4)$ imply

$|M_{m}(\epsilon, f)-L_{m}(\epsilon, f)|\leqq 2K_{1}K_{2}K_{3}\epsilon^{2k+2}$ , $\epsilon\in(0, \epsilon_{1})$ ,

which proves the assertion (iv) for this case. In the case of $ k=\infty$ , we have
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$M_{m}(r, u_{\epsilon})=L_{m}(r, u_{\epsilon})$ , $r\in(O, \epsilon)$ ,

first and then $M_{m}(\epsilon, f)=L_{m}(\epsilon, f)$ in place of (3.3), verifying (iv). The assertion
(3) is proved.

The proof of the assertions (1) and (2) is almost the same. Indeed, it holds
by Dynkin’s formula that $u(m)=E_{m}u(X(T_{\epsilon}))$ for all harmonic functions $u$ in
$U$ . Hence the necessity follows. Further, assuming (i) (resp. (ii)), we have

$|M_{m}(\epsilon, f)-E_{m}f(X(T_{\epsilon}))|\leqq K_{4}\epsilon^{2k+2}|u_{\epsilon}|_{C2k+2(B_{m}(\epsilon))}$

(resp. $|L_{m}(\epsilon,$ $f)-E_{m}f(X(T_{\epsilon}))|\leqq K_{4}\epsilon^{2k+2}|u_{\epsilon}|_{C2k+2(B_{m}(\epsilon))}$ )

in place of (3.3), and we obtain the conclusion by the same arguments.

PROOF OF THEOREM 1. We first note the following asymptotic formulae
given in [7], [10] and [12] respectively (their formulae are stated for $C^{\omega}$

manifolds, but their proofs are also valid for $C^{6}$ manifolds without any change);

(3.5) $M_{m}(\epsilon, f)=f(m)+\frac{\epsilon^{2}}{2n}\Delta f(m)$

$+\frac{\epsilon^{4}}{4!n(n+2)}(3\Delta^{2}f-2\langle\nabla^{2}f, \rho\rangle-3\langle\nabla f, \nabla\tau\rangle+\frac{4}{n}\tau\Delta f)(m)+O(\epsilon^{6})$ .

(3.6) $L_{m}(\epsilon, f)=f(m)+\frac{\epsilon^{2}}{2n}\Delta f(m)$

$+\frac{\epsilon^{4}}{4!n(n+2)}(3\Delta^{2}f+2\langle\nabla^{2}f, \rho\rangle+\langle\nabla f, \nabla\tau\rangle)(m)+O(\epsilon^{6})$ .

(3.7) $E_{m}f(X(T_{\epsilon}))=f(m)+\frac{\epsilon^{2}}{2n}\Delta f(m)+\frac{\epsilon^{4}}{4!n(n+2)}(3\Delta^{2}f+\frac{2}{n}\tau\Delta f)(m)+O(\epsilon^{6})$ .

Now each of the conditions $(M2)-(M4)$ (resp. $(L2)-(L4)$ ) trivially implies (i)

(resp. (ii)). Hence due to Theorem 3 it is enough to show that each of the
conditions (M1), (L1) and (iv) with $k=2$ deduces the conclusions of Theorem 1.
But, by $(3.5)-(3.7)$ , each of them implies

(3.8) $(\langle\nabla^{2}f, \rho\rangle+a\langle\nabla f, \nabla\tau\rangle-\frac{1}{n}\tau\Delta f)(m)=0$

for some positive constant $a$ . Now let $(x^{1}, x^{2}, \cdots , x^{n})$ be a harmonic coordinate
around $m$ . Then, by [2: Theorem 2.1], the coordinate functions $x^{i},$ $i=1,2,$ $\cdots,$ $n$

are of class $C^{6}$ . Hence, substituting $f=x^{i}$ in (3.8), we have $\nabla_{i}\tau(m)=0$,
$i=1,2,$ $\cdots,$ $n$ . This implies that the scalar curvature $\tau$ is constant. Substitute
next $f=x^{i}x^{j}$ in (3.8). Then we have
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$(\sum_{p.q=1}^{n}(\partial_{p}\partial_{q}x^{i}x^{j})\rho_{pq})(m)=(\frac{\tau}{n}\sum_{p=1}^{n}\partial_{p}^{2}x^{i}x^{j})(m)$ , $i,$ $j=1,2,$ $\cdots,$
$?i$ .

This implies $\rho_{ij}(m)=\tau(m)\delta_{ij}/n$ , whence $(M, g)$ is an Einstein space. The analyt-
icity of $(M, g)$ is now a direct consequence of [2: Theorem 5.2].

4. Proof of Parts (2) and (3) of Theorem 2.

First we prepare the next theorem.

THEOREM 4.1. Let $(M, g)$ be the same as in Theorem 2. Then it follows
that

(4.1) $E_{m}T_{\epsilon}=\Phi_{m}(\epsilon)+O(\epsilon^{6})$ $(\epsilon\rightarrow 0)$

for all $m\in M$. Further it holds that

(4.2) $E_{m}T_{\epsilon}=\Phi_{m}(\epsilon)+O(\epsilon^{8})$ $(\epsilon\rightarrow 0)$

for all $m\in M$ if and only if $(M, g)$ is an Einstein space.

PROOF. Due to [6], the volume $A_{m}(\epsilon)$ of the geodesic sphere $\partial B_{m}(\epsilon)$ satisfies

$A_{m}(\epsilon)=\frac{\pi^{n/2}\epsilon^{n-1}}{\Gamma(n/2+1)}(n+(n+2)A\epsilon^{2}+(n+4)B\epsilon^{4}+O(\epsilon^{6}))$

as $\epsilon\rightarrow 0$, where

$A=-\tau(m)/6(n+2)$ ,

$B=\frac{1}{3\cdot 5!(n+2)(n+4)}(-18\Delta\tau+5\tau^{2}+8|\rho|^{2}-3|R|^{2})(m)$ .

Hence we have

(4.3) $\Phi_{m}(\epsilon)=\frac{1}{2n}\epsilon^{2}-\frac{A}{2n^{2}}\epsilon^{4}+\frac{1}{6n}(\frac{2(n+2)}{n^{2}}A^{2}-\frac{4}{n}B)\epsilon^{6}+O(\epsilon^{8})$

$=\frac{1}{2n}\epsilon^{2}+\frac{2\tau(m)}{4!n^{2}(n+2)}\epsilon^{4}$

$+\frac{4}{6!n^{2}(n+2)(n+4)}(6\Delta\tau+\frac{20}{3n}\tau^{2}-\frac{8}{3}|\rho|^{2}+|R|^{2})(m)\epsilon^{6}+O(\epsilon^{8})$ .
On the other hand, it is shown in [5] that

(4.4) $E_{m}T_{\epsilon}=\frac{1}{2n}\epsilon^{2}+\frac{2\tau(m)}{4!n^{2}(n+2)}\epsilon^{4}$

$+\frac{4}{6!n^{2}(n+2)(n+4)}(6\Delta_{T}+\frac{5}{n}\tau^{2}-|\rho 1^{2}+|R|^{g})(m)\epsilon^{6}+O(\epsilon^{8})$ .
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Comparing (4.3) and (4.4), we obtain (4.1) in general, and (4.2) if $(M, g)$ is an
Einstein space.

Suppose next that (4.2) holds. Then comparing the coefficients of $\epsilon^{6}$ in
(4.3) and (4.4), we have

(4.5) $(6\Delta\tau+\frac{5}{n}\tau^{2}-|\rho|^{2}+|R|^{2})(m)=(6\Delta\tau+\frac{20}{3n}\tau^{2}-\frac{8}{3}|\rho|^{2}+|R|^{2})(m)$ .

Hence it follows that $|\rho|^{2}(m)=\tau^{2}(m)/n$ first, and then $\rho_{ij}=\tau g_{ij}/n$ . Further, in
view of $n\geqq 3$ , we see that $\tau$ is constant. Thus $(M, g)$ is an Einstein space.

REMARK 4.1. According to our computation, if $(M, g)$ is an Einstein space,
then it even follows that

(4.6) $E_{m}T_{\epsilon}=\Phi_{m}(\epsilon)+O(\epsilon^{10})$ $(\epsilon\rightarrow 0)$ .
But we do not show it, since it will not be used in the following proof of
Theorem 2.

PROOF OF THEOREM 2 (2). Since the sufficiency of each of the conditions
for that $(M, g)$ be an Einstein space is shown in the proof of Theorem 1, we
have only to show the necessity. In the following proof, we assume that
$(M, g)$ is an Einstein space and that $k=2$ .

The conditions $(i)-(iv)$ , (M1) and (L1) are already verified in [10] and [12].

These with (3.7) imply

(4.7) $M_{m}(\epsilon, f)=L_{m}(\epsilon, f)+O(\epsilon^{6})=E_{m}f(X(T_{\epsilon}))+O(\epsilon^{6})$

$=f(m)+\frac{\epsilon^{2}}{2n}\Delta f(m)+\frac{\epsilon^{4}}{4!n(n+2)}(3\Delta^{2}f+\frac{2}{n}\tau\Delta f)(m)+O(\epsilon^{6})$ .

Hence we have (M4) and (L4) and, by (4.4), (M2) and (L2). The conditions
(M3) and (L3) now follow from (M2), (L2) and Theorem 4.1.

PROOF OF THEOREM 2 (3). In the following proof we assume that $k=3$ .

SUFFICIENCY. The sufficiency of each of the conditions $(i)-(iv)$ for that
$(M, g)$ be a super-Einstein space is proved in [7] and [10]. Since each of the
conditions $(M2)-(M4)$ (resp. $(L2)-(L4)$ ) $implies(i)$ (resp. (ii)), the sufficiency of
each of them is clear. Finally the sufficiency of (M1) and (L1) follows from
Theorem 3 and the above facts.

NECESSITY. Suppose that $(M, g)$ is a super-Einstein space. The conditions
$(i)-(iv)$ are shown by [7] and [10]. This with Theorem 3 implies (M1) and
(L1). Hence it follows from [7: Theorem 4.5] that
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(4.8) $M_{m}(\epsilon, f)=L_{m}(\epsilon, f)+O(\epsilon^{8})=E_{m}f(X(T_{\epsilon}))+O(\epsilon^{8})$

$=f(m)+\frac{\epsilon^{2}}{2n}\Delta f(m)+\frac{\epsilon^{4}}{4!n(n+2)}(3\Delta^{2}f+\frac{2}{n}\tau\Delta f)(m)$

$+\frac{\epsilon^{6}}{6!n(n+2)(n+4)}\{15\Delta^{3}f+\frac{30\tau}{n}\Delta^{2}f+(\frac{16\tau^{2}}{n^{2}}+\frac{4}{n}|R|^{2})\Delta f\}(m)+O(\epsilon^{8})$ .

Now we can prove all the rest in the same way as in the proof of the
assertion (2).

5. Proof of Part (1) of Theorem 2.

For the proof of Theorem 2 (1), we prepare the following

THEOREM 5.1. The manifold $(M, g)$ is harmonic if and only if, for each
$m\in M$,

(5.1) $E_{p}T_{\epsilon}=\Phi_{m}(\epsilon)-\Phi_{m}(r(p))$ , $p\in B_{m}(\epsilon)$

for all sufficiently small $\epsilon>0$.

PROOF. Suppose that $(M, g)$ is a harmonic space. It then follows from
[1: p. 160] that $\Delta r=A_{m}^{\prime}(r)/A_{m}(r)$ . Hence, by [1: (6.22)], the function $u(p)=$

$\Phi_{m}(\epsilon)-\Phi_{m}(r(p))$ in $\overline{B}_{m}(\epsilon)$ satisfies

$\Delta u=-(\Phi_{m}^{JJ}+A_{m}^{\prime}(r)\Phi_{m}^{\prime}(r)/A_{m}(r))=-1$ , $p\in B_{m}(\epsilon)$

and $u(\xi)=0,$ $\xi\in\partial B_{m}(\epsilon)$ . Hence, by Dynkin’s formula, we have

$u(X(T_{\epsilon}))-u(p)=E_{p}\int_{0}^{\tau_{e}}\Delta u(X(s))ds=-E_{p}T_{\epsilon}$ .

Since $u(X(T_{\epsilon}))=0,$ $(5.1)$ follows.
Conversely, if (5.1) holds, then by the well known formula $\Delta(E_{p}T_{\epsilon})=-1$ ,

we have
$\Phi_{m}^{\prime\prime}(r)+\Delta r\Phi_{m}^{\prime}(r)=1$ , $ 0<r<\epsilon$ .

From the definition of $\Phi_{m}(r)$ , this implies $\Delta r=A_{m}^{\prime}(r)/A_{m}(r)$ . Hence, due to [1:

p. 160] again, the space $(M, g)$ is harmonic.

We call a function $ f\lambda$-harmonic near $m$ , if it is defined and smooth in a
neighbourhood of $m$ and satisfies $\Delta f=\lambda f$ there.

LEMMA 5.1. Let $(M, g)$ be an n-dimensional $C^{\omega}$ manifold and $\mathcal{D}_{m}$ be a linear

differential operator at $m$ . If $\mathcal{D}.f(m)=0$ for all $\lambda$-harmonic functions $f$ near $m$

and all real $\lambda$ , then $\mathcal{D}_{m}=0$ .
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PROOF. We will make use of Cauchy-Kowalewski’s method. In the follow-
ing proof, $|x|$ and $|\lambda|$ are assumed to be sufficiently small so that all the power
series in the sequel converge absolutely (it is easy to check that this can be
done).

Let $Z_{+}$ be the set of all nonnegative integers and $(x^{1}, x^{2}, \cdots , x^{n})$ be a
normal coordinate around $m$ . For each $\alpha=(\alpha^{1}, \alpha^{2}, \cdots, \alpha^{n})\in Z_{+}^{n}$ and $x=(x^{1},$ $x^{2}$ ,
$\ldots$ $x^{n}$ ) $\in R^{n}$ , we denote $|\alpha|=\alpha^{1}+\alpha^{2}+\cdots+\alpha^{n}$ and

$\partial^{\alpha}=(\partial_{1})^{\alpha^{1}}(\partial_{2})^{\alpha^{2}}\cdots(\partial_{n})^{\alpha^{n}}$ $x^{\alpha}=(x^{1})^{\alpha^{1}}(x^{2})^{\alpha^{2}}\cdots(x^{n})^{\alpha^{n}}$ .
Sometimes we denote $\tilde{\alpha}=(\alpha^{1}, \alpha^{2}, \cdots, \alpha^{n- 1})$ and $\tilde{x}=(x^{1}, x^{2}, \cdots, x^{n-1})$ . Thus we
have $\alpha=(\tilde{\alpha}, \alpha^{n}),$ $x=(\tilde{x}, x^{n}),$ $|\tilde{\alpha}|=\alpha^{1}+\alpha^{2}+\cdots+\alpha^{n-1}$ and

$\partial^{\tilde{\alpha}}=(\partial_{1})^{\alpha^{1}}(\partial_{2})^{\alpha^{2}}$ ... $(\partial_{n-1})^{\alpha^{n-1}}$ $\tilde{x}^{\tilde{\alpha}}=(x^{1})^{\alpha^{1}}(x^{2})^{\alpha^{2}}$ ... $(x^{n-1})^{\alpha^{n-1}}$

Now the operator $\mathcal{D}_{m}$ is represented as

$\mathcal{D}_{m}f(m)=\sum_{|\alpha|\leq 2l+1}a_{\alpha}\partial^{\alpha}f(0)$ , for smooth $f$ ,

with some $l\in Z_{+}$ and constants $a_{\alpha},$ $|\alpha|\leqq 2l+1$ (by adding dummy terms if
necessary). Further, denoting $(g^{ij})=(g_{ij})^{-1}$ and $g=\det(g_{ij})$ , we have

$\Delta=g^{ij}\partial_{i}\partial_{j}+g^{j}\partial_{j}$ ,

where $g^{j}=\partial_{i}g^{ij}+(\partial_{i}g)g^{ij}/2g$ . But $g^{ij}$ are expressed as

$g^{ij}(x)=\delta_{ij}+\sum_{p=0}^{\infty}$

a $\sum_{|+p\geq 2}g_{\dot{\alpha},p}^{ij}\tilde{x}^{\dot{\alpha}}(x^{n})^{p}$

for some constants $g_{\tilde{\alpha},p}^{ij}$ (see [15] $e$ . $g.$ ). Hence we have

$g^{j}(x)=\sum_{p=0}^{\infty}\sum_{|\tilde{\alpha}|+p\geqq 1}g_{\tilde{\alpha},p}^{j}\tilde{x}^{\tilde{\alpha}}(x^{n})^{p}$

for some constants $g_{\tilde{\alpha}.p}^{j}$ . Let $\varphi_{0}$ and $\varphi_{1}$ be two analytic functions at $\tilde{O}=$

$(0,0, \cdots , 0)\in R^{n-1}$ . Then, by Cauchy-Kowalewski’s theorem we can find a $\lambda-$

harmonic function $f_{\lambda}$ near $m$ with

$f_{\lambda}(\tilde{x}, 0)=\varphi_{0}(\tilde{x})$ , $\partial_{n}f_{\lambda}(\tilde{x}, 0)=\varphi_{1}(\tilde{x})$ .
Indeed, expressing $f_{\lambda}$ as

(5.2) $f_{\lambda}(x)=\sum_{p=0}^{\infty}f_{\lambda.p}(\tilde{x})(x^{n})^{p}$ ,

we have

(5.3)
$(p+2)(p+1)(1+\sum_{|\tilde{\alpha}|\gtrless 2}g_{\tilde{\alpha},0}^{nn}\tilde{x}^{\tilde{\alpha}})f_{\lambda.p+2}(\tilde{x})=\lambda f_{\lambda.p}(\tilde{x})+U_{\lambda^{(1)}p}(\tilde{x})$ ,

$p=0,1,2,$ $\cdots$ ,
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where

$U_{\lambda^{(1)}p}(\tilde{x})=-\sum_{i=1}^{n-1}\partial_{i}^{2}f_{\lambda.p}(\tilde{x})-\sum_{q=0}^{p-1}\sum_{|\dot{\alpha}|+p-q\geq 2}g_{\dot{\alpha},p-q}^{nn}\tilde{x}^{\dot{\alpha}}f_{\lambda.q+2}(\tilde{x})(q+2)(q+1)$

$-\sum_{q=0}^{p}\sum_{|\tilde{\alpha}|+p- q\geq 2}\{\sum_{J-}^{n-1}g_{\dot{\alpha}.p- q}^{ij}\tilde{x}^{\dot{\alpha}}\partial_{i}\partial_{j}f_{\lambda.q}(\tilde{x})$

$+2\sum_{i=1}^{n-1}g_{\tilde{\alpha}.p-q}^{in}\tilde{x}^{\dot{\alpha}}\partial_{i}f_{\lambda.q+1}(\tilde{x})(q+1)\}$

$-\sum_{q=0}^{p}\sum_{|\overline{\alpha}|+p-q\geq 1}\{\sum_{i=1}^{n-1}g_{\dot{\alpha}.p-q}^{i}\tilde{x}^{\dot{a}}\partial_{i}f_{\lambda.q}(\tilde{x})+g_{\dot{\alpha}.p-q}^{n}\tilde{x}^{\tilde{a}}f_{\lambda.q+1}(\tilde{x})(q+1)\}$ .

This implies

$f_{\lambda.p+2}(\tilde{x})=\frac{\lambda}{(p+2)(p+1)}f_{\lambda,p}(\tilde{x})(1+V(\tilde{x}))+U_{\lambda^{(2)}p}(\tilde{x})$ , $p=0,1,2,$ $\cdots$ ,

where $V$ is an analytic function at $\tilde{O}\in R^{n-1}$ with $V(\tilde{O})=\partial_{i}V(\tilde{O})=0,$ $i=1,2,$ $\cdots$ ,

$n-1$ , and $U_{\lambda^{(2)}p}$ is a linear functional of { $f_{\lambda.q},$ $\partial_{i}f_{\lambda,q},$ $\partial_{i}\partial_{j}f_{\lambda.q}$ : $q=0,1,$ $\cdots$ , $p+1$ ,
$i,$ $j=1,2,$ $\cdots,$ $n-1$ } with analytic coefficients independent of $\lambda$ . Hence by

induction we obtain

$f_{\lambda.2p}(\tilde{x})=\frac{\lambda^{p}}{2p!}\{\varphi_{0}(\tilde{x})(1+V_{2p}(\tilde{x}))+\sum_{q=0}^{p-1}\lambda^{q}U_{2p.q}(\tilde{x})\}$ ,
(5.4)

$f_{\lambda,2p+1}(\tilde{x})=\frac{\lambda^{p}}{(2p+1)!}\{\varphi_{1}(\tilde{x})(1+V_{2p+1}(\tilde{x}))+\sum_{q=0}^{p-1}\lambda^{q}U_{2p+1.q}(\tilde{x})\}$ ,

for $p=0,1,2,$ $\cdots$ , where $U_{p,q}$ and $V_{p}$ are analytic functions at $\tilde{O}\in R^{n-1}$ with
$V_{p}(\tilde{O})=\partial_{i}V_{p}(\tilde{O})=0,$ $i=1,2,$ $\cdots,$ $n-1$ . Hence we can determine the functions
$f_{\lambda.p}$ inductively, and obtain the function $f_{\lambda}$ by (5.2). Now substituting the
formulae in (5.4) into (5.2), we obtain from the assumption $\mathcal{D}_{m}f_{\lambda}(m)=0$ that

(5.5) $\sum_{p=0}^{l}\sum_{|\overline{\alpha}|\leq 2l+1-2p}a_{\tilde{\alpha}.2p}\partial^{\dot{\alpha}}\{\lambda^{p}\varphi_{0}(1+V_{2p})+\sum_{q=0}^{p-1}\lambda^{q}U_{2p.q}\}(\tilde{O})$

$+\sum_{p=0}^{l}\sum_{|\tilde{\alpha}|\leq 2l-2p}a_{\tilde{\alpha}.2p+1}\partial^{\dot{\alpha}}\{\lambda^{p}\varphi_{1}(1+V_{2p+1})+\sum_{q=0}^{p-1}\lambda^{q}U_{2p+1.q}\}(O)=0$ .

We will show from (5.5) by induction that

$a_{\tilde{\alpha}.2p}=0$ , $|\tilde{\alpha}|\leqq 2l+1-2p$ ,
(5.6)

$a_{\dot{\alpha},zp+1}=0$ , $|\tilde{\alpha}|\leqq 2l-2p$ ,

for all $p=0,1,2,$ $\cdots,$
$l$. First we note that the coefficient of $\lambda^{l}$ in (5.5) is equal

to $0$ ;

(5.7) $\sum_{|\dot{\alpha}|\leq 1}a_{\dot{\alpha}.2l}\partial^{\dot{\alpha}}\{\varphi_{0}(1+V_{2l})\}(\tilde{O})+a_{\tilde{O}.2l+1}\{\varphi_{1}(1+V_{2l+1})\}(\tilde{O})=0$
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for any analytic functions $\varphi_{0}$ and $\varphi_{1}$ at $\tilde{O}\in R^{n-1}$ . Taking various functions for
$\varphi_{0}$ and $\varphi_{1}$ in (5.7), we can easily see that (5.6) is valid for $p=l$ . We next
assume that (5.6) is valid for all $p=p_{0}+1,$ $p_{0}+2,$ $\cdots$ , $l$. Then the formula
(5.5) is reduced to

(5.8) $\sum_{p=0}^{P_{0}}\sum_{|\tilde{\alpha}|\leq 2l+1-2p}a_{\tilde{\alpha},2p}\partial^{\tilde{\alpha}}\{\lambda^{p}\varphi_{0}(1+V_{2p})+\sum_{q=0}^{p-1}\lambda^{q}U_{2p.q}\}(\tilde{O})$

$+\sum_{p=0}^{P_{0}}\sum_{|\tilde{\alpha}|\leq 2l-2p}a_{\tilde{\alpha}.2p+1}\partial^{\dot{\alpha}}\{\lambda^{p}\varphi_{1}(1+V_{2p+1})+\sum_{q=0}^{p-1}\lambda^{q}U_{2p+1.q}\}(\tilde{O})=0$ ,

and taking the coefficient of $\lambda^{p_{O}}$ we have

(5.9) $\sum_{|\tilde{\alpha}|\leq 2\iota+1-2p_{0}}a_{\tilde{\alpha}.2p_{0}}\partial^{\dot{\alpha}}\{\varphi_{0}(1+V_{2p_{0}})\}(\tilde{O})$

$+\sum_{|\dot{\alpha}|\leq 2l- 2p_{O}}a_{\tilde{\alpha},2p_{0^{+1}}}\partial^{\tilde{\alpha}}\{\varphi_{1}(1+V_{2p_{0}+1})\}(\tilde{O})=0$

for any analytic functions $\varphi_{0}$ and $\varphi_{1}$ at $\tilde{O}\in R^{n-1}$. It is easy to see that (5.9)

implies (5.6) with $p=p_{0}$ as in the above. The proof is completed.

LEMMA 5.2. Let $(M, g)$ be an n-dimensional $C^{\omega}$ harmonic space. Then there
exists a sequence of polynomials $p_{j},$ $j=1,2,$ $\cdots$ , without constant terms such that,

for all $m\in M$ and all $\lambda$-harmonic functions $f$ near $m$,

(5.10) $M_{m}(\epsilon, f)=f(m)+\sum_{j=1}^{\infty}p_{j}(\Delta)f(m)\epsilon^{2j}$

for all sufficiently small $\epsilon>0$ .

PROOF. Let $f$ be a $\lambda$-harmonic function near $m$ . Then due to [3: (6.1)

and (6.2)] the first mean value $M_{m}(\epsilon, f)$ satisfies

(5.11) $M_{m}(\epsilon, f)=\delta_{m.\lambda}(\epsilon)f(m)$

for all sufficiently small $\epsilon>0$ , where $\delta_{m,\lambda}$ is defined by the solution of the
equation

(5.12) $\delta_{m}^{\prime}\lambda(\epsilon)+\frac{\lambda}{A_{m}(\epsilon)}\int_{0}^{\epsilon}A_{m}(r)\delta_{m.\lambda}(r)dr=0$ , $\delta_{m,\lambda}(0)=1$ .
Further, by [7: Corollary 4.3], the volume $A_{m}(\epsilon)$ of the geodesic sphere $\partial B_{m}(\epsilon)$

is represented as $A_{m}(r)=r^{n-1}h_{m}(r^{2})$ for an analytic function $h_{m}$ at $O\in R$ . On
the other hand, it is clear that

$A_{m}(r)=r^{n- 1}\Theta(r)vol(S^{n-1}(1))$ ,

for the function $\Theta(r)$ given in [1: Proposition 6.16]. Hence the function $h_{m}$ is
independent of the choice of $m\in M$. Now solving (5.12) by Cauchy-Kowalewski’s
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method, we obtain a sequence of polynomials $p_{j},$ $j=1,2,$ $\cdots$ , without constant
terms such that

(5.13) $M_{m}(\epsilon, f)=f(m)+\sum_{j=1}^{\infty}p_{j}(\lambda)f(m)\epsilon^{2j}$

for all sufficiently small $\epsilon>0$. Substitution of the relations $\lambda^{p}f(m)=\Delta^{P}f(m)$ ,
$p=1,2,$ $\cdots$ , into (5.13) leads us to (5.10).

PROOF OF THEOREM 2 (1). In the following proof we assume $ k=\infty$ .

SUFFICIENCY. The proof of the sufficiency of each of the conditions $(i)-(iv)$ ,
$(M1)-(M4)$ and $(L1)-(L4)$ is similar to that of the sufficiency in Theorem 2 (3).

The details will be omitted.

NECESSITY. Suppose that $(M, g)$ is a harmonic space. The conditions
$(i)-(iv)$ are shown in [10] and [17]. These with Theorem 3 imply (M1) and
(L1). Further the condition (M3) is verified by [3]. Hence, by Theorem 5.1
and (iv), we have (M2), (L2) and (L3). On the other hand it follows from
Lemma 5.2 that the coefficients in the expansion (3.1) satisfy

(5.14) $P_{m,j}f(m)=p_{j}(\Delta)f(m)$ , $j=1,2,$ $\cdots$

for all $\lambda$-harmonic functions $f$ near $m$ . But Lemma 5.1 means that a linear
differential operator is uniquely determined by its values operated to $\lambda$-harmonic
functions near $m$ . Hence we have (M4). The condition (L4) now follows from
(iv) and (M4).

References

[1] Besse, A.L., Manifolds all of whose Geodesics are Closed, Springer-Verlag, Berlin
Heidelberg New York, 1978.

[2] DeTruck, D. M. and Kazdan, J. L., Some regularity theorems in Riemannian geometry,
Ann. Sci. \’Ecole. Norm. Sup., $4^{e}$ S\’erie, t. 14 (1981), 249-260.

[3] Friedman, A., Function-theoretic characterization of Einstein spaces and harmonic
spaces, Trans. Amer. Math. Soc. 101 (1961), 240-258.

[4] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second
Order, Springer-Verlag, Berlin Heidelberg New York, 1977.

[5] Gray, A. and Pinsky, M., The mean exit time from a small geodesic ball in a
Riemannian manifold, Bull. Sci. Math. 2e S\’erie, 107 (1983), 345-370.

[6] –and Vanhecke, L., Riemannian geometry as determined by the volume of
small geodesic balls, Acta Math. 142 (1979), 157-198.

[7] –and Willmore, T. J., Mean-value theorems for Riemannian manifolds, Proc.
Roy. Soc. Edinburgh, 92A (1982), 343-364.

[8] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New
York London, 1962.

[9] Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Diffusion Pro-



On geometric and stochastic mean values 145

cesses, North-Holland/Kodansha, Amsterdam Oxford New $York/Tokyo$ , 1981.
[10] Kowalski, 0., ’The second mean-value operator on Riemannian manifolds’, in Proceed-

ings of the CSSR-GDR-Polish Conference on Differential Geometry and its
Applications, Nove Mesto 1980, pp. 33-45, Universita Karlova Praha, 1982.

[11] –, A comparison theorem for spherical mean-value operators in Riemannian
manifolds, Proc. London Math. Soc. (3), 47 (1983), 1-14.

[12] Pinsky, M., Moyenne stochastique sur une vari\’et\’e riemannienne, C. R. Acad. Sci.
Paris S\’erie I, 292 (1981), 991-994.

[13] –, Brownian motion in a small geodesic ball, in ”Asterique”, vol. 132, Actes
du Colloque Laurant Schwartz, 89-101, 1985.

[14] –, Can you feel the shape of a manifold with Brownian motion?, Expo.
Math. 2 (1984), 263-271.

[15] Sakai, T., On eigen-values of Laplacian and curvature of Riemannian manifold,
T\^ohoku Math. J. 23 (1971), 589-603.

[16] Sunada, T., Spherical means and geodesic chains on a Riemannian manifold, Trans.
Amer. Math. Soc. 267 (1981), 483-501.

[17] Willmore, T. J., Mean value theorems in harmonic Riemannian spaces, J. London
Math. Soc. 25 (1950), 54-57.

Department of Mathematics
Saga University
Saga, 840
Japan


	ON GEOMETRIC AND STOCHASTIC ...
	1. Introduction.
	2. Statement of results.
	References


