ON COMPLETE HYPERSURFACES WITH HARMONIC CURVATURE IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

Dedicated to Professor Morio Obata on his 60th birthday

By

U-Hang KI*, Hisao NAKAGAWA and Masaaki UMEHARA

0. Introduction.

This paper is concerned with hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature. The classification of curvatureliked tensor fields on a Riemannian manifold has been studied by K. Nomizu [10], in which the Codazzi equation for the curvature-liked tensor played an important role. The subject is also treated by S.Y. Cheng and S.T. Yau [3] from the different point of view. A Riemannian curvature tensor is said to be *harmonic* if the Ricci tensor S satisfies the Codazzi equation $\delta S=0$, namely, in local coordinates

where R_{ijk} denotes the covariant derivative of the Ricci tensor R_{ij} . Although the concept is closely related to a parallel Ricci tensor, it was shown by A. Derdziński [5] and A. Gray [6] that it is essentially weaker than the latter one. In the Yang-Mills theory the harmonic curvature is also weighty, and some studies for these topics are made. In particular, J. P. Bourguignon conjectured that on a 4-dimensional compact Riemannian manifold with harmonic curvature the Ricci tensor must be parallel. This is negatively answered by A. Derdziński [4], who gave an example of a 4-dimensional compact Riemannian manifold with harmonic curvature and non-parallel Ricci tensor. Certain kinds of Riemannian manifolds with harmonic curvature are investigated by J. P. Bourguignon [1], A. Derdziński [5], T. Kashiwada [7], S. Tachibana [13] and so on. In particular, A. Derdziński [5] gave also other examples of higher dimensional Riemannian manifolds.

On the other hand, hypersurfaces with parallel Ricci tensor in a Riemannian manifold of constant curvature are studied by H.B. Lawson Jr. [8] and I. Mogi

^{*)} This research was partially supported by JSPS and KOSEF. Received February 5, 1986

and one of the present authors [9], and hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature are recently investigated by E. Ômachi [11] and one of the present authors [15], who determined the situation of the principal curvatures, provided that the mean curvature is constant. Especially, one of the present authors [15] treated also them without the assumption that the mean curvature is constant.

In this paper a class of hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature will be considered. The purpose is to classify completely hypersurfaces with harmonic curvature in the case where a multiplicity of each principal curvature is greater than one, and to show that there exist infinitely many hypersurfaces with harmonic curvature and nonparallel Ricci tensor.

1. Preliminaries.

In order to fix the notation, the theory of hypersurfaces in a Riemannian manifold of constant curvature is prepared for. Let $\overline{M} = M^{n+1}(c)$ be an (n+1)-dimensional Riemannian manifold of constant curvature c and let M be an n-dimensional connected Riemannian manifold. By ϕ the isometric immersion of M into \overline{M} is denoted. When the argument is local, M need not be distinguished from $\phi(M)$ and therefore, to simplify the discussion a point x in M may be identified with the point $\phi(x)$ and a tangent vector X at x may be also identified with the tangent vector $d\phi(X)$ at $\phi(x)$ via the differential $d\phi$ of ϕ .

To begin with, we choose an orthonormal local frame field $\{e_1, \dots, e_n, e_{n+1}\}$ in \overline{M} in such a way that, restricted to M, the vectors e_1, \dots, e_n are tangent to M and hence the other e_{n+1} is normal to M. With respect to this field of frames on \overline{M} , let $\{\overline{\omega}_1, \dots, \overline{\omega}_n, \overline{\omega}_{n+1}\}$ be the dual field. Here and in the sequel, the following convention on the range of indices are adopted, unless otherwise stated:

A, B,
$$\dots = 1, \dots, n, n+1$$
,
i, j, $\dots = 1, \dots, n$.

Then, associated with the frame field $\{e_1, \dots, e_n, e_{n+1}\}$ there exist differential 1-forms $\overline{\omega}_{AB}$ on \overline{M} , which are called *connection forms* on \overline{M} , so that they satisfy the following structure equations on \overline{M} :

(1.1)
$$d\bar{\omega}_A + \sum_B \bar{\omega}_{AB} \wedge \bar{\omega}_B = 0, \quad \bar{\omega}_{AB} + \bar{\omega}_{BA} = 0,$$

$$(1.2) d\bar{\omega}_{AB} + \sum_{C} \bar{\omega}_{AC} \wedge \bar{\omega}_{CB} = c\bar{\omega}_{A} \wedge \bar{\omega}_{B}$$

62

By restricting these forms $\overline{\omega}_A$ and $\overline{\omega}_{AB}$ to M, they are denoted by ω_A and ω_{AB} without bar, respectively. Then

$$\omega_{n+1}=0.$$

The metric on M induced from the Riemannian metric \bar{g} on the ambient space \overline{M} under the immersion ϕ is given by $g=2\sum_i \omega_i \omega_i$. Then $\{e_1, \dots, e_n\}$ is an orthonormal local field with respect to the induced metric and $\{\omega_1, \dots, \omega_n\}$ is the dual field, which consists of real valued, linearly independent 1-forms on M. They are called *canonical* forms on the hypersurface M. It follows from (1.3) and the Cartan lemma that

(1.4)
$$\omega_{n+1,i} = \sum_{j} h_{ij} \omega_j, \qquad h_{ij} = h_{ji}.$$

The quadratic form $\sum_{i,j} h_{ij} \omega_i \otimes \omega_j$ is called a second fundamental form of M. We call also a form σ defined by

$$\sigma(X, Y) = \sum_{i, j} h_{ij} \boldsymbol{\omega}_i(X) \boldsymbol{\omega}_j(Y) \boldsymbol{e}_{n+1}$$

for any vector fields X and Y a second fundamental form on M. A linear transformation A on the tangent bundle TM is defined by $g(AX, Y) = g(\sigma(X, Y), e_{n+1})$. Then A is called a *shape operator* of M. By the structure equations (1.1), (1.2) and (1.3), the following structure equations on the hypersurface M are given:

(1.5)
$$d\omega_i + \sum_j \omega_{ij} \wedge \omega_j = 0, \qquad \omega_{ij} + \omega_{ji} = 0,$$

(1.6)
$$d\omega_{ij} + \sum_{k} \omega_{ik} \wedge \omega_{kj} = \Omega_{ij}, \qquad \Omega_{ij} = -\frac{1}{2} \sum_{k,l} R_{ijkl} \omega_{k} \wedge \omega_{l},$$

where ω_{ij} (resp. Ω_{ij} and R_{ijkl}) denotes a connection form (resp. a curvature form and a curvature tensor) on M. From (1.2) and (1.6) the Gauss equation

(1.7)
$$R_{ijkl} = c(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}) + h_{il}h_{jk} - h_{ik}h_{jl}$$

is obtained, and the Ricci tensor R_{ij} and the scalar curvature R can be expressed as follows:

(1.8)
$$R_{ij} = (n-1)c\delta_{ij} + hh_{ij} - \sum_{k} h_{ik}h_{kj},$$

(1.9)
$$R = n(n-1)c + h^2 - \sum_{i,j} h_{ij} h_{ij},$$

where h is a function defined by $h = \sum_i h_{ii}$, namely, for the mean curvature H it satisfies h = nH.

Now, the covariant derivative h_{ijk} and R_{ijk} of h_{ij} and R_{ij} are respectively defined by

(1.10)
$$\sum_{k} h_{ijk} \omega_{k} = dh_{ij} - \sum_{k} h_{kj} \omega_{ki} - \sum_{k} h_{ik} \omega_{kj},$$
$$\sum_{k} R_{ijk} \omega_{k} = dR_{ij} - \sum_{k} R_{kj} \omega_{ki} - \sum_{k} R_{ik} \omega_{kj}.$$

Differentiating (1.4) exteriorly, we have the Codazzi equation on the hypersurface M

$$(1.11) h_{ijk} - h_{ikj} = 0,$$

since the ambient space \overline{M} is of constant curvature, and by differentiating (1.8) exteriorly the covariant derivative R_{ijk} satisfies

$$\sum_{k} R_{ijk} \omega_{k} = \sum_{k} (h_{k} h_{ij} + h h_{ijk} - \sum_{l} h_{ilk} h_{lj} - \sum_{l} h_{il} h_{ljk}) \omega_{k},$$

where $dh = \sum_{k} h_{k} \omega_{k}$, and hence

(1.12)
$$\sum_{j,k} R_{ijk} \omega_k \wedge \omega_j = \sum_{j,k} (h_k h_{ij} - \sum_l h_{ilk} h_{lj}) \omega_k \wedge \omega_j.$$

A Riemannian curvature tensor is said to be *harmonic* if the Ricci tensor satisfies the Codazzi equation (0.1), namely, R_{ijk} is symmetric with respect to all indices *i*, *j* and *k*. It follows from (1.12) that it is necessary and sufficient for *M* to be of harmonic curvature that it satisfies

(1.13)
$$h_{k}h_{ij} - h_{j}h_{ki} - \sum_{l}h_{ilk}h_{lj} + \sum_{l}h_{ilj}h_{lk} = 0$$

for any indices.

2. The gradient of the mean curvature.

Let M be an *n*-dimensional hypersurface with harmonic curvature in $M^{n+1}(c)$ and let H be the mean curvature on M. In this section, assume that the gradient of H is an eigenvector associated with an eigenvalue 0 of the shape operator A. In other words, we shall assume that it satisfies

(2.1)
$$A \operatorname{grad} H=0$$
, namely $\sum_j h_{ij} h_j = 0$

holds true. In this assumption the case where grad H=0 is included, that is, the situation that the mean curvature H has critical points is admitted. For simplification, a tensor $h_{ij}{}^m$ and a function h_m on M for any integer m are introduced as follows;

(2.2)
$$\begin{aligned} h_{ij}{}^{m} = \sum_{i_{1}, \cdots, i_{m-1}} h_{ii_{1}} h_{i_{1}i_{2}} \cdots h_{i_{m-1}j} \\ h_{m} = \sum_{i} h_{ii}{}^{m}, \end{aligned}$$

where $h_1 = h = nH$. By taking account of the second Bianchi identity, it is easily seen that the scalar curvature is constant, and therefore the function $h^2 - h_2$ is constant. This implies

$$dh_2 = 2hdh.$$

First of all, the generalization of (2.3) is requested. Namely, the relation

On complete hypersurfaces

$$dh_m = mh_{m-1}dh$$

is true for any integer $m \geq 2$. In fact, the relation (2.4) is proved by induction on m. At first, (2.3) shows that the case where m=2 in (2.4) holds. By the property of derivations for the exterior differential, it is easily seen that the following equation

$$dh_m = \sum_{i,j} mh_{ij}^{m-1} dh_{ij}$$
.

The definition (1.10) of the covariant derivative h_{ijk} and the above equation imply

$$dh_m = m \sum_{i, j, k} (h_{ijk} \omega_k + h_{kj} \omega_{ki} + h_{ik} \omega_{kj}) h_{ij}^{m-1}$$

= $m \sum_{i, j, k} h_{ijk} h_{ij}^{m-1} \omega_k + 2m \sum_{i, j} h_{ij}^m \omega_{ij}$.

Hence

$$(2.5) dh_m = m \sum_{i,j,k} h_{ijk} h_{ij}^{m-1} \boldsymbol{\omega}_k,$$

because h_{ij}^{m} is symmetric with respect to *i* and *j* and the connection form ω_{ij} is skew-symmetric with respect to *i* and *j*. This yields

$$dh_{m} = m \sum_{i, j, k, l} h_{ijk} h_{jl} h_{li}^{m-2} \omega_{k}$$

= $m \sum_{i, k, l} (\sum_{j} h_{ijl} h_{jk} + h_{k} h_{il} - h_{l} h_{ik}) h_{li}^{m-2} \omega_{k}$
= $m (\sum_{i, j, k, l} h_{ijl} h_{li}^{m-2} h_{jk} \omega_{k} + h_{m-1} dh - \sum_{k, l} h_{kl}^{m-1} h_{l} \omega_{k}),$

where we have used (1.10) and (1.13). By the assumption (2.1) the last term in the right hand side vanishes identically. It follows from the case where m-1 in (2.5) and the supposition of the induction that we get

$$\sum_{i,j,l} h_{ijl} h_{il}^{m-2} \omega_j = \frac{1}{m-1} dh_{m-1} = h_{m-2} dh$$
,

which yields

$$\sum_{i,l} h_{ijl} h_{il}^{m-2} = h_{m-2} dh(e_j).$$

This means that the first term in the right hand side of the above equation vanishes also identically, which completes the proof.

A function H_m for any integer $m (\geq 2)$ is next defined by

(2.6)
$$H_m = \sum_{k=0}^m (-1)^k \binom{m}{k} h_k, \quad h_0 = 1$$

By making use of (2.4) it follows from the straightforward calculation that

$$dH_{m} = \sum_{k=0}^{m-1} (-1)^{k} {m \choose k} (m-k) h^{m-k-1} h_{k} dh + \sum_{k=1}^{m} (-1)^{k} k {m \choose k} h^{m-k} h_{k-1} dh$$
$$= \sum_{k=0}^{m-1} (-1)^{k} \left\{ (m-k) {m \choose k} - (k+1) {m \choose k+1} \right\} h^{m-k-1} h_{k} dh ,$$

65

which shows that H_m is constant on M. Thus we have

LEMMA 2.1. Let M be a hypersurface with harmonic curvature in $M^{n+1}(c)$. If the shape operator A of M satisfies A grad H=0, then H_m is constant on M for any integer $m \geq 2$.

By rewritting (2.6), the relation

(2.7)
$$h_{m} = h^{m} + \sum_{k=2}^{m} (-1)^{k} {m \choose k} H_{k} h^{m-k}$$

is true for any integer $m \ge 2$. In fact, the equation is also verified by induction on *m*. At first, the case where m=2 in (2.6) is considered. Then it shows that (2.7) holds for m=2. Next, suppose that (2.7) holds for integers less than *m*. Since the constant H_m is expressed as

$$H_{m} = {\binom{m}{0}} h^{m} - {\binom{m}{1}} h^{m-1} h + \sum_{k=2}^{m-1} (-1)^{k} {\binom{m}{k}} h^{m-k} h_{k} + (-1)^{m} h_{m}$$

the supposition of the induction is applied to the third term in the right hand side, so it is reduced to

$$\begin{split} H_{m} &= (-1)^{m} h_{m} + \left\{ \binom{m}{0} - \binom{m}{1} \right\} h^{m} \\ &+ \sum_{k=2}^{m-1} (-1)^{k} \binom{m}{k} h^{m-k} \left\{ h^{k} + \sum_{l=2}^{k} (-1)^{l} \binom{k}{l} H_{l} h^{k-l} \right\} \\ &= (-1)^{m} h_{m} + \sum_{k=0}^{m-1} (-1)^{k} \binom{m}{k} h^{m} \\ &+ \sum_{l=2}^{m-1} (-1)^{l} \left\{ \sum_{k=l}^{m-1} (-1)^{k} \binom{m}{k} \binom{k}{l} \right\} H_{l} h^{m-l} \,. \end{split}$$

On the other hand, the binomial theorem $(1-x)^m = \sum_{k=0}^m (-1)^k \binom{m}{k} x^k$ and the derivative of *l*-order for variable x yield the following relation for the binomial coefficients:

$$\sum_{k=l}^{m} (-1)^{k} \binom{m}{k} \binom{k}{l} = 0.$$

Accordingly we have

$$\begin{split} H_{m} &= (-1)^{m} h_{m} + \left\{ \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} - (-1)^{m} \right\} h_{m} \\ &+ \sum_{l=2}^{m-1} (-1)^{l} \left\{ \sum_{k=l}^{m} (-1)^{k} \binom{m}{k} \binom{k}{l} - (-1)^{m} \binom{m}{l} \right\} H_{l} h^{m-l} \\ &= (-1)^{m} h_{m} - (-1)^{m} h^{m} - (-1)^{m} \sum_{l=2}^{m-1} (-1)^{l} \binom{m}{l} H_{l} h^{m-l} , \end{split}$$

which implies that (2.7) holds for any integer $m \ge 2$.

3. No simple roots.

This section is devoted to the study the case where the hypersurfaces with harmonic curvature in $M^{n+1}(c)$ has principal curvatures all of whose multiplicities are greater than one. The second fundamental form may be diagonalized so that $\sum_{i,j} h_{ij} \omega_i \otimes \omega_j = \sum_i \lambda_i \omega_i \otimes \omega_i$. A principal curvature λ_i is called a simple root at x if the multiplicity at x is equal to 1.

First of all, we prove

LEMMA 3.1. Let M be a hypersurface of $M^{n+1}(c)$ with harmonic curvature. If the shape operator has no simple roots on M, then A grad H=0.

PROOF. Since we have $h_{ij} = \lambda_i \delta_{ij}$ at a point x on M, then equation (1.13) says that

(3.1)
$$\lambda_{j}h_{k}\delta_{ij}-\lambda_{k}h_{j}\delta_{ki}+(\lambda_{k}-\lambda_{j})h_{ijk}=0$$

at x, where we have used

$$(3.2) \qquad \qquad \sum_{i} h_{i} h_{ij} = \lambda_{j} h_{j}.$$

Because of the assumption that the second fundamental form h_{ij} has no simple roots, for any fixed index j there is an index k different from j such that $\lambda_j = \lambda_k$, and therefore (3.1) reduces to

$$\lambda_j(h_k\delta_{ij}-h_j\delta_{ki})=0$$

at the point x, which implies that if x is not a zero point of the principal curvature λ_j , then we have $h_j=0$ at x. From these data, we conclude, using (3.2), that $\sum_i h_i h_{ij}=0$. This completes the proof of the lemma.

In the next place, using Lemma 3.1 we are going to prove that the mean curvature H of M is constant.

By taking account of (2.7), it is easily seen that

(3.3)
$$h_{n+1} - hh_n = \sum_{k=2}^n (-1)^k \left\{ \binom{n+1}{k} - \binom{n}{k} \right\} H_k h^{n+1-k} + (-1)^{n+1} H_{n+1}$$
$$= \sum_{k=2}^{n+1} (-1)^k \binom{n}{k-1} H_k h^{n+1-k} ,$$

which is a polynomial of degree n-1 with respect to h with constant coefficient, because of Lemma 2.1. Since $\lambda_1, \dots, \lambda_n$ are the principal curvatures of the second fundamental form h_{ij} , h_m can be written as

(3.4) $h_0 = 1$, $h_1 = h = \sum_{i=1}^n \lambda_i$, $h_m = \sum_{i=1}^n \lambda_i^m$, $m = 2, 3, \cdots$.

Now, let $f_1(\lambda)$, \cdots , $f_n(\lambda)$ be elementary symmetric functions of $\lambda = (\lambda_1, \dots, \lambda_n)$, namely,

(3.5)
$$\begin{cases} f_1 = f_1(\lambda) = (-1) \sum_i \lambda_i , \\ f_2 = f_2(\lambda) = (-1)^2 \sum_{i < j} \lambda_i \lambda_j , \\ \vdots \\ f_n = f_n(\lambda) = (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n . \end{cases}$$

Then it is well known that f_1, \dots, f_n and h_1, \dots, h_n, h_{n+1} are related by the Newton formulas (cf. [14]) as follows:

(3.6)
$$\begin{cases} h_1 + f_1 = 0, \\ h_2 + f_1 h_1 + 2f_2 = 0, \\ \vdots \\ h_n + f_1 h_{n-1} + \cdots + f_{n-1} h_1 + nf_n = 0, \\ h_{n+1} + f_1 h_n + \cdots + f_{n-1} h_2 + h_1 f_n = 0. \end{cases}$$

When these formulas are regarded as the linear homogeneous simultaneous equations with respect to $(1, f_1, \dots, f_n)$, we see, using the principle of elimination, that the determinant of coefficients vanishes identically. If we take account of (3.3) and the Laplace expansion to this determinant, we can get

$$(3.7) \qquad ((n+1)!/2)H_2h^{n-1} - ((n-1)(n+1)!/3)H_3h^{n-2} + \dots = 0.$$

Therefore, it follows from (3.7) that h_1 is the root of the algebraic equation with constant coefficients unless all H_m vanishes. According to Lemma 2.1, we have

LEMMA 3.2. Let M be a hypersurface with harmonic curvature in $M^{n+1}(c)$. If the shape operator A of M satisfies A grad H=0, then the mean curvature of M is constant, provided that there exists a nonzero H_m defined by (2.6).

On the other hand, if all H_m 's are zero and the shape operator of M has no simple roots, then it is easily derived, by using (2.7), (3.5) and (3.6), that h is also constant.

Combining this fact, Lemma 3.1 and Lemma 3.2, we have

PROPOSITION 3.3. Let M be a hypersurface with harmonic curvature in $M^{n+1}(c)$. If the shape operator of M has no simple roots, then the mean curvature of M is constant.

68

Under the property of Proposition 3.3, (2.4) means that each principal curvature of M is constant and hence, by means of Umehara's theorem [15] the number of distinct principal curvatures is at most two, say λ and μ , such that $c+\lambda\mu=0$, which is applied to the situation where the ambient space is a sphere, a Euclidean one or a hyperbolic one. So, in the case, the above result for the number of distinct principal curvatures is simply proved from a different point of view. In fact, M is an isoparametric hypersurface in the sense of E. Cartan and the basic identity for principal curvatures shows that the above is true, provided that $c \leq 0$ [2]. If c > 0, then it is evident in [11]. Moreover, the second fundamental form of M is parallel.

By the way, we shall here give a model of hypersurfaces with parallel Ricci tensor in a hyperbolic space $H^{n+1}(c)$ (cf. Lawson [8]). $H^{n+1}(c)$ is covered by a coordinate system $\{x_1, \dots, x_{n+1}\}$ such that the Riemannian metric ds^2 of $H^{n+1}(c)$ is given by

$$ds^{2} = \sum_{\alpha=1}^{n+1} dx_{\alpha}^{2} - (\sum_{\alpha=1}^{n+1} x_{\alpha} dx_{\alpha})^{2} / (r^{2} + \sum_{\alpha=1}^{n+1} x_{\alpha}^{2}),$$

where $r^2 = -1/c$. The space $H^{n+1}(c)$ is a complete and simply connected Riemannian manifold of constant negative curvature c. A family of hypersurfaces M(s) in $H^{n+1}(c)$ is defined by

$$M(s) = \{x \in H^{n+1}(c) : \sum_{\alpha=1}^{n+1} x_{\alpha}^{2} = s^{2} - r^{2}\}$$

for s > r. Then a hypersurface M(s) for a fixed s is a space of constant curvature $c_1 = 1/(s^2 - r^2)$ in $H^{n+1}(c)$, which is totally umbilic. As another family of hypersurfaces M(t), the following subject is defined:

$$M(t) = \{x \in H^{n+1}(c) : x_1 = t \ge 0\}.$$

The hypersurface M(t) for an arbitrary fixed t is totally umbilic and hence it is a hyperbolic space of constant curvature $c_1 = -1/(r^2 + t^2)$. A flat hypersurface F^n is constructed as follows:

$$F^{n} = \{x \in H^{n+1}(c) : \sum_{i=1}^{n} x_{i}^{2} = 2r x_{n+1}\}$$
.

Then F^n is covered by one coordinate system $\{x_1, \dots, x_n\}$ such that the Riemannian metric induced from the Riemannian metric in $H^{n+1}(c)$ is given by $ds^2 = \sum_{i=1}^n dx_i^2$. Accordingly, F^n is flat. Lastly, a family of product hypersurfaces $S^k(c_1) \times H^{n-k}(c_2)$ in $H^{n+1}(c)$ is considered. They are defined by

$$S^{k}(c_{1}) \times H^{n-k}(c_{2}) = \{x \in H^{n+1}(c) : \sum_{i=1}^{k+1} x_{i}^{2} = 1/c_{1}\},\$$

where c_1 is positive constant and $1/c_1+1/c_2=1/c$, and $1 \le k \le n-1$. Any hypersurface of the family is the product manifold of a sphere of constant curvature c_1 and a hyperbolic space of constant curvature c_2 and consequently it has exactly two distinct principal curvatures $(c_1-c)^{1/2}$ and $(c_2-c)^{1/2}$ of multiplicity k and n-k, respectively.

Combining Proposition 3.3 together with Umehara's theorem, we can see the following

THEOREM 3.4. Let M be an $n \geq 3$ -dimensional complete and simply connected Riemannian manifold with harmonic curvature and let ϕ be an isometric immersion of M into an (n+1)-dimensional complete and simply connected Riemannian manifold of constant curvature c. If the multiplicity of each principal curvature is greater than one, then $\phi(M)$ is isometric to one of the following spaces:

- (1) The case where c > 0. The great sphere, the small sphere and $S^{k}(c_{1}) \times S^{n-k}(c_{2})$, where $2 \le k \le n-2$ and $1/c_{1}+1/c_{2}=1/c$. In particular, ϕ is an imbedding.
- (2) The case where c=0. The sphere, the Euclidean space and $S^k \times R^{n-k}$.
- (3) The case where c < 0. The sphere, the hyperbolic space, the flat space F^n and $S^k(c_1) \times H^{n-k}(c_2)$, where $2 \le k \le n-2$ and $1/c_1+1/c_2=1/c$. In particular, ϕ is an imbedding.

4. Hypersurfaces with harmonic curvature and non-parallel Ricci tensor.

This section is devoted to the investigation of examples of hypersurfaces with harmonic curvature and non-parallel Ricci tensor in $M^{n+1}(c)$. By taking account of Theorem 3.4, it is seen that at least one principal curvatures ought to be of multiplicity 1.

Let M be a hypersurface immersed in $M^{n+1}(c)$, and assume that the principal curvatures λ_i on M satisfy

(4.1)
$$\begin{cases} \lambda_1 = \cdots = \lambda_{n-1} = \lambda \neq 0, \\ \lambda_n = \mu, \end{cases}$$

such that $\lambda \neq \mu$. Without loss of generality, we may suppose that $\lambda > 0$. As is well known, the distribution of the space of eigenvectors corresponding to the eigenvalue λ is completely integrable, because the multiplicity of each principal curvature is constant. Now, since λ and μ are smooth functions on M, we have, using the covariant derivative h_{ijk} ,

$$(4.2) d\lambda = d\lambda_a = h_{aaa}\omega_a + \sum_{b\neq a} h_{aab}\omega_b + h_{aaa}\omega_a,$$

where indices a, b, \cdots run over the range $\{1, \cdots, n-1\}$. Because of $\omega_{n+1} = \lambda_a \omega_a$, we have

$$d\omega_{n+1\ a} = d\lambda_a \wedge \omega_a + \lambda_a d\omega_a$$

= $d\lambda \wedge \omega_a + \lambda (-\sum_b \omega_{ab} \wedge \omega_b - \omega_{an} \wedge \omega_n).$

On the other hand, the structure equation (1.2) yields

$$d\omega_{n+1\ a} = -\sum_{k} \omega_{n+1\ k} \wedge \omega_{ka}$$
$$= -\lambda \sum_{b} \omega_{b} \wedge \omega_{ba} - \mu \omega_{n} \wedge \omega_{na}$$

Combining with above two equations, we have

(4.3)
$$\sum_{b} \lambda_{,b} \omega_{b} \wedge \omega_{a} + \{(\mu - \lambda) \omega_{an} - \lambda_{,n} \omega_{a}\} \wedge \omega_{n} = 0$$

for a fixed index a, where $d\lambda = \sum_b \lambda_{,b} \omega_b + \lambda_{,n} \omega_n$. This implies

(4.4)
$$\begin{cases} \lambda, a=0, \\ (\mu-\lambda)\omega_{an}-\lambda, a\omega_{a}=\sigma_{a}\omega_{n} \end{cases}$$

for any index a, where σ_a is a function on M. From (4.2) and the first equation of (4.4) it follows that we have

$$h_{aaa}\omega_a + \sum_{b\neq a} h_{aab}\omega_b + h_{aaa}\omega_a = \lambda, {}_{a}\omega_a$$
,

and hence

$$h_{aaa}=0$$
, $h_{aab}=0$ $(b\neq a)$, $h_{aan}=\lambda$, h_{aan}

Similarly, for the other μ we have

$$d\mu = \sum_{b} h_{nnb} \omega_{b} + h_{nnn} \omega_{n}$$

Because of $\omega_{n+1} = \mu \omega_n$, by the same argument as that of λ we have

$$doldsymbol{\omega}_{n+1}$$
 $_{n}$ $=$ $-\lambda \sum_{b} oldsymbol{\omega}_{nb} \wedge oldsymbol{\omega}_{b}$ $=$ $d\mu \wedge oldsymbol{\omega}_{n} - \mu \sum_{b} oldsymbol{\omega}_{nb} \wedge oldsymbol{\omega}_{b}$,

and hence

 $d\mu\wedge\omega_n+(\lambda-\mu)\sum_b\omega_{nb}\wedge\omega_b=0$.

This together with (4.4) implies

(4.5)
$$\mu_{a} = \sigma_{a}$$
 for any index a.

On the other hand, for distinct indices a and b, we have

(4.6)
$$h_{abk} = 0.$$

In the case where M is with harmonic curvature, principal curvatures λ_j satisfy (3.1) and because of $h=(n-1)\lambda+\mu$ and $dh=\sum_k h_k \omega_k$, we see

$$h_k = (n-1)\lambda, {}_k + \mu, {}_k$$

for any index k. Considering the case where j=a and k=n in (3.1), one gets

$$\lambda h_n \delta_{ai} - \mu h_a \delta_{ni} - (\lambda - \mu) h_{ani} = 0$$

for any indices a and i. This means that it follows from the above equation and (4.5) that

(4.7)
$$\begin{cases} \{(n-2)\lambda+\mu\}\lambda, n+\lambda\mu, n=0,\\ \mu h_a+(\lambda-\mu)h_{ann}=0. \end{cases}$$

Consequently, making use of the above relations, we have $h_a = \mu_{,a} = h_{ann}$ and $\lambda h_{ann} = 0$, namely

 $h_a=0$, $\sigma_a=0$.

Thus, by (4.4) we have

(4.8)
$$h_{nnn} = \mu, n,$$
$$\omega_{na} = \frac{\lambda, n}{\lambda - \mu} \omega_{a}$$

Accordingly, in order for M to be with harmonic curvature, principal curvatures λ and μ must satisfy (4.7) and (4.8). Moreover we have $d\omega_n=0$, which shows that we may put

$$\omega_n = dv.$$

Thus we have

(4.10)
$$\omega_{na} = \frac{\lambda'}{\lambda - \mu} \omega_a ,$$

•

where the prime denotes the derivative with respect to v. This means that the integral submanifold $M^{n-1}(v)$ corresponding to λ and v is umbilic in M and hence in $M^{n+1}(c)$.

By the simple calculation the following properties for the Ricci tensor are obtained:

$$R_{abc}=0, \quad R_{ann}=0, \quad R_{abn}=[\{2(n-2)\lambda+\mu\}\lambda, n+\lambda\mu, n]\delta_{ab},$$
$$R_{nnn}=(n-1)(\lambda\mu, n+\mu\lambda, n).$$

Therefore, in order for M to be with parallel Ricci tensor, it is necessary and sufficient that λ and μ are both constant.

EXAMPLE. $M=S^{n-1}(c_1)\times S^1(c_2)\subset \mathbb{R}^n\times \mathbb{R}^2$ such that $1/c_1+1/c_2=1$. The principal curvatures λ_j are given by

$$\lambda_1 = \cdots = \lambda_{n-1} = \lambda = \pm (c_1 - 1)^{1/2},$$

 $\lambda_n = \mu = \mp (c_2 - 1)^{1/2}.$

Actually *M* is with harmonic curvature and parallel Ricci tensor. In particular, when $c_1 = n/(n-2)$ and $c_2 = n/2$, λ and μ are given by $\lambda = \pm (2/(n-2))^{1/2}$ and

 $\mu = \mp ((n-2)/2)^{1/2}$ and moreover they satisfy $(n-2)\lambda + \mu = 0$. In the latter case, the scalar curvature R is equal to n(n-1).

Now, substituting (4.10) into the structure equation

$$doldsymbol{\omega}_{n\,a} + \sum_b oldsymbol{\omega}_{n\,b} \wedge oldsymbol{\omega}_{b\,a} \!=\! (c\!+\!\lambda\mu)oldsymbol{\omega}_n \wedge oldsymbol{\omega}_a$$
 ,

we have

$$d\left(\frac{\lambda'}{\lambda-\mu}\omega_{a}\right) = -\frac{\lambda'}{\lambda-\mu}\sum_{b}\omega_{b}\wedge\omega_{ba} + (c+\lambda\mu)\omega_{a}\wedge\omega_{a}.$$

Since the left hand side is reduced to

$$\left(\frac{\lambda'}{\lambda-\mu}\right)'\omega_n\wedge\omega_a+\frac{\lambda'}{\lambda-\mu}(-\sum_b\omega_{ab}\wedge\omega_b-\omega_{an}\wedge\omega_n),$$

the following equation is obtained:

$$\left(\frac{\lambda'}{\lambda-\mu}\right)' - \left(\frac{\lambda'}{\lambda-\mu}\right)^2 - (c+\lambda\mu) = 0$$

and hence we have

(4.11)
$$\lambda''(\lambda-\mu)-\lambda'(\lambda'-\mu')-\lambda'^2-(c+\lambda\mu)(\lambda-\mu)^2=0.$$

Furthermore, under the condition (4.7) we have

(4.12)
$$\{(n-2)\lambda+\mu\}\lambda'+\lambda\mu'=0.$$

Thus the distinct principal curvatures λ and μ satisfy a system of ordinary differential equations (4.11) and (4.12) of order 2. (4.12) is however equivalent to

$$\{(n-2)\lambda^2+2\lambda\mu\}'=0$$
,

which yields

$$(n-2)\lambda^2+2\lambda\mu=c_1$$
,

where c_1 is the integral constant. Then the scalar curvature R is given by $R=n(n-1)c+(n-1)c_1$, and by taking account of (4.12), the ordinary differential equation of order 2 for λ is given by

(4.13)
$$4\lambda(n\lambda^{2}-c_{1})\lambda''-4\{(n+2)\lambda^{2}+c_{1}\}\lambda'^{2}-(n\lambda^{2}-c_{1})^{2}\{2c+c_{1}-(n-2)\lambda^{2}\}=0,$$

where $n\lambda^2 - c_1 \neq 0$. Putting $\omega = \lambda^{-2/n}$, (4.13) can be replaced by

$$\frac{d^2\omega}{dv^2} + \frac{(n+1)c_1\omega^{n-1}}{n-c_1\omega^n}\omega'^2 + \frac{\omega}{2n}(n-c_1\omega^n)\Big(2c+c_1-\frac{n-2}{\omega^n}\Big) = 0.$$

Integrating the differential equation of degree 2, we obtain

$$\left(\frac{d\boldsymbol{\omega}}{d\boldsymbol{v}}\right)^2 = (n-c_1\boldsymbol{\omega}^n)^{2(n+1)/n} \left\{ c_2 - \frac{1}{n} \int \boldsymbol{\omega} (n-c_1\boldsymbol{\omega}^n)^{-(n+2)/n} \left(2c + c_1 - \frac{n-2}{\boldsymbol{\omega}^n} \right) d\boldsymbol{\omega} \right\},$$

where c_2 is the integral constant. In the case where $c_1=0$, this is reduced to

$$\left(\frac{d\omega}{dv}
ight)^2+\frac{1}{\omega^{n-2}}+c\omega^2=c_2$$
 ,

which is the differential equation similar to that treated by T. Otsuki [12]. Thus there exist infinitely many hypersurfaces with harmonic curvature in $M^{n+1}(c)$ corresponding to the constants c_1 and c_2 , and the hypersurfaces have non-parallel Ricci tensor and the scalar curvatures are equal to $n(n-1)c+(n-1)c_1$.

By the same method as that of Otsuki's theory, we have the following construction theorem concerning for hypersurfaces with harmonic curvature.

THEOREM 4.1. Let M be an $n \ (\geq 3)$ -dimensional hypersurface with scalar curvature n(n-1)c and the harmonic curvature immersed in $M^{n+1}(c)$. If it has exactly two distinct principal curvatures, one's multiplicity of which is equal to 1, and the other has no zero points, then the following assertions are true:

- M is a locus of moving (n-1)-dimensional submanifold Mⁿ⁻¹(v) along which the principal curvature λ of multiplicity n-1 is constant and which is umbilic in M and of constant curvature (d/dv(log(nλ²-c₁)^{1/n}))²+λ²+c, where v is the arc length of an orthogonal trajectory of the family Mⁿ⁻¹(v), and λ=λ(v) satisfies the ordinary differential equation (4.13) of order 2.
- (2) If $\overline{M}=S^{n+1}(c)\subset \mathbb{R}^{n+2}$, then $M^{n-1}(v)$ is contained in an (n-1)-dimensional sphere $S^{n-1}(v)=E^n(v)\cap S^{n+1}$ of the intersection of S^{n+1} and an n-dimensional linear subspace $E^n(v)$ in \mathbb{R}^{n+2} which is parallel to a fixed E^n . The center q moves on a plane curve in a plane \mathbb{R}^2 through the origin of \mathbb{R}^{n+2} and orthogonal to E^n .

COROLLARY. There exist infinitely many hypersurfaces with harmonic curvature and non-parallel Ricci tensor in $M^{n+1}(c)$, which is not congruent to each other in it.

In the next place, the condition under which the plane curve figured with the center q is controlled will be required. Since the matter discussed in [12, section 4] can be completely applied to this case, the necessary subjects for the explanation of the statement of the theorem are only quoted from [12], and the precise argument is omitted. The sphere S^{n+1} is regarded as $S^{n+1} \subset \mathbb{R}^{n+2}$ $=\mathbb{R}^n \times \mathbb{R}^2$, and $\{\bar{e}_1, \dots, \bar{e}_n\}$ denotes the orthonormal frame in \mathbb{R}^n at the origin. Let C be a plane curve in \mathbb{R}^2 with a given surporting function $h(\theta)$, then the generic point $q(\theta)$ of C is given by

(4.14)
$$q(\theta) = e^{i(\theta - \pi/2)}(h(\theta) + ih'(\theta))$$

by considering \mathbb{R}^2 as the complex plane. The Frenet formula of C at $q(\theta)$ is given by $\overline{e}_{n+1} = e^{i\theta}$ and $\overline{e}_{n+2} = e^{i(\theta + \pi/2)}$. Suppose that the curve C is contained in the unit circle. Then a positive function ρ can be defined by $\rho^2 = 1 - ||q||^2$, and a hypersurface M is defined in $S^{n+1}(1)$ by

$$(4.15) \qquad \qquad p = q + \rho \bar{e}_n \,.$$

A unit vector e_n is defined by

$$e_n = (\rho' \bar{e}_n + (h + h'') \bar{e}_{n+1}) / ((\rho')^2 + (h + h'')^2)^{1/2}.$$

If the hypersurface M in $S^{n+1}(1)$ is with harmonic curvature and R=n(n-1), then the function h satisfies the following ordinary differential equation

(4.16)
$$nh(1-h^2)\frac{d^2h}{d\theta^2} + 2\left(\frac{dh}{d\theta}\right)^2 + (1-h^2)(nh^2-2) = 0.$$

Conversely, if a function $h(\theta)$ satisfying (4.16) gives a plane curve by the equation (4.14) in \mathbb{R}^2 contained in the unit circle, then a hypersurface M with harmonic curvature and R=n(n-1) is obtained by (4.15). The hypersurfaces depend completely on properties of $h(\theta)$.

THEOREM 4.2. Any complete hypersurface M with harmonic curvature and R=n(n-1) in $S^{n+1}(1)$ of the type of Theorem 4.1 is given by the following method.

(1) C is a plane curve in \mathbb{R}^2 given by

$$q(\theta) = e^{i(\theta - \pi/2)}(h(\theta) + ih'(\theta)),$$

where $h(\theta)$ is a solution of the differential equation (4.16) with $0 < h(0) \le (2/n)^{1/2}$ and h'(0)=0.

(2)
$$M \ni p = (1 - h(\theta)^2 - h'(\theta)^2)^{1/2} \overline{e}_n + q(\theta)$$
, where $\overline{e}_n \in \mathbb{R}^n$, $\|\overline{e}_n\| = 1$ and $S^{n+1} \subset \mathbb{R}^n \times \mathbb{R}^2$.

There exist countable number of compact hypersurfaces of this type, and the special case $S^{n-1}(n/(n-2)) \times S^{1}(n/2)$ corresponds to $h(0) = (2/n)^{1/2}$ and h'(0) = 0.

Bibliography

- [1] J.P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique est sont d'Einstein, Invent. Math., 63 (1981), 263-286.
- [2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. di Mat., 17 (1938), 177-191.
- [3] S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
- [4] A. Derdziński, Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Global Differential Geometry and Global Analysis, Lecture notes in Math., Springer, 838 (1979), 126-128.

- [5] A. Dedziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z., 172 (1980), 273-280.
- [6] A. Gray, Einstein-like manifolds which are not Einstein, Geometrae Dedicate, 7 (1978), 259-280.
- [7] T. Kashiwada, On restricted curvature operators of the second kind, in preparation.
- [8] H.B. Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
- [9] I. Mogi and H. Nakagawa, On hypersurfaces with parallel Ricci tensor in a Riemannian manifold of constant curvature, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 267-279.
- [10] K. Nomizu, On the spaces of generalized curvature tensor fields and second fundamental forms, Osaka J. Math., 8 (1971), 21-28.
- [11] E. Ômachi, Hypersurfaces with harmonic curvature in a space of constant curvature, Preprint.
- [12] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
- [13] S. Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad., 50 (1974), 301-302.
- [14] T. Takagi, Lecture on algebra, Kyoritsu, Tokyo, 1930 (in Japanese).
- [15] M. Umehara, Hypersurfaces with harmonic curvature, Tsukuba J. Math. 10 (1986), 79-88.

Kyungpook Univ. Taegu, 635 Korea and Univ. of Tsukuba Ibaraki, 305 Japan