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0. Introduction.

This paper is concerned with hypersurfaces with harmonic curvature in a
Riemannian manifold of constant curvature. The classification of curvature-
liked tensor fields on a Riemannian manifold has been studied by K. Nomizu
[10], in which the Codazzi equation for the curvature-liked tensor played an
important role. The subject is also treated by S.Y. Cheng and S.T. Yau [3]
from the different point of view. A Riemannian curvature tensor is said to be
harmonic if the Ricci tensor $S$ satisfies the Codazzi equation $\delta S=0$ , namely, in
local coordinates

(0.1) $R_{ijk}=R_{ikj}$ ,

where $R_{ijk}$ denotes the covariant derivative of the Ricci tensor $R_{ij}$ . Although

the concept is closely related to a parallel Ricci tensor, it was shown by A.
Derdzi\’{n}ski [5] and A. Gray [6] that it is essentially weaker than the latter
one. In the Yang-Mills theory the harmonic curvature is also weighty, and
some studies for these topics are made. In particular, J. P. Bourguignon con-
jectured that on a 4-dimensional compact Riemannian manifold with harmonic
curvature the Ricci tensor must be parallel. This is negatively answered by

A. Derdzi\’{n}ski [4], who gave an example of a 4-dimensional compact Riemannian
manifold with harmonic curvature and non-parallel Ricci tensor. Certain kinds
of Riemannian manifolds with harmonic curvature are investigated by J. P.
Bourguignon [1], A. Derdzi\’{n}ski [5], T. Kashiwada [7], S. Tachibana [13] and
so on. In particular, A. Derdzi\’{n}ski [5] gave also other examples of higher

dimensional Riemannian manifolds.
On the other hand, hypersurfaces with parallel Ricci tensor in a Riemannian

manifold of constant curvature are studied by H. B. Lawson Jr. [8] and I. Mogi
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and one of the present authors [9], and hypersurfaces with harmonic curvature

in a Riemannian manifold of constant curvature are recently investigated by

E. $\hat{0}$machi [11] and one of the present authors [15], who determined the situ-
ation of the principal curvatures, provided that the mean curvature is constant.
Especially, one of the present authors [15] treated also them without the
assumption that the mean curvature is constant.

In this paper a class of hypersurfaces with harmonic curvature in a
Riemannian manifold of constant curvature will be considered. The purpose is
to classify completely hypersurfaces with harmonic curvature in the case where
a multiplicity of each principal curvature is greater than one, and to show that
there exist infinitely many hypersurfaces with harmonic curvature and non-
parallel Ricci tensor.

1. Preliminaries.

In order to fix the notation, the theory of hypersurfaces in a Riemannian
manifold of constant curvature is prepared for. Let $\overline{M}=M^{n+1}(c)$ be an $(n+1)-$

dimensional Riemannian manifold of constant curvature $c$ and let $M$ be an
n-dimensional connected Riemannian manifold. By $\phi$ the isometric immersion
of $M$ into $\overline{M}$ is denoted. When the argument is local, $M$ need not be distin-
guished from $\phi(M)$ and therefore, to simplify the discussion a point $x$ in $M$

may be identified with the point $\phi(x)$ and a tangent vector $X$ at $x$ may be
also identified with the tangent vector $d\phi(X)$ at $\phi(x)$ via the differential $ d\phi$

of $\phi$ .
To begin with, we choose an orthonormal local frame field $\{e_{1}, \cdots, e_{n}, e_{n+1}\}$

in $\overline{M}$ in such a way that, restricted to $M$, the vectors $e_{1},$ $\cdots,$ $e_{n}$ are tangent to
$M$ and hence the other $e_{n+1}$ is normal to $M$. With respect to this field of
frames on $\overline{M}$, let $\{\overline{\omega}_{1}, --, \overline{\omega}_{n},\overline{\omega}_{n+1}\}$ be the dual field. Here and in the sequel,
the following convention on the range of indices are adopted, unless otherwise
stated:

$A,$ $B,$ $\cdots=1,$ $\cdots$ , $n,$ $n+1$ ,

$i,$ $j,$ $\cdots=1,$ $\cdots,$ $n$ .
Then, associated with the frame field $\{e_{1}, \cdots, e_{n}, e_{n+1}\}$ there exist differential
l-forms $\overline{\omega}_{AB}$ on $\overline{M}$, which are called connection forms on $\overline{M}$, so that they satisfy
the following structure equations on $\overline{M}$ :

(1.1) $d\overline{\omega}_{A}+\Sigma_{B}\overline{\omega}_{AB}\wedge\overline{\omega}_{B}=0$ , $\overline{\omega}_{AB}+\overline{\omega}_{BA}=0$ ,

(1.2) $d\overline{\omega}_{AB}+\Sigma_{C}\overline{\omega}_{AC}\wedge\overline{\omega}_{CB}=c\overline{\omega}_{A}\wedge\overline{\omega}_{B}$ .
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By restricting these forms $\overline{\omega}_{A}$ and $\overline{\omega}_{AB}$ to $M$, they are denoted by $\omega_{A}$ and $\omega_{AB}$

without bar, respectively. Then

(1.3) $\omega_{n+1}=0$ .
The metric on $M$ induced from the Riemannian metric $\overline{g}$ on the ambient space
$\overline{M}$ under the immersion $\phi$ is given by $g=2\Sigma_{i}\omega_{i}\omega_{i}$ . Then $\{e_{1}, \cdots , e_{n}\}$ is an
orthonormal local field with respect to the induced metric and $\{\omega_{1}, \cdots , \omega_{n}\}$ is
the dual field, which consists of real valued, linearly independent l-forms on
$M$. They are called canonical forms on the hypersurface $M$. It follows from
(1.3) and the Cartan lemma that

(1.4) $\omega_{n+1.i}=\Sigma_{j}h_{ij}\omega_{j}$ , $h_{ij}=h_{ji}$ .
The quadratic form $\Sigma_{i,j}h_{ij}\omega_{i}\otimes\omega_{j}$ is called a second fundamental form of $M$.
We call also a form $\sigma$ defined by

$\sigma(X, Y)=\Sigma_{i.j}h_{ij}\omega_{i}(X)\omega_{j}(Y)e_{n+1}$

for any vector fields $X$ and $Y$ a second fundamental form on $M$. A linear trans-

formation $A$ on the tangent bundle $TM$ is defined by $g(AX, Y)=g(\sigma(X, Y),$ $e_{n+1}$).

Then $A$ is called a shape operator of $M$. By the structure equations (1.1), (1.2)

and (1.3), the following structure equations on the hypersurface $M$ are given:

(1.5) $d\omega_{i}+\Sigma_{j}\omega_{ij}\wedge\omega_{j}=0$ , $\omega_{ij}+\omega_{ji}=0$ ,

(1.6) $d\omega_{ij}+\Sigma_{k}\omega_{ik}\wedge\omega_{kj}=\Omega_{ij}$ , $\Omega_{ij}=-\frac{1}{2}\Sigma_{k.l}R_{ijkl}\omega_{k}\wedge\omega_{l}$ ,

where $\omega_{ij}$ (resp. $\Omega_{ij}$ and $R_{ijkl}$ ) denotes a connection form (resp. a curvature

form and a curvature tensor) on $M$. From (1.2) and (1.6) the Gauss equation

(1.7) $R_{ijkl}=c(\delta_{il}\delta_{jk}-\delta_{ik}\delta_{jl})+h_{il}h_{jk}-h_{ik}h_{jl}$

is obtained, and the Ricci tensor $R_{ij}$ and the scalar curvature $R$ can be
expressed as follows:

(1.8) $R_{ij}=(n-1)c\delta_{ij}+hh_{ij}-\Sigma_{k}h_{ik}h_{kj}$ ,

(1.9) $R=n(n-1)c+h^{2}-\Sigma_{i.j}h_{ij}h_{ij}$ ,

where $h$ is a function defined by $h=\sum_{i}h_{ii}$ , namely, for the mean curvature $H$

it satisfies $h=nH$.
Now, the covariant derivative $h_{ijk}$ and $R_{ijk}$ of $h_{ij}$ and $R_{ij}$ are respectively

defined by
$\sum_{k}h_{ijk}\omega_{k}=dh_{ij}-\sum_{k}h_{kj}\omega_{ki}-\sum_{k}h_{ik}\omega_{kj}$ ,

(1.10)
$\sum_{k}R_{ijk}\omega_{k}=dR_{ij}-\Sigma_{k}R_{kj}\omega_{ki}-\sum_{k}R_{ik}\omega_{kj}$ .
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Differentiating (1.4) exteriorly, we have the Codazzi equation on the hyper-

surface $M$

(1.11) $h_{ijk}-h_{ikj}=0$ ,

since the ambient space $\overline{M}$ is of constant curvature, and by differentiating (1.8)

exteriorly the covariant derivative $R_{ijk}$ satisfies

$\sum_{k}R_{ijk}\omega_{k}=\sum_{k}(h_{k}h_{ij}+hh_{ijk}-\sum_{l}h_{ilk}h_{lj}-\sum_{l}h_{il}h_{ljk})\omega_{k}$ ,

where $dh=\Sigma_{k}h_{k}\omega_{k}$ , and hence

(1.12) $\sum_{j.i}R_{ijk}\omega_{k}\wedge\omega_{j}=\sum_{j.k}(h_{k}h_{ij}-\Sigma_{l}h_{ilk}h_{lj})\omega_{k}\wedge\omega_{j}$ .
A Riemannian curvature tensor is said to be harmonic if the Ricci tensor

satisfies the Codazzi equation (0.1), namely, $R_{ifk}$ is symmetric with respect

to all indices $i,$ $j$ and $k$ . It follows from (1.12) that it is necessary and suffi-
cient for $M$ to be of harmonic curvature that it satisfies

(1.13) $h_{k}h_{ij}-h_{j}h_{ki}-\Sigma_{l}h_{ilk}h_{lj}+\Sigma_{l}h_{ilj}h_{lk}=0$

for any indices.

2. The gradient of the mean curvature.

Let $M$ be an n-dimensional hypersurface with harmonic curvature in
$M^{n+1}(c)$ and let $H$ be the mean curvature on $M$. In this section, assume that
the gradient of $H$ is an eigenvector associated with an eigenvalue $0$ of the
shape operator $A$ . In other words, we shall assume that it satisfies

(2.1) A $gradH=0$ , namely $\sum_{j}h_{ij}h_{j}=0$

holds true. In this assumption the case where $gradH=0$ is included, that is,
the situation that the mean curvature $H$ has critical points is admitted. For
simplification, a tensor $h_{ij^{m}}$ and a function $h_{m}$ on $M$ for any integer $m$ are
introduced as follows;

$h_{ij^{m}}=\Sigma_{i_{1}\ldots..i_{m-1}}h_{ii_{1}}h_{i_{1}i_{2}}\cdots h_{i_{m-1}j}$

(2.2)
$h_{m}=\Sigma_{i}h_{ii^{m}}$ ,

where $h_{1}=h=nH$. By taking account of the second Bianchi identity, it is
easily seen that the scalar curvature is constant, and therefore the function
$h^{2}-h_{2}$ is constant. This implies

(2.3) $dh_{2}=2hdh$ .
First of all, the generalization of (2.3) is requested. Namely, the relation
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(2.4) $dh_{m}=mh_{m-1}dh$

is true for any integer $m(\geqq 2)$ . In fact, the relation (2.4) is proved by induction
on $m$ . At first, (2.3) shows that the case where $m=2$ in (2.4) holds. By the
property of derivations for the exterior differential, it is easily seen that the
following equation

$dh_{m}=\sum_{i,j}mh_{ij}^{m-1}dh_{ij}$ .
The definition (1.10) of the covariant derivative $h_{ijk}$ and the above equation

imply
$dh_{m}=m\Sigma_{i.j.k}(h_{ijk}\omega_{k}+h_{kj}\omega_{ki}+h_{ik}\omega_{kj})h_{ij^{m-1}}$

$=m\Sigma_{i,j.k}h_{ijk}h_{ij^{m-1}}\omega_{k}+2m\sum_{i.j}h_{ij^{m}}\omega_{ij}$ .
Hence

(2.5) $dh_{m}=m\Sigma_{i.j.k}h_{ijk}h_{ij^{m-1}}\omega_{k}$ ,

because $h_{ij^{m}}$ is symmetric with respect to $i$ and $j$ and the connection form $\omega_{ij}$

is skew-symmetric with respect to $i$ and $j$. This yields

$dh_{m}=m\Sigma_{i.j.k.l}h_{ijk}h_{jl}h_{li}^{m-2}\omega_{k}$

$=m\Sigma_{i,k.l}(\Sigma_{j}h_{ijl}h_{jk}+h_{k}h_{il}-h_{l}h_{ik})h_{lt^{m-2}}\omega_{k}$

$=m(\Sigma_{i,j.k.l}h_{ijl}h_{li^{m-2}}h_{jk}\omega_{k}+h_{m-1}dh-\Sigma_{k.l}h_{kl^{m-1}}h_{l}\omega_{k})$ ,

where we have used (1.10) and (1.13). By the assumption (2.1) the last term in
the right hand side vanishes identically. It follows from the case where $m-1$ in
(2.5) and the supposition of the induction that we get

$\Sigma_{i,j.l}h_{ijl}h_{il}^{m-2}\omega_{j}=\frac{1}{m-1}dh_{m-1}=h_{m-2}dh$ ,

which yields
$\sum_{i,l}h_{ijl}h_{il^{m- 2}}=h_{m-2}dh(e_{j})$ .

This means that the first term in the right hand side of the above equation

vanishes also identically, which completes the proof.
A function $H_{m}$ for any integer $m(\geqq 2)$ is next defined by

(2.6) $H_{m}=\Sigma_{k=0}^{m}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)h^{m-k}h_{k}$ , $h_{0}=1$ .

By making use of (2.4) it follows from the straightforward calculation that

$dH_{m}=\Sigma_{k=0}^{m-1}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)(m-k)h^{m- k- 1}h_{k}dh+\Sigma_{k=1}^{m}(-1)^{k}k\left(\begin{array}{l}m\\k\end{array}\right)h^{m-k}h_{k-1}dh$

$=\sum_{k=0}^{m-1}(-1)^{k}\{(m-k)\left(\begin{array}{l}m\\k\end{array}\right)-(k+1)\left(\begin{array}{l}m\\k+1\end{array}\right)\}h^{m-k-1}h_{k}dh$ ,
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which shows that $H_{m}$ is constant on $M$. Thus we have

LEMMA 2.1. Let $M$ be a hypersurface with harmonic curvature in $M^{n+1}(c)$ .
If the shape operator $A$ of $M$ satisfies A $gradH=0$ , then $H_{m}$ is constant on $M$

for any integer $m(\geqq 2)$ .

By rewritting (2.6), the relation

(2.7) $h_{m}=h^{m}+\sum_{k=2}^{m}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)H_{k}h^{m-k}$

is true for any integer $m\geqq 2$. In fact, the equation is also verified by induction
on $m$ . At first, the case where $m=2$ in (2.6) is considered. Then it shows
that (2.7) holds for $m=2$ . Next, suppose that (2.7) holds for integers less than
$m$ . Since the constant $H_{m}$ is expressed as

$H_{m}=\left(\begin{array}{l}m\\0\end{array}\right)h^{m}-\left(\begin{array}{l}m\\1\end{array}\right)h^{m-1}h+\Sigma_{k=2}^{m-1}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)h^{m-k}h_{k}+(-1)^{m}h_{m}$ ,

the supposition of the induction is applied to the third term in the right hand
side, so it is reduced to

$H_{m}=(-1)^{m}h_{m}+\{\left(\begin{array}{l}m\\0\end{array}\right)-\left(\begin{array}{l}m\\1\end{array}\right)\}h^{m}$

$+\Sigma_{k2}^{m_{=}-1}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)h^{m-k}\{h^{k}+\Sigma_{l=2}^{k}(-1)^{l}\left(\begin{array}{l}k\\l\end{array}\right)H_{l}h^{k-l}\}$

$=(-1)^{m}h_{m}+\Sigma_{k=0}^{m-1}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)h^{m}$

$+\Sigma_{\iota=2}^{m-1}(-1)^{l}\{\Sigma_{k=l}^{m-1}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)\left(\begin{array}{l}k\\l\end{array}\right)\}H_{l}h^{m-l}$ .

On the other hand, the binomial theorem $(1-x)^{m}=\sum_{k=0}^{m}(-1)^{k}(km)x^{k}$ and the

derivative of l-order for variable $x$ yield the following relation for the binomial
coefficients:

$\Sigma_{k=l}^{m}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)\left(\begin{array}{l}k\\l\end{array}\right)=0$ .
Accordingly we have

$H_{m}=(-1)^{m}h_{m}+\{\Sigma_{k=0}^{m}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)-(-1)^{m}\}h_{m}$

$+\Sigma_{l=2}^{m-1}(-1)^{l}\{\Sigma_{k=l}^{m}(-1)^{k}\left(\begin{array}{l}m\\k\end{array}\right)\left(\begin{array}{l}k\\l\end{array}\right)-(-1)^{m}\left(\begin{array}{l}m\\l\end{array}\right)\}H_{l}h^{m- l}$

$=(-1)^{m}h_{m}-(-1)^{m}h^{m}-(-1)^{m}\Sigma_{l=2}^{m-1}(-1)^{l}\left(\begin{array}{l}m\\l\end{array}\right)H_{l}h^{m-l}$ ,
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which implies that (2.7) holds for any integer $m\geqq 2$ .

3. No simple roots.

This section is devoted to the study the case where the hypersurfaces with
harmonic curvature in $M^{n+1}(c)$ has principal curvatures all of whose multi-
plicities are greater than one. The second fundamental form may be diagonal-
ized so that $\sum_{i.j}h_{ij}\omega_{i}\otimes\omega_{j}=\sum_{i}\lambda_{i}\omega_{i}\otimes\omega_{i}$ . A principal curvature $\lambda_{i}$ is called a
simple root at $x$ if the multiplicity at $x$ is equal to 1.

First of all, we prove

LEMMA 3.1. Let $M$ be a hypersurface of $M^{n+1}(c)$ with harmonic curvature.
If the shape operator has no simple roots on $M$, then A $gradH=0$.

PROOF. Since we have $h_{ij}=\lambda_{i}\delta_{ij}$ at a point $x$ on $M$, then equation (1.13)

says that

(3.1) $\lambda_{j}h_{k}\delta_{ij}-\lambda_{k}h_{j}\delta_{ki}+(\lambda_{k}-\lambda_{j})h_{ijk}=0$

at $x$ , where we have used

(3.2) $\Sigma_{i}h_{i}h_{ij}=\lambda_{j}h_{j}$ .
Because of the assumption that the second fundamental form $h_{ij}$ has no simple
roots, for any fixed index $j$ there is an index $k$ different from $j$ such that
$\lambda_{j}=\lambda_{k}$ , and therefore (3.1) reduces to

$\lambda_{j}(h_{k}\delta_{ij}-h_{j}\delta_{ki})=0$

at the point $x$ , which implies that if $x$ is not a zero point of the principal
curvature $\lambda_{j}$, then we have $h_{j}=0$ at $x$ . From these data, we conclude, using
(3.2), that $\sum_{i}h_{i}h_{ij}=0$. This completes the proof of the lemma.

In the next place, using Lemma 3.1 we are going to prove that the mean
curvature $H$ of $M$ is constant.

By taking account of (2.7), it is easily seen that

(3.3) $h_{n+1}-hh_{n}=\Sigma_{k=2}^{n}(-1)^{k}\{\left(\begin{array}{l}n+1\\k\end{array}\right)-\left(\begin{array}{l}n\\k\end{array}\right)\}H_{k}h^{n+1- k}+(-1)^{n+1}H_{n+1}$

$=\Sigma_{k=2^{1}}^{n+}(-1)^{k}\left(\begin{array}{l}n\\k-1\end{array}\right)H_{k}h^{n+1- k}$ ,

which is a polynomial of degree $n-1$ with respect to $h$ with constant coeffi-
cient, because of Lemma 2.1. Since $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ are the principal curvatures of
the second fundamental form $h_{ij},$ $h_{m}$ can be written as
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(3.4) $h_{0}=1$ , $h_{1}=h=\Sigma_{i=1}^{n}\lambda_{i}$ , $h_{m}=\Sigma_{i=1}^{n}\lambda_{i}^{m}$ $m=2,3,$ $\cdots$ .
Now, let $f_{1}(\lambda),$

$\cdots,$
$f_{n}(\lambda)$ be elementary symmetric functions of $\lambda=(\lambda_{1}, \cdots , \lambda_{n})$ ,

namely,

(3.5) $\left\{\begin{array}{l}f_{1}=f_{1}(\lambda)=(-1)\sum_{i}\lambda_{i},\\f_{2}=f_{2}(\lambda)=(-1)^{2}\sum_{i<j}\lambda_{i}\lambda_{j},\\.\\.\\.\\f_{n}=f_{n}(\lambda)=(-1)^{n}\lambda_{1}\lambda_{2}\cdots\lambda_{n}.\end{array}\right.$

Then it is well known that $f_{1},$
$\cdots,$

$f_{n}$ and $h_{1},$
$\cdots,$

$h_{n},$ $h_{n+1}$ are related by the
Newton formulas (cf. [14]) as follows:

(3.6) $\left\{\begin{array}{l}h_{1}+f_{1}=0,\\h_{2}+f_{1}h_{1}+2f_{2}=0,\\.\\.\\.\\h_{n}+f_{1}h_{n-1}+\cdots f_{n-1}h_{1}+nf_{n}=0,\\h_{n+1}+f_{1}h_{n}+\cdots f_{n- 1}h_{2}+h_{1}f_{n}=0.\end{array}\right.$

When these formulas are regarded as the linear homogeneous simultaneous
equations with respect to $(1, f_{1}, \cdots, f_{n})$ , we see, using the principle of elimina-
tion, that the determinant of coefficients vanishes identically. If we take
account of (3.3) and the Laplace expansion to this determinant, we can get

(3.7) $((n+1)!/2)H_{2}h^{n-1}-((n-1)(n+1)!/3)H_{3}h^{n-2}+\cdots=0$ .
Therefore, it follows from (3.7) that $h_{1}$ is the root of the algebraic equation
with constant coefficients unless all $H_{m}$ vanishes. According to Lemma 2.1, we
have

LEMMA 3.2. Let $M$ be a hypersurface with harmonic curvature in $M^{n+1}(c)$ .
If the shape operator $A$ of $M$ satisfies A $gradH=0$, then the mean curvature of
$M$ is constant, provided that there exists a nonzero $H_{m}$ defined by (2.6).

On the other hand, if all $H_{m}\prime s$ are zero and the shape operator of $M$ has
no simple roots, then it is easily derived, by using (2.7), (3.5) and (3.6), that $h$

is also constant.

Combining this fact, Lemma 3.1 and Lemma 3.2, we have

PROPOSITION 3.3. Let $M$ be a hypersurface with harmonic curvature in
$M^{n+1}(c)$ . If the shape operator of $M$ has no simple roots, then the mean cur-
vature of $M$ is constant.
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Under the property of Proposition 3.3, (2.4) means that each principal

curvature of $M$ is constant and hence, by means of Umehara’s theorem [15]

the number of distinct principal curvatures is at most two, say $\lambda$ and $\mu$ , such
that $c+\lambda\mu=0$ , which is applied to the situation where the ambient space is a
sphere, a Euclidean one or a hyperbolic one. So, in the case, the above result
for the number of distinct principal curvatures is simply proved from a different
point of view. In fact, $M$ is an isoparametric hypersurface in the sense of E.
Cartan and the basic identity for principal curvatures shows that the above is
true, provided that $c\leqq 0[2]$ . If $c>0$, then it is evident in [11]. Moreover,

the second fundamental form of $M$ is parallel.
By the way, we shall here give a model of hypersurfaces with parallel

Ricci tensor in a hyperbolic space $H^{n+1}(c)$ (cf. Lawson [8]). $H^{n+\iota}(c)$ is covered
by a coordinate system $\{x_{1}, \cdots , x_{n+1}\}$ such that the Riemannian metric $ds^{2}$ of
$H^{n+1}(c)$ is given by

$ds^{2}=\sum_{\alpha=1}^{n+1}dx_{\alpha}^{2}-(\Sigma_{\alpha=1}^{n+1}x_{\alpha}dx_{\alpha})^{2}/(r^{2}+\sum_{\alpha=1}^{n+1}x_{\alpha}^{2})$ ,

where $r^{2}=-1/c$ . The space $H^{n+1}(c)$ is a complete and simply connected
Riemannian manifold of constant negative curvature $c$ . A family of hyper-

surfaces $M(s)$ in $H^{n+1}(c)$ is defined by

$M(s)=\{x\in H^{n+1}(c):\Sigma_{\alpha=1}^{n+1}x_{\alpha}^{2}=s^{2}-r^{2}\}$

for $s>r$ . Then a hypersurface $M(s)$ for a fixed $s$ is a space of constant
curvature $c_{1}=1/(s^{2}-r^{2})$ in $H^{n+1}(c)$ , which is totally umbilic. As another family
of hypersurfaces $M(t)$ , the following subject is defined:

$M(t)=\{x\in H^{n+1}(c):x_{1}=t\geqq 0\}$ .
The hypersurface $M(t)$ for an arbitrary fixed $t$ is totally umbilic and hence it
is a hyperbolic space of constant curvature $c_{1}=-1/(r^{2}+t^{2})$ . A flat hypersurface
$F^{n}$ is constructed as follows:

$F^{n}=\{x\in H^{n+1}(c):\Sigma_{i=1}^{n}x_{i^{2}}=2rx_{n+1}\}$ .
Then $F^{n}$ is covered by one coordinate system $\{x_{1}, \cdots , x_{n}\}$ such that the Rie-
mannian metric induced from the Riemannian metric in $H^{n+1}(c)$ is given by
$ds^{2}=\sum_{i=1}^{n}dx_{i^{2}}$ . Accordingly, $F^{n}$ is flat. Lastly, a family of product hyper-
surfaces $S^{k}(c_{1})\times H^{n-k}(c_{2})$ in $H^{n+1}(c)$ is considered. They are defined by

$S^{k}(c_{1})\times H^{n-k}(c_{2})=\{x\in H^{n+1}(c):\Sigma_{i=1}^{k+1}x_{i^{2}}=1/c_{1}\}$ ,

where $c_{1}$ is positive constant and $1/c_{1}+1/c_{2}=1/c$ , and $1\leqq k\leqq n-1$ . Any hyper-
surface of the family is the product manifold of a sphere of constant curvature
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$c_{1}$ and a hyperbolic space of constant curvature $c_{2}$ and consequently it has
exactly two distinct principal curvatures $(c_{1}-c)^{1/2}$ and $(c_{2}-c)^{1/2}$ of multiplicity
$k$ and $n-k$ , respectively.

Combining Proposition 3.3 together with Umehara’s theorem, we can see
the following

THEOREM 3.4. Let $M$ be an $n(\geqq 3)$-dimensional complete and simply con-
nected Riemannian manifold with harmonic curvature and let $\phi$ be an isometric
immersion of $M$ into an $(n+1)$ -dimensional complete and simply connected Rieman-
nian manifold of constant curvature $c$. If the multiplicity of each principal
curvature is greater than one, then $\phi(M)$ is isometric to one of the following
spaces:
(1) The case where $c>0$. The great sphere, the small sphere and $S^{k}(c_{1})\times S^{n-k}(c_{2})$ ,

where $2\leqq k\leqq n-2$ and $1/c_{1}+1/c_{2}=1/c$ . In particular, $\phi$ is an imbedding.
(2) The case where $c=0$. The sphere, the Euclidean space and $S^{i}\times R^{n-i}$ .
(3) The case where $c<0$. The sphere, the hyperbolic space, the flat space $F^{n}$ and

$S^{k}(c_{1})\times H^{n-k}(c_{2})$ , where $2\leqq k\leqq n-2$ and $1/c_{1}+1/c_{2}=1/c$ . In particular, $\phi$ is
an imbedding.

4. Hypersurfaces with harmonic curvature and non-parallel Ricci tensor.

This section is devoted to the investigation of examples of hypersurfaces
with harmonic curvature and non-parallel Ricci tensor in $M^{n+1}(c)$ . By taking

account of Theorem 3.4, it is seen that at least one principal curvatures ought
to be of multiplicity 1.

Let $M$ be a hypersurface immersed in $M^{n+1}(c)$ , and assume that the principal
curvatures $\lambda_{i}$ on $M$ satisfy

(4.1) $\left\{\begin{array}{l}\lambda_{1}=\cdots=\lambda_{n- 1}=\lambda\neq 0,\\\lambda_{n}=\mu,\end{array}\right.$

such that $\lambda\neq\mu$ . Without loss of generality, we may suppose that $\lambda>0$. As is
well known, the distribution of the space of eigenvectors corresponding to the
eigenvalue $\lambda$ is completely integrable, because the multiplicity of each principal
curvature is constant. Now, since $\lambda$ and $\mu$ are smooth functions on $M$, we
have, using the covariant derivative $h_{ijk}$ ,

(4.2) $d\lambda=d\lambda_{a}=h_{aaa}\omega_{a}+\sum_{b\neq a}h_{aab}\omega_{b}+h_{aan}\omega_{n}$ ,

where indices $a,$ $b,$ $\cdots$ run over the range $\{1, \cdots , n-1\}$ . Because of $\omega_{n+1a}=$

$\lambda_{a}\omega_{a}$ , we have
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$d\omega_{n+1a}=d\lambda_{a}\wedge\omega_{a}+\lambda_{a}d\omega_{a}$

$=d\lambda\wedge\omega_{a}+\lambda(-\Sigma_{b}\omega_{ab}\wedge\omega_{b}-\omega_{an}\wedge\omega_{n})$ .
On the other hand, the structure equation (1.2) yields

$d\omega_{n+1a}=-\Sigma_{k}\omega_{n+1k}\wedge\omega_{ka}$

$=-\lambda\Sigma_{b}\omega_{b}\wedge\omega_{ba}-\mu\omega_{n}\wedge\omega_{na}$ .
Combining with above two equations, we have

(4.3) $\sum_{b}\lambda_{b}\omega_{b}\wedge\omega_{a}+\{(\mu-\lambda)\omega_{an}-\lambda_{n}\omega_{\alpha}\}\wedge\omega_{n}=0$

,

for a fixed index $a$ , where $d\lambda=\sum_{b}\lambda_{b}\omega_{b}+\lambda_{n}\omega_{n}$ . This implies

(4.4) $\left\{\begin{array}{l}\lambda_{\prime a}=0,\\(\mu-\lambda)\omega_{an}-\lambda_{n}\omega_{a}=\sigma_{a}\omega_{n}\end{array}\right.$

for any index $a$ , where $\sigma_{a}$ is a function on $M$. From (4.2) $and_{J^{\backslash }}[the$ first
equation of (4.4) it follows that we have

$h_{aaa}\omega_{a}+\Sigma_{b\neq a}h_{aab}\omega_{b}+h_{aan}\omega_{n}=\lambda_{n}\omega_{n}$ ,
and hence

$h_{aaa}=0$ , $h_{aab}=0(b\neq a)$ , $h_{aan}=\lambda_{n}$ .
Similarly, for the other $\mu$ we have

$d\mu=\Sigma_{b}h_{nnb}\omega_{b}+h_{nnn}\omega_{n}$ .
Because of $\omega_{n+1n}=\mu\omega_{n}$ , by the same argument as that of $\lambda$ we have

$d\omega_{n+1n}=-\lambda\Sigma_{b}\omega_{nb}\wedge\omega_{b}=d\mu\wedge\omega_{n}-\mu\Sigma_{b}\omega_{nb}\wedge\omega_{b}$ ,
and hence

$d\mu\wedge\omega_{n}+(\lambda-\mu)\Sigma_{b}\omega_{nb}\wedge\omega_{b}=0$ .
This together with (4.4) implies

(4.5) $\mu_{a}=\sigma_{a}$ for any index $a$ .
On the other hand, for distinct indices $a$ and $b$ , we have

(4.6) $h_{abk}=0$ .
In the case where $M$ is with harmonic curvature, principal curvatures $\lambda_{j}$

satisfy (3.1) and because of $ h=(n-1)\lambda+\mu$ and $dh=\sum_{k}h_{k}\omega_{k}$ , we see
$h_{k}=(n-1)\lambda_{k}+\mu_{k}$

for any index $k$ . Considering the case where $j=a$ and $k=n$ in (3.1), one gets

$\lambda h_{n}\delta_{ai}-\mu h_{a}\delta_{ni}-(\lambda-\mu)h_{ani}=0$
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for any indices $a$ and $i$ . This means that it follows from the above equation
and (4.5) that

(4.7) $\left\{\begin{array}{l}\{(n-2)\lambda+\mu\}\lambda_{n}+\lambda\mu_{n}=0,\\\mu h_{a}+(\lambda-\mu)h_{ann}=0.\end{array}\right.$

Consequently, making use of the above relations, we have $h_{a}=\mu_{a}=h_{ann}$ and
$\lambda h_{ann}=0$ , namely

$h_{a}=0$ , $\sigma_{a}=0$ .
Thus, by (4.4) we have

$h_{nnn}=\mu_{n}$ ,
(4.8)

$\omega_{na}=\frac{\lambda_{n}}{\lambda-\mu}\omega_{a}$ .

Accordingly, in order for $M$ to be with harmonic curvature, principal curvatures
$\lambda$ and $\mu$ must satisfy (4.7) and (4.8). Moreover we have $d\omega_{n}=0$, which shows
that we may put

(4.9) $\omega_{n}=d\nu$ .
Thus we have

(4.10) $\omega_{na}=\frac{\lambda^{\prime}}{\lambda-\mu}\omega_{a}$ ,

where the prime denotes the derivative with respect to $v$. This means that the
integral submanifold $M^{n-1}(v)$ corresponding to $\lambda$ and $v$ is umbilic in $M$ and
hence in $M^{n+1}(c)$ .

By the simple calculation the following properties for the Ricci tensor are
obtained:

$R_{abc}=0$ , $R_{ann}=0$ , $R_{abn}=[\{2(n-2)\lambda+\mu\}\lambda_{n}+\lambda\mu_{n}]\delta_{ab}$ ,

$R_{nnn}=(n-1)(\lambda\mu_{n}+\mu\lambda_{n})$ .
Therefore, in order for $M$ to be with parallel Ricci tensor, it is necessary and
sufficient that $\lambda$ and $\mu$ are both constant.

EXAMPLE. $M=S^{n-1}(c_{1})\times S^{1}(c_{2})\subset R^{n}\times R^{2}$ such that $1/c_{1}+1/c_{2}=1$ . The prin-
cipal curvatures $\lambda_{j}$ are given by

$\lambda_{1}=\cdots=\lambda_{n-1}=\lambda=\pm(c_{1}-1)^{1/2}$ ,

$\lambda_{n}=\mu=\mp(c_{2}-1)^{1/2}$ .

Actually $M$ is with harmonic curvature and parallel Ricci tensor. In particular,

when $c_{1}=n/(n-2)$ and $c_{2}=n/2$ , $\lambda$ and $\mu$ are given by $\lambda=\pm(2/(n-2))^{1/2}$ and
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$\mu=\mp((n-2)/2)^{1/2}$ and moreover they satisfy $(n-2)\lambda+\mu=0$. In the latter case,
the scalar curvature $R$ is equal to $n(n-1)$ .

Now, substituting (4.10) into the structure equation

$d\omega_{na}+\Sigma_{b}\omega_{nb}\wedge\omega_{ba}=(c+\lambda\mu)\omega_{n}\wedge\omega_{a}$ ,

we have

$d(\frac{\lambda^{\prime}}{\lambda-\mu}\omega_{a})=-\frac{\lambda^{\prime}}{\lambda-\mu}\sum_{b}\omega_{b}\wedge\omega_{ba}+(c+\lambda\mu)\omega_{n}\wedge\omega_{a}$ .

Since the left hand side is reduced to

$(\frac{\lambda^{\prime}}{\lambda-\mu})^{\prime}\omega_{n}\wedge\omega_{a}+\frac{\lambda^{\prime}}{\lambda-\mu}(-\Sigma_{b}\omega_{ab}\wedge\omega_{b}-\omega_{an}\wedge\omega_{n})$ ,

the following equation is obtained:

$(\frac{\lambda^{\prime}}{\lambda-\mu})^{\prime}-(\frac{\lambda^{\prime}}{\lambda-\mu})^{2}-(c+\lambda\mu)=0$ ,

and hence we have

(4.11) $\lambda^{\parallel}(\lambda-\mu)-\lambda^{\prime}(\lambda^{\prime}-\mu^{\prime})-\lambda^{\prime 2}-(c+\lambda\mu)(\lambda-\mu)^{2}=0$ .
Furthermore, under the condition (4.7) we have

(4.12) $\{(n-2)\lambda+\mu\}\lambda^{\prime}+\lambda\mu^{\prime}=0$ .
Thus the distinct principal curvatures $\lambda$ and $\mu$ satisfy a system of ordinary

differential equations (4.11) and (4.12) of order 2. (4.12) is however equivalent to

$\{(n-2)\lambda^{2}+2\lambda\mu\}^{\prime}=0$ ,

which yields
$(n-2)\lambda^{2}+2\lambda\mu=c_{1}$ ,

where $c_{1}$ is the integral constant. Then the scalar curvature $R$ is given by

$R=n(n-1)c+(n-1)c_{1}$ , and by taking account of (4.12), the ordinary differential
equation of order 2 for $\lambda$ is given by

$4\lambda(n\lambda^{2}-c_{1})\lambda^{\prime\prime}-4\{(n+2)\lambda^{2}+c_{1}\}\lambda^{\prime 2}$

(4.13)
$-(n\lambda^{2}-c_{1})^{2}\{2c+c_{1}-(n-2)\lambda^{2}\}=0$ ,

where $n\lambda^{2}-c_{1}\neq 0$ . Putting $\omega=\lambda^{-2/n},$ $(4.13)$ can be replaced by

$\frac{d^{2}\omega}{dv^{2}}+\frac{(n+1)c_{1}\omega^{n-1}}{n-c_{1}\omega^{n}}\omega^{\prime 2}+\frac{\omega}{2n}(n-c_{1}\omega^{n})(2c+c_{1}-\frac{n-2}{\omega^{n}})=0$ .

Integrating the differential equation of degree 2, we obtain

$(\frac{d\omega}{dv})^{2}=(n-c_{1}\omega^{n})^{2(n+1)/n}\{c_{2}-\frac{1}{n}\int\omega(n-c_{1}\omega^{n})^{-(n+2)/n}(2c+c_{1}-\frac{n-2}{\omega^{n}})d\omega\}$ ,
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where $c_{2}$ is the integral constant. In the case where $c_{1}=0$ , this is reduced to

$(\frac{d\omega}{d\nu})^{2}+\frac{1}{\omega^{n-2}}+c\omega^{2}=c_{2}$ ,

which is the differential equation similar to that treated by T. Otsuki [12].

Thus there exist infinitely many hypersurfaces with harmonic curvature in
$M^{n+1}(c)$ corresponding to the constants $c_{1}$ and $c_{2}$ , and the hypersurfaces have
non-parallel Ricci tensor and the scalar curvatures are equal to $n(n-1)c+(n-1)c_{1}$ .

By the same method as that of Otsuki’s theory, we have the following
construction theorem concerning for hypersurfaces with harmonic curvature.

THEOREM 4.1. Let $M$ be an $n(\geqq 3)$-dimensional hypersurface with scalar
curvature $n(n-1)c$ and the harmonic curvature immersed in $M^{n+1}(c)$ . If it has
exactly two distinct principal curvatures, one’s multiplicity of which is equal to 1,
and the other has no zero points, then the following assertions are true:

(1) $M$ is a locus of moving $(n-1)$-dimensional submanifold $M^{n-1}(v)$ along which
the principal curvature $\lambda$ of multiplicity $n-1$ is constant and which is umbilic
in $M$ and of constant curvature $(d/dv(\log(n\lambda^{2}-c_{1})^{1/n}))^{2}+\lambda^{2}+c$ , where $v$ is the
arc length of an orthogonal trajectory of the family $M^{n- 1}(v)$ , and $\lambda=\lambda(\nu)$

satisfies the ordinary differential equation (4.13) of order 2.
(2) If $\overline{M}=S^{n+1}(c)\subset R^{n+2}$ , then $M^{n-1}(v)$ is contained in an $(n-1)$-dimensional

sphere $S^{n-1}(v)=E^{n}(v)\cap S^{n+1}$ of the intersection of $S^{n+1}$ and an n-dimensional
linear subspace $E^{n}(v)$ in $R^{n+2}$ which is parallel to a fixed $E^{n}$ . The center $q$

moves on a plane curve in a plane $R^{2}$ through the origin of $R^{n+2}$ and orthog-
onal to $E^{n}$ .

COROLLARY. There exist infinitely many hypersurfaces with harmonic cur-
vature and non-parallel Ricci tensor in $M^{n+1}(c)$ , which is not congruent to each
other in it.

In the next place, the condition under which the plane curve figured with
the center $q$ is controlled will be required. Since the matter discussed in [12,

section 4] can be completely applied to this case, the necessary subjects for
the explanation of the statement of the theorem are only quoted from [12],

and the precise argument is omitted. The sphere $S^{n+1}$ is regarded as $S^{n+1}\subset R^{n+2}$

$=R^{n}\times R^{2}$ , and $\{\overline{e}_{1}, \cdots,\overline{e}_{n}\}$ denotes the orthonormal frame in $R^{n}$ at the origin.
Let $C$ be a plane curve in $R^{2}$ with a given surporting function $h(\theta)$ , then the
generic point $q(\theta)$ of $C$ is given by

(4.14) $q(\theta)=e^{i(\theta-?r/2)}(h(\theta)+ih^{\prime}(\theta))$



On complete hypersurfaces 75

by considering $R^{2}$ as the complex plane. The Frenet formula of $C$ at $q(\theta)$ is
given by $\overline{e}_{n+1}=e^{i\theta}$ and $\overline{e}_{n+2}=e^{i(\theta+\pi/2)}$ . Suppose that the curve $C$ is contained
in the unit circle. Then a positive function $\rho$ can be defined by $\rho^{2}=1-\Vert q\Vert^{2}$ ,

and a hypersurface $M$ is defined in $S^{n+1}(1)$ by

(4.15) $p=q+\rho\overline{e}_{n}$ .
A unit vector $e_{n}$ is defined by

$e_{n}=(\rho^{\prime}\overline{e}_{n}+(h+h^{\prime\prime})\overline{e}_{n+1})/((\rho^{\prime})^{2}+(h+h^{\prime\prime})^{2})^{1/2}$ .
If the hypersurface $M$ in $S^{n+1}(1)$ is with harmonic curvature and $R=n(n-1)$ ,
then the function $h$ satisfies the following ordinary differential equation

(4.16) $nh(1-h^{2})\frac{d^{2}h}{d\theta^{2}}+2(\frac{dh}{d\theta})^{2}+(1-h^{2})(nh^{2}-2)=0$ .

Conversely, if a function $h(\theta)$ satisfying (4.16) gives a plane curve by the
equation (4.14) in $R^{2}$ contained in the unit circle, then a hypersurface $M$ with
harmonic curvature and $R=n(n-1)$ is obtained by (4.15). The hypersurfaces
depend completely on properties of $h(\theta)$ .

THEOREM 4.2. Any complete hypersurface $M$ with harmonic curvature and
$R=n(n-1)$ in $S^{n+1}(1)$ of the type of Theorem 4.1 is given by the following
method.
(1) $C$ is a plane curve in $R^{2}$ given by

$q(\theta)=e^{i(\theta-\pi/2)}(h(\theta)+ih^{\prime}(\theta))$ ,

where $h(\theta)$ is a solution of the differential equation (4.16) with $0<h(0)\leqq(2/n)^{1/2}$

and $h^{\prime}(O)=0$.
(2) $M\ni p=(1-h(\theta)^{2}-h^{\prime}(\theta)^{2})^{1/2}\overline{e}_{n}+q(\theta)$ , where $\overline{e}_{n}\in R^{n},$ $\Vert\overline{e}_{n}\Vert=1$ and $S^{n+1}\subset R^{n}\times R^{2}$.

There exist countable number of compact hypersurfaces of this type, and the
special case $S^{n-1}(n/(n-2))\times S^{1}(n/2)$ corresponds to $h(O)=(2/n)^{1/2}$ and $h^{\prime}(O)=0$.
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