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HYPERSURFACES WITH HARMONIC CURVATURE

Masaaki UMEHARA

Introduction.

A Riemannian curvature tensor is said to be harmonic if it satisfies

$R_{ijk}=R_{ikj}$ ,

where $R_{ijk}$ denotes the covariant derivative of Ricci tensor $R_{ij}$ . This condition is
essentially weaker than that for the parallel Recci tensor. In fact Derdzi\’{n}ski [21

gave an example of a 4-dimentional Riemannian manifold with harmonic curva-
iure whose Ricci tensor is not parallel.

Recently E. $\hat{0}$machi [5] investigated compact hypersurfaces with harmonic
curvature in a Euclidean space or a sphere and gave a classification of such hyper-

surfaces provided that the mean curvature is constant.
This paper is concerned with hypersurfaces with harmonic curvature iso-

metrically immersed into a Riemannian manifold of constant curvature. In the
first section, a concept of Codazzi type for a symmetric $(0,2)$ -tensor is introduced
and a sufficient condition for a symmetric tensor of Codazzi type to be parallel is
given. A similar condition for a symmetric tensor of Codazzi type is also treated
by S. Y. Cheng an S. T. Yau [1]. In the second section, the result proved in the
first section is applied to hypersurfaces with harmonic curvature immersed in a
Riemannian manifold of constant curvature, in which $\hat{0}$machi’s result [5] is gene-
ralized without the assumption of compactness. Finally we study also the case
where the assumption that the mean curvature is constant is omitted.

\S 1. Symmetric tensor of Codazzi type.

Let $M$ be an n-dimentional Riemannian manifold and let $\{e_{1}, \cdots, e_{n}\}$ be a local
orthonormal frame field defind on $M$, and $\{\omega_{1}, \cdots, \omega_{n}\}$ denotes its dual field. Here
and in the sequel, indices $i,$ $j,$ $\cdots$ run over the range $\{1, 2, \cdots, n\}$ unless other-
wise stated. Then the structure equation of $M$ are given by

$d\omega_{i}+\Sigma_{f}\omega_{ij}\wedge\omega_{f}=0,$ $\omega_{ij}+\omega_{ji}=0$ ,
$d\omega_{ij}+\Sigma_{k}\omega_{ik}\wedge\omega_{kj}=\Omega_{ij}$ ,

where
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$\Omega_{ij}=(1/2)\Sigma_{k,l}R_{ijkl}\omega_{k}\wedge\omega_{l}$ .

Let $\Sigma_{i,j}\phi_{if}\omega_{j}\otimes\omega_{j}$ be a symmetric $(0,2)$ -tensor field on $M$ Then the covariant
derivative $\phi_{ijk}$ of $\phi_{ij}$ is denifined by

$\Sigma_{k}\phi_{ijk}\omega_{k}=d\phi_{i!^{-\Sigma_{k}}}\phi_{kj}\omega_{ki}-\Sigma_{k}\phi_{ik}\omega_{kj}$ .
$\phi_{ij}$ is said to be of Codazzi type if it satisfies the so-called Codazzi equation

$\phi_{ijk}=\phi_{ikj}$ .

For a symmetric tensor $\phi_{ij}$ , symmetric tensor $\phi_{ij}^{m}(m-1,2,3, \cdots)$ are defind in-
ductively as follows:

$\phi_{if}^{1}=\phi_{ij}$ ,

$\phi_{ij}^{m+1}=\Sigma_{k}\phi_{ik}\phi_{kj}^{m}$ .

Let tr $\phi=\Sigma_{i}\phi_{ii}$ and tr $\phi^{m}=\Sigma_{i}\phi_{ii}^{m}$ .
Now we shall give a sufficient condition for a symmetric tensor of Codazzi

type to be parallel. First of all, the following fact is easily proved.

LEMMA 1.1. Let $\phi,$ $\phi^{2}\ldots.,$ $\phi^{r}$ be a symmetric $(0,2)$ -tensor of Codazzi type.

Then $\phi^{r_{+1}}$ is also of Codazzi type if and only if

(1. 1) $\Sigma_{\iota}\phi_{ilk}\phi_{lj}^{r}-\Sigma_{l}\phi_{ilj}\phi_{l}^{r_{k}}=0$ .

For a symmetric $(0,2)$-tensor $\phi$ of Codazzi type, we define a subset $M_{\phi}$ of $M$ con-
sisting of points $p$ so that there exists a neighborhood $U_{p}$ of $p$ such that the
multiplicity of each principal carvature is constant on $U_{p}$ . The $M_{\phi}$ is an open

and dense subset of $M$ In each connected component of $M_{\phi}$ , the distinct eigen-
values of $\phi$ are considered as smooth functions. Let $\lambda$ be one of such eigenfunc-
tions, and the eigendistribution which is denoted by $\Delta_{\lambda}$ is the set of all eigen-

vectors corresponding to $\lambda$ . Derdzi\’{n}ski [3] showed that the eigendistributions of
$\phi$ are all involutive. We shall give a necessary and sufficient condition of the

eigen distributions of $\phi$ to be parallel.

LEMMA 1.2. Let $\phi$ be a symmetric $(0.2)- tensor$ of Codazzi type. Then $\phi^{2}$ is
also of Codazzi type if and only if the eigendistributions of $\phi$ are all parallel.

PROOF. Let $\{e_{1}, \cdots, e_{n}\}$ be a local orthonormal frame field consisting of the
eigenvector field of $\phi$ , and $\lambda_{i}$ denotes the eigenfunction corresponding to $e_{i}$ . Since
$\phi$ is of Codazzi type, Lemma 1. 1 implies that $\phi^{2}$ is also of Codazzi type if and
only if

$\Sigma_{l}\phi_{ilk}\phi_{lj}-\Sigma_{l}\phi_{ilj}\phi_{lk}=0$ ,
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that is

(1. 2) $(\lambda_{j}-\lambda_{k})\phi_{jki}=0$ .
If $\lambda_{j}\neq\lambda_{k}$ then $d\phi_{jk}=0$ . By the definition of covariant derivative, (1.2) is equival-
ent to the equation

$(\lambda_{j}-\lambda_{k})(\Sigma_{i}\phi_{ik}\omega_{ij}+\Sigma_{i}\phi_{ji}\omega_{ik})=0$ ,

that is

(1. 3) $(\lambda_{j}-\lambda_{k})^{2}\omega_{jk}=0$ ,

which implies that each eigendistribution is parallel. This proves Lemma 1.2.
Under this preparation we shall now prove the following.

THEOREM 1. 3. Let $M$ be an n-dimensional Riemannian manifold and $\phi a$

symmetric $(0,2)$ -tensor defined on M. If $\phi$ and $\phi^{2}$ are both of Codazzi type then
the following assertions are true:

(1) $\phi^{r}(r=1,2,3, \cdots)$ are all of Codazzi type.
(2) Let $\{e_{1}, \cdots, e_{n}\}$ be a frame which diagonalizes the tensor $\phi$ so that $\phi_{ij}=$

$\lambda_{i}\delta_{ij}$ . If $\lambda_{i}\neq\lambda_{j}$ , then Rijij $=0$ .
(3) In addition, if tr $\phi$ is constant, then tr $\phi^{r}(r=1,2,3, \cdots)$ are all constant

and $\phi$ is parallel.

PROOF. By taking the frame $\{e_{1}, \cdots, e_{n}\},$ $(1.1)$ is simplified to

$(\lambda_{j}^{r}-\lambda_{k}^{r})\phi_{ifk}=0$ .

This can be written as

(1. 4) $(\Sigma_{s=0}^{r-l}\lambda_{j}^{s}\lambda_{k}^{r-1-\epsilon})(\lambda_{j}-\lambda_{k})\phi_{ijk}=0$ .

Since $\phi$ and $\phi^{2}$ are both of Codazzi type, using (1. 1) we have

(1. 5) $(\lambda_{j}-\lambda_{k})\phi_{ijk}=0$ .

From (1.4) and (1.5), the first assertion follows immediately. In the next place,
the assertion (2) is considerd. By Lemma 1. 2, eigendistributions of $\phi$ are mutual-
ly orthogonal and parallel. Hence $p\in M_{\phi}$ has a Riemannian product neighborhood
$U_{1}\times\cdots\times U_{l}$ where the tangent space of each $U_{i}$ is spanned by eigenvectors of

$\phi$ with the same eigenvalue. If $\lambda_{j}\neq\lambda_{j}$ then $e_{i}$ and $e_{j}$ belong to the distinct eigen-
distributions, hence $R_{ijij}=0$ . Since $M_{\phi}$ is dense, the assertion (2) holds at every
point in $M$ . We now prove the assertion (3). Since $\phi^{k}(k=1,2,3, \cdots)$ are all of
Codazzi type, we can use (1.1). Contracting (1. 1) with respect to $j$ and $i$ we
have
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$\{1/(r+1)\}(tr\phi^{r+1})_{k}-\Sigma_{l}(tr\phi)_{l}\phi_{lk}^{r}=0$ .

Suppose that tr $\phi$ is constant, then

$($tr $\phi^{r+1})_{k}=0$ $(k=1,2, \cdots, n)$ .

Hence tr $\phi^{r}$ is constant on $M$. Next we prove that $\phi$ is parallel. Since $\phi$ is of
Codazzi type, the well-known Bochner formula is reduced to the following rela-
tion

(1. 6) (1/2) $\Delta(tr\phi^{2})=\Sigma_{i,j.k}(\phi_{ijk})^{2}+\Sigma_{i}\lambda_{i}(tr\phi)_{ii}+(1/2)\Sigma_{i.j}R_{ijij}(\lambda_{i}-\lambda_{j})^{2}$ ,

where $\Delta$ denotes the Laplace operator (cf. [1]). Sinoe $tr\phi$ and $tr\phi^{2}$ are constant
and $\Sigma_{i.j}R_{ijij}(\lambda_{i}-\lambda_{j})^{2}$ is equal to zero, (1.6) implies that $\phi$ is parallel.

To show that $\phi$ is parallel, we assume that tr $\phi$ is constant. If $M$ has posi-

tive or negative sectional curvature, then this condition can be omitted.

COROLLARY 1. 4. Let $M$ be a connected Riemannian manifold with positive or
negative sectional curvature. If $\phi$ and $\phi^{2}$ are both of Codazzi type, then $\phi$ concides
with the Riemannian metric on $M$ up to scalar multiple.

PROOF. From (2) of Theorem 1. 3, all the eigenvalues of $\phi$ are the same,

that is $\lambda_{1}=\cdots=\lambda_{n}$ at every point. So there exists a function $f$ defined on $M$ such
that $\phi_{ij}=f\delta_{ij}$ . Since $\phi$ is of Codazzi type, it is easy to verify $f$ is a constant
function.

\S 2. Hypersurfaces with harmonic curvature.

This section is devoted to the study of hypersurfaces with harmonic curva-
ture immersed into a Riemannian manifold of constant curvature.

Let $M$ be an n-dimensional Riemannian manifold with harmonic curvature
isometrically immersed into a Riemannian manifold of constant curvature $c$ .
Then the second fundamental form $h$ is a symmetric $(0,2)$-tensor of Codazzi type.

Let $\{e_{1}, \cdots, e_{n}\}$ be a frame which diagonalizes the second fundamental form $h$ so
that $h_{ij}=\lambda_{i}\delta_{ij}$ . Then the Gauss equation says

$R_{ijkl}=c(\delta_{ik}\delta_{fl}-\delta_{il}\delta_{jk})+h_{ik}h_{jl}-h_{i\mathfrak{l}}h_{kj}$ .

We have

(2. 1) $R_{ij}=c(n-1)\delta_{ij}+h_{ij}$ tr $h-\Sigma_{l}h_{il}h_{lj}$ ,

where $R_{ij}$ denotes the Ricci tensor of $M$. Hence the covariant derivative $R_{ijk}$ of
$R_{ij}$ satisfies
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(2. 2) $R_{ijk}=h_{ijk}$ tr $h+h_{ij}$ $($tr $h)_{k}$

$-\Sigma_{l}h_{ilk}h_{lj}-\Sigma_{\iota}h_{il}h_{ljk}$ .

Subtracting the equation which exchanges the index $k$ with $j$ in (2.2), since $M$

has harmonic curvature we have

(2. 3) $h_{ik}(trh)_{k}-h_{ik}(trh)_{j}=\Sigma_{\dagger}h_{ilk}h_{lj}-\Sigma_{l}h_{ilj}h_{lk}$ .

The following theorem is an extension of $\hat{0}$mach’s result [5].

THEOREM 2. 1. Let $M$ be a hypersurface with harmonic curvature isometrical-
ly immersed into a Riemannian manifold of constant curvature $c$ . if the mean
curvature is constant, then the principal curvatures are all constant and the num-
$ber$ of distinct principal curvatures is less than or equal to 2. Moreover if the
ambient space is simply connected and $M(\dim M\geqq 3)$ is connected and complete,
then $M$ is totally umbilical or a Riemannian product of two totally umbilical con-
stantly curved submanifolds.

PROOF. Since the mean curvature is constant, from (2.3) we have

(2. 4) $\Sigma_{l}h_{ilk}h_{lj}-\Sigma_{l}h_{ilj}h_{lk}=0$ .
This implies that $h$ and $h^{2}$ are both of Codazzi type. Hence (3) of Theorem 1. 3
implies that the principal curvatures are all constant on $M$. On the othe hand,
(2) of Theorem 1.3 implies that $\lambda_{i}=\lambda_{j}$ or $R_{ijij}=0$ . By the Gauss equation $R_{ijij}$

$=c+\lambda_{i}\lambda_{j}$ , we have

(2. 5) $(c+\lambda_{i}\lambda_{j})(\lambda_{i}-\lambda_{j})^{2}=0$ .

It is a simple algebraic fact that (2. 5) implies $M$ has at most two distinct principal
curvatures. Now we suppose that the ambient space is simply connected and $M$

is connected and complete. If the pricipal curvatures are all the same, then $M$

is totally umbilical. If $M$ has two distinct principal curvatures, using the argu-
ment of K. Nomizu and B. Smith [4] and the rigidity of such an immersion, we
concluded that $M$ is a Riemannian product of two totally umbilical constantly
submanifolds. This proves Theorem 2. 1.

Using Theorem 2. 1, we obtain the following result.

THEOREM 2. 2. Let $M$ be a connected hypersurface with harmonic curvature
isometrically immersed into a Riemannian manifold of constant curvature. If the
multiplicity of the each principal curvature is everywhere greater than or equal to
2, then $M$ satisfies one of the following conditions.

(1) The second fundamental form of $M$ is degenerate everywhere.
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(2) The principal curvatures are all constant and the number of distinct prin-
cipal curvatures is less than or equal to 2.

In order to prove this theorem, two lemmas are first of all prepared.

LEMMA 2.3. In the assumption of Theorem 2. 2, if the second fundamental
form $h$ is nondegenerate at the point $p$ , then $d(trh)=0$ at $p$ .

PROOF. Since the second fundamental form $h$ is nondegenerate at $p$ , all the
principal curvatures are not equal to zero. From (2.3), we have

(2. 6) $\lambda_{i}\delta_{ij}(trh)_{k}-\lambda_{k}\delta_{ik}$ $($tr $h)_{j}=(\lambda_{j}-\lambda_{k})h_{jki}$ .
Since the principal curvatures are nonsimple, for a fixed index $k$ , there exists an
index $j$ such that $j\neq k$ and $\lambda_{j}=\lambda_{k}$ . In (2.6) putting $i=j$ then

$\lambda_{j}(trh)_{k}=(\lambda_{j}-\lambda_{k})h_{jkj}$ .

Since $\lambda_{j}=\lambda_{k}$ and $\lambda_{j}\neq 0$ , we have $($ tr $h)_{k}=0$ . This implies $d(trh)=0$ at $p$ .

LEMMA 2.4. In the assumption of Theorem 2.2, if the second fundamental
form is degenerate at one point, then it is degenerate everywhere.

PROOF. Suppose that there exist two points $p$ and $q$ on $M$ so that the second
fundamental form is nondegenerate at $p$ and degenerate at $q$ . and consider a
curve $\tau=x_{t}(0\leqq t\leqq 1)$ such that $x_{0}=p$ and $x_{1}=q$ . Putting

$\delta=\inf_{t\in[1.0]}\{\det A_{xt}=0\}$ ,

where $A_{xt}$ is the shape opeator at $x_{l}$ , then by the continuity of the shape
operator, we see that

(2. 7) $\det A_{x_{\delta}}=0$ .
On the other hand, for all $s(0\leqq s\leqq\delta)$ , there exist an open subset $U_{s}$ such that
$U,\supset\{x_{l} : 0\leqq t\leqq p\}$ and $\det A_{y}\neq 0$ for all $y\in U_{s}$ . Since the second fundamental form
is nondegenerate on $U_{s}$ , from the Lemma 2. 3, the mean curvature is constant
on $U_{\epsilon}$ . Applying Theorem 2. 1, we see that the principal curvatures are all con-
stant on $U_{\epsilon}$ . Hence

$\det A_{x\epsilon}=\det A_{p}(0\leqq s\leqq\delta)$ ,

so we have

(2. 8) $\det A_{x_{\delta}}=\lim_{s\rightarrow\delta\rightarrow 0}\det A_{xs}=\det A_{p}\neq 0$ .
From (2.7) and (2.8), we can make a contradiction. This proves Lemma 2.4.
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PROOF OF THEOREM 2. 2. If the second fundamental form is nondegenerate
everywhere, then by Lemma 2.3, the mean curvature is constant on $M$. Apply-
ing Theorem 2. 1, we see that $M$ satisfies the second condition of Theorem 2. 2.
If the second fudamental form is degenerate at some point, then by Lemma 2.4,
the second fundamental form is degenerate everywhere. This proves Theorom
2. 2.

Finally we study hypersurfaces with harmonic curvature assuming no other
conditions. We obtain the following result.

THEOREM 2. 5. Let $M$ be a hypersurface with harmonic curvature isometrical-
ly immersed into a Riemannian manifold of constant curvature $c$ and $p\in M$ be a
critical point of the mean curvature $H$.

(1) If $c=0$ , then the number of distinct principal curvatures does not exceed
4 at $p$ .

(2) If $c\neq 0$ , then the number of distinct principal curvatures does not exceed 3
at $p$ .

PROOF. Let $p$ be a critical point of $H$. The covariant derivative $h_{ijkl}$ of $h_{ijk}$

is defined by

$\Sigma_{l}h_{ijkl}\omega_{l}=dh_{ijk}-\Sigma_{l}h_{ljk}\omega_{li}-\Sigma_{l}h_{ilk}\omega_{lj}-\Sigma_{l}h_{ijl}\omega_{lk}$ .

From (2.3), we have

(2. 7) $h_{ijm}(trh)_{k}+h_{ij}(trh)_{km}-h_{ikm}(trh)_{j}-h_{ik}$ $($tr $h)_{jm}$

$=\Sigma_{l}h_{ilkm}h_{lj}+\Sigma_{l}h_{ilk}h_{ljm}-\Sigma_{l}h_{iljm}h_{lk}-\Sigma_{\iota}h_{ilj}h_{lkm}$ .

Substructing the equation which exchanges the index $m$ with $i$ in (2.7), since $h$

is of Codazzi type, we have

$h_{if}(trh)_{km}-h_{mj}(trh)_{ki}-h_{ik}$ $($tr $h)_{jm}+h_{mk}$ $($tr $h)_{ji}$

$=\Sigma_{l}(h_{lkim}-h_{lkmi})h_{li}-\Sigma_{l}(h_{ljim}-h_{ljmi})h_{lk}+2\Sigma_{l}h_{ilk}h_{ljm}-2\Sigma_{l}h_{ilj}h_{lkm}$ .

Applying the Ricci formula we obtain

$h_{ij}(trh)_{km}-h_{mj}(trh)_{ki}-h_{k}$ $($tr $h)_{jm}+h_{mk}$ $($tr $h)_{ji}$

$=\Sigma_{l.s}R_{skim}h_{sl}h_{lj}+2\Sigma_{l,s}R_{s\lim}h_{sk}h_{lj}-\Sigma_{l,s}R_{sjim}h_{sl}h_{lk}+2\Sigma_{l}h_{ilk}h_{ljm}-2\Sigma_{l}h_{ilj}$ hekm .

It simplifies to

(2. 8) $\lambda_{i}\delta_{ij}(trh)_{km}-\lambda_{m}\delta_{nj}(trh)_{ki}-\lambda_{i}\delta_{ik}$ $($tr $h)_{jm}+\lambda_{m}\delta_{mk}$ $($tr $h)_{ji}$

$=(\lambda_{j}-\lambda_{k})^{2}R_{jkim}+2\Sigma_{l}h_{ilk}h_{ljm}-2\Sigma_{l}h_{ilj}h_{lkm}$ .
On putting $k=i$ and $m=j(i\neq j)$ we have
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(2. 9) $-\lambda_{j}(trh)_{ii}-\lambda_{i}$ $($ tr $h)_{jj}=(\lambda_{j}-\lambda_{i})^{2}R_{jiij}+2\Sigma_{l}h_{iil}h_{jjl}-2\Sigma(h_{ilj})^{2}$ .

Since $p$ is a critical point of tr $h,$ $(2.3)$ implies that

(2. 10) $(\lambda_{j}-\lambda_{k})h_{jki}=0$ .

We now suppose that $\lambda_{i}\neq\lambda_{j}$ . From (2.10) it follows that $h_{ijl}=0(l=1,3, \cdots. n)$ .
Hence $\Sigma_{l}h_{iil}h_{jjl}$ and $\Sigma_{l}(h_{ijl})^{2}$ are equal to zero, so we obtain

(2. 11) $\lambda_{j}(trh)_{ii}+\lambda_{i}$ $($tr $h)_{jj}=(\lambda_{i}-\lambda_{j})^{2}R_{ijij}$ .

Denoting that

$x_{k}=(trh)_{kk}$ ,

$c_{ij}=(\lambda_{i}-\lambda_{j})^{2}R_{ijij}=(\lambda_{i}-\lambda_{j})^{2}(c+\lambda_{i}\lambda_{j})$ ,

then (2.11) simplifies to

(2. 12) $\lambda_{j}x_{i}+\lambda_{i}x_{j}=c_{tj}$ .
Now we assume that there exist nonzero distinct principal curvatures $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$

and $\lambda_{4}$ , then we have

$\lambda_{1}x_{2}+\lambda_{2}x_{1}=c_{12}$ ,
$\lambda_{1}x_{4}+\lambda_{4}x_{1}=c_{14}$ ,
$\lambda_{2}x_{4}+\lambda_{4}x_{2}=c_{24}$ ,

from which it follows that

(2. 13) $x_{4}=(1/2\lambda_{1}\lambda_{2})(\lambda_{1}e_{24}+\lambda_{2}c_{14}-\lambda_{4}c_{12})$ .

On the other hand, we also have

(2. 14) $x_{4}=(1/2\lambda_{1}\lambda_{3})(\lambda_{1}c_{84}+\lambda_{3}c_{14}-\lambda_{4}c_{13})$ .

Combining (2. 13) together with (2.14) we obtain

$\lambda_{1}\lambda_{2}c_{34}+\lambda_{3}\lambda_{4}c_{12}=\lambda_{8}\lambda_{1}c_{24}+\lambda_{2}\lambda_{4}c_{S1}$ .

Because of $c_{ij}=(\lambda_{i}-\lambda_{j})^{2}(c+\lambda_{i}\lambda_{j})$ , it is reduced to

$\lambda_{1}\lambda_{2}(\lambda_{3}-\lambda_{4})^{2}c+\lambda_{3}\lambda_{4}(\lambda_{1}-\lambda_{2})^{2}c-\lambda_{1}\lambda_{3}(\lambda_{2}-\lambda_{4})^{2}c-\lambda_{2}\lambda_{4}(\lambda_{3}-\lambda_{1})^{2}c$

$=\lambda_{1}\lambda_{2}\lambda_{4}\lambda_{4}\{(\lambda_{2}-\lambda_{4})^{2}+(\lambda_{3}-\lambda_{1})^{2}-(\lambda_{3}-\lambda_{4})^{2}-(\lambda_{1}-\lambda_{2})^{2}\}$ ,

which is rewritten as

$c(\lambda_{1}-\lambda_{4})(\lambda_{8}-\lambda_{2})(\lambda_{2}\lambda_{3}+\lambda_{1}\lambda_{4})=2\lambda_{1}\lambda_{S}\lambda_{3}\lambda_{4}(\lambda_{2}-\lambda_{8})(\lambda_{1}-\lambda_{4})$ .

First of all we consider the case $c=0$ , in which

$\lambda_{1}\lambda_{2}\lambda_{2}\lambda_{4}(\lambda_{2}-\lambda_{3})(\lambda_{1}-\lambda_{4})=0$ .
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Since $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ and $\lambda_{4}$ are all the nonzero distinct principal curvatures, it is im-
possible. Hence the number of nonzero distict principal curvatures is less than
4. So the numer of distinct principal curvatures is at most 4.

Next we consider the case $c\neq 0$ . In this case we have

$(\lambda_{1}-\lambda_{4})(\lambda_{3}-\lambda_{2})(c\lambda_{2}\lambda_{3}+c\lambda_{1}\lambda_{4}-2\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4})=0$ ,

hence

(2. 15) $\lambda_{2}\lambda_{3}+\lambda_{1}\lambda_{4}=(2/c)\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}$ .

Similarly we have

(2. 16) $\lambda_{1}\lambda_{3}+\lambda_{2}\lambda_{4}=(2/c)\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}$ .

From (2.15) and (2.16) we see that

$(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{4})=0$ ,

which leads a to contradiction, hence the number of nonzero distinct principal curva-
tures are less than 4. But if $M$ has three distinct principal curvatures $\lambda_{1},$ $\lambda_{2}$ and
$\lambda_{3}$ at $p$ and one of then, say $\lambda_{1}$ is equal to zero, then (2. 12) impries that

$\lambda_{2}x_{1}=c_{12}=c\lambda_{2}^{2}$ ,
$\lambda_{3}x_{1}=c_{13}=c\lambda_{2}^{2}$ .

Hence $\lambda_{2}=\lambda_{3}$ or $\lambda_{2}\lambda_{3}=0$ , this makes a contradiction. Therefore the number of dis-
tinct principal curvatures at $p$ is at most 3.

COROLLARY 2. 6. Let $M$ be a compact hypersurface with harmonic curvature
isometrically immersed into a Riemannian manifold of constant curvature $c$ .

(1) If $c=0$ , then there exists a point $p\in M$ such that the number of distinct
principal curvatures is at most 4.

(2) If $c\neq 0$ , then there exists a point $p\in M$ such that the number of distinct
principal curvatures is at most 3.
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