MULTI-TENSORS OF DIFFERENTIAL FORMS ON THE SIEGEL MODULAR VARIETY AND ON ITS SUBVARIETIES

By
Shigeaki Tsuyumine

Let $A_{n}=H_{n} / \Gamma_{n}$, where H_{n} is the Siegel space and $\Gamma_{n}=S p_{2 n}(\boldsymbol{Z}) . A_{n}$ is called a Siegel modular variety, which is the coarse moduli variety of n-dimensional principally polarized abelian varieties over \boldsymbol{C}. Let \tilde{A}_{n} be a projective non-singular model of $A_{n} . \quad \tilde{A}_{n}$ is shown to be of general type for $n \geqq 9$ by Tai [10] ($n=8$ by Freitag [6], $n=7$ by Mumford [9]). Subvarieties of A_{n} are expected to have the same property if they are not too special.

Freitag [7] showed that \tilde{A}_{n} carries many global sections of $\operatorname{Symm}^{d}\left(\Omega_{\tilde{A}_{n}-1}^{N-1}\right.$, $N=n(n+1) / 2$, if n is bounded from below by some n_{0}, and that any subvariety in $A_{n}\left(n \geqq n_{0}\right)$ of codimension one is of type ' G ' which is some weakened notion of "general type". He conjectured that n_{0} would be taken to be ten, in connection with the argument of extensibility of holomorphic differentials to a nonsingular model which is similar to Tai's one [9].

In this paper, we show that for $n \geqq 10, \tilde{A}_{n}$ carries many global sections of $\left(\Omega_{A_{n}}^{N-1}\right)^{\otimes r}$ for some r Theorem 1), and show the following;

Theorem 2. Let $n \geqq 10$. Then any subvariety in A_{n} of codimension one is of general type.

We have the following corollary to this theorem (cf. Freitag [7]). We denote by $\Gamma_{n}(l)$, the principal congruence subgroup $\left\{M \in \Gamma_{n} \mid M \equiv 1_{2 n} \bmod l\right\}, 1_{2 n}$ being the identity matrix of size $2 n$, and by $A_{n, l}$, the quotient space $H_{n} / \Gamma_{n}(l)$.

Corollary. If $K\left(\Gamma_{n}(l)\right)$ denotes the function field of $A_{n, l}$ (namely, the Siegel modular function field for $\left.\Gamma_{n}(l)\right)$, then the automorphism group $\operatorname{Aut}_{c}\left(K\left(\Gamma_{n}(l)\right)\right)$ over \boldsymbol{C} is isomorphic to $\Gamma_{n} / \pm \Gamma_{n}(l)$ for $n \geqq 10$, i.e., the birational automorphism group of $A_{n, l}$ equals $\operatorname{Aut}_{c}\left(A_{n, l}\right) \cong \Gamma_{n} / \pm \Gamma_{n}(l)$. In particular, $A_{n}(n \geqq 10)$ has no non-trivial birational automorphism.

This result is shown to be true under the condition that n is sufficiently large, in Freitag [7].

[^0]Let ω be a matrix as in $\S 1$, whose entries are differentials in $\Omega_{H_{n}^{N-1}}^{N}$. Then $\omega^{\otimes r}$ satisfies the formula $M \cdot \omega^{\otimes r}=|C Z+D|^{-r(n+1)}(C Z+D)^{\otimes r} \omega^{\otimes r t}(C Z+D)^{\otimes r}, M=$ $\binom{A B}{D C} \in S p_{2 n}(\boldsymbol{R})$ Lemma 1). So if we construct a square matrix $\Lambda=\Lambda(Z)$ of size n^{r} whose entries are holomorphic functions on H_{n} such that $\Lambda(M Z)=|C Z+D|^{r(n+1)}$ $\times\left({ }^{t}(C Z+D)^{-1}\right)^{\otimes r} \Lambda(Z)\left((C Z+D)^{-1}\right)^{\otimes r}, M=\binom{A B}{C D} \in \Gamma_{n}$, then $\operatorname{tr}\left(\Lambda \omega^{\otimes r}\right)$ is Γ_{n}-invariant and is regarded as a section of $\left(\Omega_{A_{n}^{\circ}}^{N-1}\right)^{\otimes r}(n \geqq 3), A_{n}^{\circ}$ denoting the smooth locus of A_{n}. The multi-tensor we consider is of this kind. Extensibility of $\operatorname{tr}\left(\Lambda \omega^{\otimes r}\right)$ to \tilde{A}_{n} is proven under some conditions on Λ and on the degree n, which are similar to the case of pluri-canonical differential forms (Tai [10]). A restriction of such a multi-tensor of differentials to a subvariety D of codimension one gives a pluri-canonical differential form on D. Construction of a desired Λ is done by using transformation formulas for theta series of quadratic forms with spherical functions. Using this we show that for any D, there are such multitensors whose restriction to D gives enough non-trivial pluricanonical differentials.

1. $\boldsymbol{M}_{m, n}(*)$ denotes the set of $m \times n$ matrices with entries in $*$, and $\boldsymbol{M}_{\boldsymbol{m}}=$ $\boldsymbol{M}_{m, m}$. Let H_{n} be the Siegel space of degree $n ; H_{n}=\left\{\left.Z \in \boldsymbol{M}_{n}(\boldsymbol{C})\right|^{t} Z=Z, \operatorname{Im} Z>0\right\}$. The symplectic group $S p_{2 n}(\boldsymbol{R})$ acts on H_{n} by the usual symplectic substitution

$$
Z \rightarrow M Z=(A Z+B)(C Z+D)^{-1}, \quad M=\binom{A B}{C D}
$$

Let $Z=\left(z_{i j}\right)$, and let

$$
\omega_{i j}=(-1)^{i+j} e_{i j} d z_{11} \wedge d z_{12} \wedge \cdots \wedge \check{d} z_{i j} \wedge \cdots \wedge d z_{n n} \quad(1 \leqq i \leqq j \leqq n)
$$

where the symbol $e_{i j}$ denotes 1 if $i \neq j, 2$ if $i=j$, and $\breve{d} z_{i j}$ means that $d z_{i j}$ is omitted. $\omega_{i j}$ is a section of $\Omega_{H_{n}^{N}}^{N^{-1}}, N=n(n+1) / 2$, where $\Omega_{H_{n}}^{N_{n}^{-1}}$ is a sheaf of holomorphic ($N-1$)-form. Let $\omega=\left(\omega_{i j}\right)$. Then we have a transformation

$$
M \cdot \omega=|C Z+D|^{-n-1}(C Z+D) \omega^{t}(C Z+D)
$$

Let $A, B=\left(b_{i j}\right)$ be square matrices of size n, m respectively. A tensor product $A \otimes B$ is defined to be

$$
\left(\begin{array}{cccc}
A b_{11} & A b_{12} & \cdots & A b_{1 m} \\
A b_{21} & & & \vdots \\
\vdots & & & \vdots \\
A \dot{b}_{m 1} & \cdots & \cdots & A \\
\dot{b}_{m m}
\end{array}\right) \in M_{m n} .
$$

Then we have (i) $(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right)=A A^{\prime} \otimes B B^{\prime}, A^{\prime}, B^{\prime}$ being matrices of the same size as A, B respectively, (ii) ${ }^{t}(A \otimes B)={ }^{t} A \otimes^{t} B$, (iii) $c(A \otimes B)=(c A) \otimes B=A \otimes(c B)$
for a scalar c, (iv) $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$. The following is a direct consequence of the above:

Lemma 1. For a non-negative integer r, we have

$$
M \cdot \omega^{\otimes r}=|C Z+D|^{-r(n+1)}(C Z+D)^{\otimes r} \omega^{\otimes r t}(C Z+D)^{\otimes r}
$$

Let $A=\left(a_{i j}\right) \in \boldsymbol{M}_{n}$ and let us fix a positive integer r. Let I, J be ordered collections of r integers in $\{1, \cdots, n\}$ where a repeated choice is allowed. We define $A^{(I, J)}$ by

$$
A^{(I, J)}=a_{i_{1} j_{1}} \cdots a_{i_{r} j_{r}}
$$

where $I=\left\{i_{1}, \cdots, i_{r}\right\}, J=\left\{j_{1}, \cdots, j_{r}\right\}$. Then a (k, l)-entry of a matrix $A^{\otimes r}$ is equal to $A^{(I, J)}$ if $k=1+\sum_{s=1}^{r}\left(i_{s}-1\right) n^{s-1}, l=1+\sum_{s=1}^{r}\left(j_{s}-1\right) n^{s-1}\left(1 \leqq k, l \leqq n^{r}\right) . \quad \operatorname{sgn}(I)$ is defined by $\operatorname{sgn}(I)=\prod_{i \in I}(-1)^{i}$.

A holomorphic function f on H_{n} satisfying

$$
f(M Z)=|C Z+D|^{k} f(Z) \quad \text { for } \quad M=\binom{A B}{C D} \in \Gamma_{n},
$$

is called a (Siegel) modular form of weight k (when $n=1$, we need an additional condition that f is holomorphic also at the cusp). f admits the Fourier expansion

$$
f(Z)=\sum_{S \geq 0} a(S) \boldsymbol{e}\left(\operatorname{tr}\left(\frac{1}{2} Z S\right)\right)
$$

where $\boldsymbol{e}(*)$ stands for $\exp (2 \pi \sqrt{-1} *)$, and S runs over the set of semi-positive symmetric even matrices of size $n . f$ is said to vanish to order α at the cusp if α is the minimum integer such that $a(S)=0$ for

$$
S \text { with } \min _{g \in Z^{n}, \neq 0}\left\{\frac{1}{2} S[g]\right\}<\alpha,
$$

$S[g]$ denoting ${ }^{t} g S g$. The minimum is equal to $\min \left\{\frac{1}{2} \operatorname{tr}(S T)\right\}, T$ running over the set of non-zero symmetric positive semi-definite integral matrices of size n (cf. Barnes and Cohn [3]). We denote by ord (f), the order α of vanishing at the cusp.
2. Theta series and a matrix $\Psi_{F, r}[w]$. Let m be an integer with $m \geqq 2(n-1)$, and let η be a complex $m \times(n-1)$ matrix satisfying both ${ }^{t} \eta \eta=0$ rank $\eta=n-1$ (such exists). $\eta(1 \leqq i \leqq n)$ denotes an $(n-1) \times n$ matrix given by

$$
\eta_{i}=\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 10 & \\
& & & \\
& & & \ddots \\
& & & \\
&
\end{array}\right)
$$

We fix a positive symmetric matrix F of size m with rational coefficients. Let r be a positive integer, and let I, J be as in the preceding section. We define a theta series associated with F by setting

$$
\begin{aligned}
\theta_{F}^{(1, J)}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z)= & \operatorname{sgn}(I) \operatorname{sgn}(J) \sum_{G} \prod_{i \in I}\left|\eta_{i}{ }^{t}(G+u) F^{1 / 2} \eta\right| \prod_{j \in J}\left|\eta_{j}{ }^{t}(G+u) F^{1 / 2} \eta\right| \\
& \times \boldsymbol{e}\left(\operatorname{tr}\left(\frac{1}{2} Z F[G+u]+{ }^{t}(G+u) v\right)\right)
\end{aligned}
$$

where G runs through all $m \times n$ integral matrices, and u, v are $m \times n$ matrices with rational coefficients. $\binom{u}{v}$ is called a theta characteristic. If $\left\{I^{\prime}, J^{\prime}\right\}$ equals $\{I, J\}$ up to orders, then obviously $\theta_{F}^{\left(I^{\prime}, J^{\prime},\right.}\left[\begin{array}{l}u \\ v\end{array}\right](Z)=\theta_{F}^{(I, J)}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$. Then we define $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ to be a square matrix of size n^{r} whose (k, l)-entry equals $\theta_{F}^{(1, J)}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ where $k=1+\sum_{s=1}^{r}\left(i_{s}-1\right) n^{s-1}, \quad l=1+\sum_{s=1}^{r}\left(j_{s}-1\right) n^{s-1}$ with $I=\left\{i_{1}, \cdots i_{1}\right\}$, $J=\left\{j_{1}, \cdots, j_{r}\right\} . \Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right]$ is a symmetric matrix. Our purpose of this section is to prove the following;

Proposition 1. Let $M=\binom{A B}{C D} \in S p_{2 n}(\boldsymbol{Q})$ such that $A, D, F \otimes B, F^{-1} \otimes C$ are integral. Put

$$
\begin{aligned}
& u_{M}=u A+F^{-1} v C+\frac{1}{2} t^{t}\left(F^{-1}\right)_{\Delta}\left({ }^{t} A C\right)_{\Delta}, \quad v_{M}=F u B+v D+\frac{1}{2} t^{t}\left(F_{\Delta}\right)\left({ }^{t} B D\right)_{\Delta}, \\
& E_{F}\left(\binom{u}{v}, M\right)=\boldsymbol{e}\left(\frac{1}{2} \operatorname{tr}\left(-{ }^{t}\left(u A+F^{-1} v C\right)\left(F u B+v D+{ }^{t}\left(F_{\Delta}\right)\left({ }^{t} B D\right)_{\Delta}\right)+{ }^{t} u v\right)\right),
\end{aligned}
$$

where for a square matrix P, P_{Δ} denotes the vector composed of diagonal elements of P. Then we have a transformation formula

$$
\begin{aligned}
\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z)= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{(m / 2)+2 r} \\
& \times\left({ }^{(t}(C Z+D)^{-1}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{c}
u_{M} \\
v_{M}
\end{array}\right](Z)\left((C Z+D)^{-1}\right)^{\otimes r},
\end{aligned}
$$

where $\chi_{F}(M)$ is an eighth root of unity depending only on F and M.
Since F, u, v are of rational coefficients, we have the following corollary.

Corollary. There is an integer l such that

$$
\begin{aligned}
\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z)= & \chi(M)|C Z+D|^{(m / 2)+2 r} \\
& \times\left({ }^{u}(C Z+D)^{-1}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z)\left((C Z+D)^{-1}\right)^{\otimes r}
\end{aligned}
$$

for any $M=\binom{A B}{C D} \in \Gamma_{n}(l)$ where χ is a map of $\Gamma_{n}(l)$ to the set of roots of unity. χ is killed by some power.

Let $X=\left(x_{i j}\right)$ be an $m \times n$ variable matrix. We define another theta series associated with F by setting

$$
\theta_{F}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z, X)=\sum_{G} \boldsymbol{e}\left(\operatorname{tr}\left(\frac{1}{2} Z F[G+u]+{ }^{t}(G+u)(X+v)\right),\right.
$$

where G runs through all $m \times n$ integral matrices.
Lemma 2. Let the notations be as in Proposition 1. Then

$$
\begin{aligned}
\theta_{F}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z, X)= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right) e\left(\frac{1}{2} \operatorname{tr}\left(C^{t}(C Z+D)^{t} X F^{-1} X\right)\right) \\
& \times|C Z+D|^{m / 2} \theta_{F}\left[\begin{array}{c}
u_{M} \\
v_{M}
\end{array}\right](Z, X(C Z+D))
\end{aligned}
$$

The proof of the above lemma was given in Andrianov and Maloletkin [1] under some condition on $\binom{u}{v}, M$, and in Tsuyumine [11], [12], the general case (not exactly this form).

Let $\partial=\left(\frac{\partial}{\partial x_{i j}}\right)$ be an $m \times n$ matrix of differential operators. Let r, and I, J be as above. We define a differential operator $L_{I J \eta}$ by

$$
L_{I J \eta}=\frac{\operatorname{sgn}(I) \operatorname{sgn}(J)}{(2 \pi \sqrt{-1})^{2 r(n-1)}} \prod_{i \in I} \operatorname{det}\left({ }^{t} \eta \partial^{t} \eta_{i}\right) \prod_{j \in J}\left({ }^{t} \eta \partial^{t} \eta_{j}\right)
$$

LEMMA 3. Let P be a complex symmetric matrix of degree n, and Q, a complex $n \times m$ matrix and c, a constant. Then we have the following identity:

$$
\begin{aligned}
& L_{I J \eta}\left(\boldsymbol{e}\left(\operatorname{tr}\left(\frac{1}{2} P^{t} X X+Q X\right)+c\right)\right) \\
= & \operatorname{sgn}(I) \operatorname{sgn}(J) \prod_{i \in I}\left|\eta_{i}\left(P^{t} X+Q\right) \eta\right| \prod_{j \in J}\left|\eta_{j}\left(P^{t} X+Q\right) \eta\right| \\
& \times \boldsymbol{e}\left(\operatorname{tr}\left(\frac{1}{2} P^{t} X X+Q X\right)+c\right) .
\end{aligned}
$$

The proof is given as a slight modification of that of Lemma 3 in Andrianov and Maloletkin [1]. So we skip the proof.

Proof of Proposition 1. $\quad \theta_{F}^{(I, J)}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ is equal to $\left.L_{I J \eta}\left(\theta_{F}\left[\begin{array}{l}u \\ v\end{array}\right]\left(Z, F^{1 / 2} X\right)\right)\right|_{X=0}$. Substituting X by $F^{1 / 2} X$ in the formula in Lemma 2 and applying $L_{I J \eta}$ at $X=0$, we get, by Lemma 3,

$$
\begin{aligned}
& \theta_{F}^{(I, J)}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z) \\
= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{m / 2} \operatorname{sgn}(I) \operatorname{sgn}(J) \\
& \times \sum_{G} \prod_{i \in I}\left|\eta_{i}(C Z+D)^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right| \prod_{j \in J}\left|\eta_{j}(C Z+D)^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right| \\
& \times \mathbf{e}\left(\operatorname{tr}\left(\frac{1}{2} Z F\left[G+u_{M}\right]+{ }^{t}\left(G+u_{M}\right) v_{M}\right)\right) .
\end{aligned}
$$

Using the Laplace expansion

$$
\left|\eta_{i}(C Z+D)^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right|=\sum_{s=1}^{n}\left|\eta_{i}(C Z+D)^{t} \eta_{s}\right|\left|\eta_{s}^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right|,
$$

the equality becomes

$$
\begin{aligned}
& \theta_{F}^{(1, J)}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z) \\
= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{m / 2} \operatorname{sgn}(I) \operatorname{sgn}(J) \sum_{G}\left(\sum_{S}{\underset{T}{T}}\right) \\
& \times \prod_{\substack{i \in J \\
s \in S}}\left|\eta_{i}(C Z+D)^{t} \eta_{s}\right| \prod_{\substack{j \in J \\
t \in T}}\left|\eta_{j}^{t}(C Z+D)^{t} \eta_{t}\right| \cdot\left|\eta_{s}^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right| \\
& \times\left|\eta_{t}^{t}\left(G+u_{M}\right) F^{1 / 2} \eta\right| e\left(\operatorname{tr}\left(\frac{1}{2} Z F\left[G+u_{M}\right]+{ }^{t}\left(G+u_{M}\right) v_{M}\right)\right),
\end{aligned}
$$

S, T running through all the collections of r integers in $\{1, \cdots, n\}$ (admitting a repeated choice),

$$
\begin{aligned}
&= \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{m / 2} \sum_{S, T} \prod_{\substack{i \in J \\
\in \in S}}(-1)^{i+s}\left|\eta_{i}(C Z+D)^{t} \eta_{s}\right| \\
& \times \prod_{\substack{G \in J \\
t \in T}}(-1)^{j+t}\left|\eta_{j}(C Z+D)^{t} \eta_{t}\right| \theta_{F}^{(S, T)}\left[\begin{array}{c}
u_{M} \\
v_{M}
\end{array}\right](Z) . \\
&(-1)^{i+s}\left|\eta_{i}(C Z+D)^{t} \eta_{s}\right| \text { is an }(s, i) \text {-entry of the cofactor matrix }(C Z+D)^{*} \text { of } C Z
\end{aligned}
$$ $+D$, and so

$$
\begin{aligned}
\theta_{F}^{(I, J)}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z)= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{m / 2} \sum_{S, T}\left({ }^{t}(C Z+D)^{*}\right)^{(I, S)} \\
& \times \theta_{F}^{(S, T)}\left[\begin{array}{c}
u_{M} \\
v_{M}
\end{array}\right](Z)\left((C Z+D)^{*}\right)^{(T, J)} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z) \\
= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{m / 2}\left(t(C Z+D)^{*}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{l}
u_{M} \\
v_{M}
\end{array}\right](Z)\left((C Z+D)^{*}\right)^{\otimes r} \\
= & \chi_{F}(M) E_{F}\left(\binom{u}{v}, M\right)|C Z+D|^{(m / 2)+2 r}\left(t(C Z+D)^{-1}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{l}
u_{M} \\
v_{M}
\end{array}\right](Z)\left((C Z+D)^{-1}\right)^{\otimes r} .
\end{aligned}
$$

q.e.d.
3. Further properties of $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right]$. The following formula is easy to see.

Lemma 4. Let $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ be as in the preceding section. Let P be any symmetric matrix of size n with rational coefficients, and let $k \neq 0$ be an integer such that $k^{2} P F[G]$ is even for any $G \in \boldsymbol{M}_{m, n}(\boldsymbol{Z})$. Then

$$
\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z+P)=k^{-2(n-1) r} \sum_{w} e\left(-\frac{1}{2} k^{2} P F[w+(u / k)]\right) \Psi_{k^{2} F, r}\left[\begin{array}{c}
w+(u / k) \\
k v+k F(k w+u) P
\end{array}\right](Z)
$$

where w runs over the representatives of $\boldsymbol{M}_{m, n}\left(\frac{1}{k} \boldsymbol{Z}\right) \bmod \boldsymbol{Z}$.
Now we show that for any F and for any characteristic of the form $\binom{u}{0}, \Psi_{F, r}\left[\begin{array}{l}u \\ 0\end{array}\right]$ is non-trivial for infinitely many r. Let $\llbracket i \rrbracket=(i, \cdots, i) \in \boldsymbol{M}_{1,2 r}(\boldsymbol{Z})$ $(1 \leqq i \leqq n)$. Then the Fourier coefficient $a(S)$ in the expansion of $\theta_{F}^{([r i])}\left[\begin{array}{l}u \\ 0\end{array}\right]$ is given by

$$
a(S)=\sum_{G}\left|\eta_{i}{ }^{t}(G+u) F^{1 / 2} \eta\right|^{2 r}
$$

where G runs over the finite set $\left\{G \in \boldsymbol{M}_{m, n}(\boldsymbol{Z}) \mid F[G+u]=S\right\}$. There is an S such that $\{G \mid F[g+u]=S\} \neq \phi$, and $\left|\eta_{i}{ }^{t}(G+u) F^{1 / 2} \eta\right| \neq 0$ for some G in the set. Then it is easy to see $a(S) \neq 0$ for infinitely many r (for instance, if it is zero for $r=1,2, \cdots, \#\{G \mid F[G+u]=S\}$, then every $\left|\eta_{i}{ }^{r}(G+u) F^{1 / 2} \eta\right|^{2}$ must be zero).

Lemma 5. Suppose that $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ is non-trivial. Let us take any complex symmetric matrix W of size n. Then $\operatorname{tr}\left(\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z) W^{\otimes r}\right)$ is identically zero in Z if and only if $W=0$.

Proof. $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ satisfies a transformation formula in Corollary to Proposition 1. It follows that $\theta_{F}^{(\lessdot[13)]}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ is not identically zero. Let us suppose
$W \neq 0$. If we put $W=\left(w_{i j}\right)$, then it is impossible that only w_{11} is non-zero. So some $w_{i j}$ is not zero with $(i, j) \neq(1,1)$. Again by the transformation formula, it follows from our assumption, that $\left.\operatorname{tr}\left(\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z){ }^{t} U W U\right)^{\otimes r}\right)=0$ for any $U \in$ $G L_{n}(\boldsymbol{Z})(l)=\left\{U \in G L_{n}(\boldsymbol{Z}) \mid U \equiv 1_{n} \bmod l\right\}, l$ being as in Corollary to Proposition 1, and 1_{n} denoting the identity matrix of size n. Then we may assume $w_{i i} \neq 0$ for some i with $2 \leqq i \leqq n$. If we take as U,

$$
U=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
b & & \ddots & \\
& & & 1
\end{array}\right)
$$

where b is an $(1, i)$-entry, then

$$
\begin{aligned}
\operatorname{tr}\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z)\left({ }^{t} U W U\right)^{\otimes r}\right)= & \theta_{F}^{([r 13))}\left[\begin{array}{l}
u \\
v
\end{array}\right] \cdot w_{i i} \cdot b^{2 r} \\
& +(\text { lower degree terms of } b),
\end{aligned}
$$

which cannot be zero, a contradiction.
q.e.d.
4. Construction of $\Psi(Z)$. Let $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z), \Gamma_{n}(l)$ be as in Corollary to Proposition 1. Then for some positive integer $r^{\prime},\left(\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)\right)^{\otimes r^{\prime}}$ satisfies

$$
\begin{aligned}
\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z)\right)^{\otimes r^{\prime}}= & |C Z+D|^{((m / 2)+2 r) r^{\prime}\left(t(C Z+D)^{-1}\right)^{\otimes r r^{\prime}}} \\
& \times\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z)\right)^{\otimes r^{\prime}}\left((C Z+D)^{-1}\right)^{\otimes r r^{\prime}}
\end{aligned}
$$

for $M=\binom{A B}{C D} \in \Gamma_{n}(l)$. Let $\left\{M_{j}\right\}$ be any system of representatives of $\Gamma_{n} \bmod$ $\Gamma_{n}(l)$. Let us put

$$
\Psi(Z)=\sum_{j}\left|C_{j} Z+D_{j}\right|^{-((m / 2)+2 r) r^{\prime} t}\left(C_{j} Z+D_{j}\right)^{\otimes r r^{\prime}}\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(M_{j} Z\right)\right)^{\otimes r r^{\prime}}\left(C_{j} Z+D_{j}\right)^{\otimes r r^{\prime}}
$$

where $M_{j}=\binom{A_{j} B_{j}}{C_{j} D_{j}}$. Then $\Psi(Z)$ satisfies
(*)

$$
\left.\Psi(M Z)=|C Z+D|^{(c m / 2)+2 r) r^{\prime}(t}(C Z+D)^{-1}\right)^{\otimes r r^{\prime}} \Psi(Z)\left((C Z+D)^{-1}\right)^{\otimes r r^{\prime}}
$$

for $M=\binom{A B}{C D} \in \Gamma_{n}$.
Proposition 2. Let Z_{0} be any point of H_{n}, and let W be any non-zero complex symmetric matrix of size n. Let m be an integer with $m \geqq 2(n-1)$. Then for infinitely many r and for infinitely many r^{\prime}, there is a symmetric matrix $\Psi(Z)$
of size $n^{r r^{\prime}}$ satisfying the above transformation formula (*) for Γ_{n} such that $\operatorname{tr}\left(\Psi\left(Z_{0}\right) W^{\otimes r r^{\prime}}\right) \neq 0$.

Proof. Let F^{\prime} be a positive symmetric matrix of size m with rational coefficients. By Lemma 5, and by the argument just before it, $\operatorname{tr}\left(\Psi_{F^{\prime}, r}\left[\begin{array}{c}u^{\prime} \\ v^{\prime}\end{array}\right](Z) W^{\otimes r}\right)$ is not identically zero for infinitely many r if we take a suitable theta characteristic $\binom{u^{\prime}}{v^{\prime}}$. Since the analytic closure of $\left\{Z_{0}+P \mid\right.$ rational symmetric matrices P of size $n\} \subset H_{n}$ equals H_{n}, there is P such that $\operatorname{tr}\left(\Psi_{F^{\prime}, r}\left[\begin{array}{c}u^{\prime} \\ v^{\prime}\end{array}\right]\left(Z_{0}+P\right) W^{\otimes r}\right) \neq 0$. By Lemma 4, $\Psi_{F^{\prime}, r}\left[\begin{array}{l}u^{\prime} \\ v^{\prime}\end{array}\right](Z+P)$ is written as a linear combination of the similar matrices as $\Psi_{F^{\prime}, r}\left[\begin{array}{c}u^{\prime} \\ v^{\prime}\end{array}\right]$ whose entries are theta series in Z. It follows that there is F of size m, and $\binom{u}{v}$ such that $\operatorname{tr}\left(\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right]\left(Z_{0}\right) W^{\otimes r}\right) \neq 0$. We make $\Psi(Z)$ from $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ as in the above manner. Let $M_{j}=\binom{A_{j} B_{j}}{C_{j} D_{j}}$ be as above. We may assume that $M_{1}=1_{2 n}$. Then

$$
\begin{aligned}
& \operatorname{tr}\left(\Psi\left(Z_{0}\right) W^{\otimes r r^{\prime}}\right) \\
= & \operatorname{tr}\left(\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(Z_{0}\right)\right)^{\otimes r^{\prime}} W^{\otimes r r^{\prime}}\right) \\
& +\sum_{j>1} \operatorname{tr}\left(\left|C_{j} Z_{0}+D_{j}\right|^{-((m / 2)+2 r) r^{\prime} t}\left(C_{j} Z_{0}+D_{j}\right)^{\otimes r r^{\prime}}\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(M_{j} Z_{0}\right)\right)^{\otimes r^{\prime}}\right. \\
& \left.\times\left(C_{j} Z_{0}+D_{j}\right)^{\otimes r r^{\prime}} W^{\otimes r r^{\prime}}\right) \\
= & \left(\operatorname{tr}\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(Z_{0}\right) W^{\otimes r}\right)\right)^{r^{\prime}} \\
& +\sum_{j>1} \operatorname{tr}\left(\left|C_{j} Z_{0}+D_{j}\right|^{-((m / 2)+2 r) t}\left(C_{j} Z_{0}+D_{j}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(M_{j} Z_{0}\right)\left(C_{j} Z_{0}+D_{j}\right)^{\left.\otimes r W^{\otimes r}\right)^{r^{\prime}}}\right.
\end{aligned}
$$

which is not zero for infinitely many r^{\prime}, since the first term is not zero.
q. e.d.

Remark. Our argument actually shows that we can take infinitely many r, r^{\prime} from the set of multiples of any fixed integer, which makes $\operatorname{tr}\left(\Psi\left(Z_{0}\right) W^{\otimes r r^{\prime}}\right)$ non-zero in the proposition.

Let us put

$$
\lambda_{m, r, r^{\prime}}=\operatorname{tr}\left(\Psi(Z) \omega^{\otimes r r^{\prime}}\right)
$$

By Lemma 1, we have the following;

Proposition 3. Suppose $r(n-1) \geqq m / 2$. Then for any modular form f for Γ_{n} of weight $(r(n-1)-m / 2) r^{\prime}, f \lambda_{m, r, r^{\prime}}$ is a Γ_{n}--invariant form in $\left(\Omega_{H_{n}^{\prime}}^{N-1}\right)^{\otimes r r^{\prime}}$, where $(r(n-1)-m / 2) r^{\prime}$ is supposed to be possible as weight.
5. Extensibility. Let $\bar{A}_{n, l}$ be a toroidal compactification of $H_{n} / \Gamma_{n}(l)$, which is taken to be smooth and projective for $l \geqq 3$ ([2]). We may assume that \bar{A}_{n} is a quotient of $\bar{A}_{n, l}$ by $\Gamma_{n} / \Gamma_{n}(l)$. In this section we assume $n \geqq 3$. Then the singularities of \bar{A}_{n} are just the ramification locus of $\bar{A}_{n, l} \rightarrow \bar{A}_{n}$. Let \bar{A}_{n}° be the smooth locus of \bar{A}_{n}.

Let $f \lambda_{m, r, r^{\prime}}$ be as in Proposition 3. $f \lambda_{m, r, r^{\prime}}$ is holomorphic multi-tensor of differentials on the smooth locus of A_{n}. However we need to find a condition that it extends holomorphically to a projective non-singular model. By the similar argument as in the case of pluri-canonical differential forms ([2], Tai [10]), we have the following;

Lemma 6. If f vanishes at the cusp of order $\geqq r r^{\prime}$, then $f \lambda_{m, r, r^{\prime}}$ extends holomorphically to \bar{A}_{n}°.

Now we discuss the extensibility of $f \lambda_{m, r, r^{\prime}}$ over the quotient singularities. As in the similar way as in Tai [10], Theorem 3.3, we have the following, whose proof is easy to recover, so that we skip it.

Lemma 7. Let X be a quotient \mathscr{D} / G of an open domain \mathscr{D} in \boldsymbol{C}^{N} by a finite group G acting on \mathscr{D}. Let $\tilde{X} \rightarrow X$ be a desingularization. Suppose that $g \in G$ acts on the tangent space of a fixed point as a multiplication by $\boldsymbol{e}\left(s_{i}\right), i=1, \cdots, N$ with $s_{i} \in \boldsymbol{Q}, 0 \leqq s_{i}<1$. Then if

$$
\sum_{i} s_{i} \geqq 1+\max \left\{s_{i}\right\}
$$

is satisfied for each $g \neq 1$ and for each of its fixed point, then a G-invariant form in $\left(\Omega_{\Phi^{N-1}}\right)^{\otimes r}$ extends holomorphically to \tilde{X}.

Tai [10] showed that every fixed point in \bar{A}_{n} satisfies $\sum_{i} s_{i} \geqq 1$ for $n \geqq 5$. Following his method, we can find when the condition in the lemma is satisfied. Indeed it is sufficient for the condition, that $\sum_{i} s_{i} \geqq 2$. It is shown that every fixed point of order k satisfies it unless k equals $2,3,4,5,6,8,10,12$ or 14 . Then we check the condition in the lemma for the individual case of these k, and get our bound for it to hold;

$$
n \geqq 7
$$

Now we have the following by Proposition 3, and by Lemmas 6 and 7.
Proposition 4. Let $n \geqq 7$. Let $\lambda_{m, r, r^{\prime}}$ be as in the preceding section. Then if f is a modular form of weight $(r(n-1)-m / 2) r^{\prime}$ with $\operatorname{ord}(f) \geqq r r^{\prime}$, then a multitensor $f \lambda_{m, r, r^{\prime}}$ of differentials extends holomorphically to a projective non-singular model of A_{n}.
6. Let $n \geqq 7$. Suppose that there is a non-trivial modular form f such that

$$
\frac{(n-1) \operatorname{ord}(f)}{\text { weight }(f)}>1
$$

Then for suitable integers α, β, every modular form g in $f^{\alpha k} A\left(\Gamma_{n}\right)_{\beta k}, k=1,2, \cdots$, has enough vanishing order at the cusp, i.e., $(n-1) \operatorname{ord}(g) /$ weight $(g) \geqq 1 /$ ($1-(m / 2 r(n-1))$) for a fixed $m, A\left(\Gamma_{n}\right)_{\beta k}$ denoting the vector space of modular form of weight βk. If weight $(g)=(r(n-1)-m / 2) r^{\prime}$, then $g \lambda_{m, r, r^{\prime}}$ extends to a section of $\left(\Omega_{\tilde{\Lambda}_{n}}^{N-1}\right)^{\otimes r r}$ (Proposition 4), and it is taken to be non-trivial (cf. the remark in §4). So, in this case there are many global sections of $\left(\Omega_{A_{n}}^{N-1}\right)^{\otimes r}$ for some r.

Freitag [6], [7] introduced the desired modular forms when $n \geqq 10$. Let $\vartheta[w](Z)$ be a theta constant;

$$
\vartheta[w](Z)=\sum_{g \in \boldsymbol{Z}}{ }^{n} e\left(\frac{1}{2}^{t}(g+u) Z(g+u)+{ }^{t}(g+u) v\right)
$$

with a theta characteristic $w=\binom{u}{v} \in \frac{1}{2} \boldsymbol{Z}^{2 n}(\bmod \boldsymbol{Z}), \boldsymbol{e}\left(2^{t} u v\right)=1$. Then the functions

$$
\prod_{w} \vartheta[w](Z)
$$

and

$$
f_{l}=\sum_{w_{0}} \sum_{w \neq w_{0}} \vartheta[w](Z)^{s l} \quad(l: \text { a natural number })
$$

have the desired property when $n \geqq 10$. Moreover in Freitag [7], it is shown that on any subvariety in A_{n} of codimension one, all of $f_{l}, l=1,2, \cdots$, do not vanish identically.

Theorem 1. Let \tilde{A}_{n} be a non-singular model of the moduli A_{n} of principally polarized abelian varieties over \boldsymbol{C} of dimension n. Suppose $n \geqq 10$. Then for any elements $\alpha_{1}, \cdots, \alpha_{t}$ of the modular function field, there exists r such that there are $t+1$ elements $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{t} \in\left(\Omega_{\bar{A}_{n}}^{N-1}\right)^{\otimes r}$ with $\alpha_{i}=\lambda_{i} / \lambda_{0}, N$ being $n(n+1) / 2$.
7. Proof of Theorem 2. Let D be any subvariety in A_{n} of codimension one. When $n \geqq 3$, there is a modular form $h(Z)$ of some weight p whose divisor
equals D (Freitag [4], [5], or Tsuyumine [13]). Let us put

$$
\psi_{h}=\left(e_{i j} \frac{\partial}{\partial z_{i j}} h\right), \quad e_{i j}= \begin{cases}2, & i=j, \\ 1, & i \neq j,\end{cases}
$$

which is a symmetric matrix of size n. Let $\pi: H_{n} \rightarrow A_{n}$ be the canonical projection. Let $\pi^{-1}(D)^{\circ}$ be the smooth locus of $\pi^{-1}(D)$. Then by using $\left.\left\{\Sigma\left(\frac{\partial}{\partial z_{i j}} h\right) d z_{i j}\right\}\right|_{\pi^{-1(D) \circ}}=0$, we get $\left.\omega\right|_{\pi^{-1(D) ॰}}=\psi_{h} \omega^{\prime}$ where $\omega^{\prime} \in \Omega_{\pi-1(D) \circ}^{N-1}, \neq 0$.

Lemma 8. Let $n \geqq 3$. Let D be any subvariety in A_{n} of codimension one. Then for infinitely many r and for infinitely many r^{\prime} there are $\lambda_{m, r, r^{\prime}}$ whose restrictions to $\pi^{-1}(D)$ do not vanish identically, where r, r^{\prime} are taken from the set of multiples of any fixed integer.

Proof. Let h be as above. If Z_{0} is a non-singular point of D, then $\psi_{h}\left(Z_{0}\right)$
 mediate from Proposition 2 (see also the remark just after it).
q.e.d.

For D, we can take a modular form f with $(n-1) \operatorname{ord}(f) /$ weight $(f)>1$, not vanishing identically on D, provided that $n \geqq 10$. By Lemma 8, there are many multi-tensors of the form $g \lambda_{m, r, r^{\prime}}, g$ being a modular form, extending holomorphically to a non-singular model of A_{n} whose restrictions to D do not vanish identically. This proves Theorem 2.

Proof of Corollary. We denote by $A_{n, l^{*}}$, the Satake compactification of $A_{n, l}$. Let ϕ be any birational automorphism of $A_{n, l}{ }^{*}$. We can eliminate points of indeterminancy for ϕ, by taking a commutative diagram

where ϕ_{1}, ϕ_{2} are morphisms of blowing up (Hironaka [8], Chap. 0, §5). By our theorem, any subvariety in $A_{n, l}(n \geqq 10)$ of codomension one is also of general type. Then the image of any exceptional divisor in $\tilde{A}_{n, l}$ via ϕ_{2} cannot be a divisor in $A_{n, 2}{ }^{*}$. This implies that for elimination of points of indeterminancy, the diagram is not necessary, and that ϕ itself must be a morphism. Thus ϕ is an automorphism of $A_{n, l^{*}}{ }^{*}$, which maps the cusps to the cusps. So ϕ
induces an automorphism of $H_{n} / \Gamma_{n}(l)$. Since Γ_{n} is the maximal discrete subgroup of $S p_{2 n}(\boldsymbol{R})$ having $\Gamma_{n}(l)$ as its normal subgroup, ϕ equals an automorphism induced by some element of $\Gamma_{n} / \pm \Gamma_{n}(l)$.

REMARK. By our argument, the assertion in the corollary holds for $n \geqq 2$ if l is sufficiently large.

References

[1] Andrianov, A.V. and Maloletkin, G. N., Behavior of theta series of degree N under modular substitutions, Math. USSR Izvest. 9 (1975), 227-241.
[2] Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, Massachusetts, 1975.
[3] Barnes, E.S. and Cohn, M.J., On the inner product of positive quadratic forms, J. London Math. Soc. (2) 12 (1975), 32-36.
[4] Freitag, E., Stabile Modulformen, Math. Ann. 230 (1977), 197-211.
[5] ——, Die Irreducibilität der Schottky relation (Bemerkungen zu einem Satz von J. Igusa), Archiv der Math. 40 (1983), 255-259.
[6] , Siegelsche Modulfunktionen, Grundlehren 254, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
[7] - Holomorphic tensors on subvarieties of the Siegel modular variety (Automorphic forms of several variables, Taniguchi symposium, Katata, 1983), Birkhäser, Progress in Math. 46 (1984), 93-113.
[8] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109-326.
[9] Mumford, D., On the Kodaira dimension of the Siegel modular variety (Algebraic Geometry-Open problems), Lect. Notes in Math. 997 (1982), 348-375, SpringerVerlag, Berlin, Heidelberg, New York, Tokyo.
[10] Tai, Y., On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math. 68 (1982), 425-439.
[11] Tsuyumine, S., Constructions of modular forms by means of transformation formulas for theta series, Tsukuba J. Math. 3 (1979), 59-80.
[12] —. Theta series of a real algebraic number field, Manuscripta Math. 52 (1985), 131-149.
[13] —— Factorial property of a ring of automorphic forms, Trans. Amer. Math. Soc., 296 (1986), 111-123.

Sigeaki Tsuyumine
SFB 170, "Geometrie und Anolysis"
Mathematisches Institut,
Bunsenstr. 3-5, 3400 Göttingen
WEST GERMANY
current address: Department of Mathematics
Mie University
Tsu, 514
JAPAN

[^0]: Received March 1, 1986.

