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AN ASYMPTOTIC EXPANSION FOR A ONE-SIDED
RANK TEST IN A TWO-WAY LAYOUT

By

Taka-aki SHIRAISHI

Abstract. In the randomized block design with I blocks and two treatments, the

within-block rank test is considered. It is found that the test is asymptotically

efficient for a large number of observations per each cell and the asympotic ex-

pansion of that under the null hypothesis is obtained.

\S 1. Introduction

The model is as follows,

$x_{tjk}=\mu+\beta_{i}+\tau_{j}+e_{ijk}$
(1)

for $i=1,$ $\cdots,$
$1,$ $j=1,2$ , and $k=1,$ $\cdots,$ $s_{j}$ , where

$\sum_{i=1}^{I}\beta_{i}=0,$ $\tau_{1}+\tau_{2}=0$ and $\{e_{ijk} : i=1, \cdots, I, j=1,2, k=1, \cdots, s_{j}\}$

are independent and identically distributed random variables from a distribution

function $F(t)$ with density $f(t)$ .
The null hypothesis is $H:\tau_{1}=\tau_{2}=0$ and the altemative is $K;\tau_{1}<\tau_{2}$ . If $1=1$ ,

(1) is the two-sample problem, the locally most powerful rank test exists and it

is asymptotically optimum. Then the exact table of significance levels for small

samples and special scores is given, the asymptotic normality is followed, and

recently Bickel and Zwet [1] and Robinson [6] derived the asymptotic expansion

of the test. In the present paper, we will propose the asymptotically optimum

rank test and extend Robinson’s result to the case of the model (1).

\S 2. Test statistic

In order to simplify the notations, we set $s=s_{1},$ $l=s_{2},$ $s+t=n,$ $p=s/n$ and $\dot{q}=$

$1-p$ . Here define the scores function $a_{n}(\cdot)$ by a mapping from $\{1,2, \cdots, n\}$ to $R^{1}$

satisfying $a_{n}(k)=-a_{n}(n-k+1)$ for $k=1,2,$ $\cdots,$ $n$ and $\sum_{k=1}^{n}\{a_{n}(k)\}^{2}=1$ , and define within-

block rank $R_{ijk}$ by the rank of $X_{ijk}$ among the i-th block { $X_{ijk}$ : $j=1,2,$ $k=1,2$ ,
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$s_{j}\}$ . Then we reject $H$, if $S=\sqrt{(n-1)/(lpqn)}\sum_{i=1}^{I}\sum_{k=1}^{s}a_{n}(R_{i1k})$ is too large. Hence
if

$a_{n}(k)=E\{-f^{\prime}(X_{n^{(k)}})/f(X_{n^{(k)}})\}/\sqrt{\sum_{k=1}^{n}[E\{-f^{\prime}(X_{n^{(k)}})/fX_{n^{(k)}})\}]^{2}}$ , (2)

it is a locally most powerful within-block rank test and we find the fo llowing
proposition.

PROPOSITION. Let

$P(\underline{x})=\prod_{i=1}^{I}\prod_{j=1}^{2}\prod_{k=1}^{j}f(x_{ijk}-\mu-\beta_{i})s$ and $Q_{n\Delta}(\underline{x})=\prod_{i=1}^{I}\prod_{j=1}^{2}\prod_{k=1}^{j}f(x_{ijk}-\mu-\beta_{i}-\Delta_{j}/\sqrt{n})s$

where $\Delta_{1}+\Delta_{2}=0$ . Also suppose that $a_{n}(k)$ is defined by (2). If the sequence of the
joint density functions of $\{X_{ijk} : i=1, \cdots, I, j=1,2, k=1,2, \cdots, s_{j}\}$ is $\{Q_{n\Delta}(\underline{x})\}$ and
$\lim_{n\rightarrow\infty}s_{j}/n=p_{f}$ where $p_{j}>0$ , then

$\lim_{n\rightarrow\infty}Pr\{S\geqq s_{\alpha}\}=\lim_{n\rightarrow\infty}Pr\{\log\{Q_{n\Lambda}(X)/P(X)\}--\geqq t_{\alpha}\}$ , (3)

where $s_{a}$ and $t_{\alpha}$ are upper $\alpha$-percentage points.

PROOF. As our proposed tests are similar to $\mu$ and $\beta_{i}$ , we may assume $\mu=\beta_{i}$

$=0$ in the model (1). Then from LeCam’s third lemma stated in VI 1.4 of [5]
and from theorem V 2.1 of [5], it follows that

$\log\{Q_{nA}(-X)/P(X)\}=\log-[\prod_{i=1}^{I}J=1k=1$

$\overline{L}N(-l(f)b^{2}/2, I(f)b^{2})$ under $H$

$\vec{}^{L}N(I(f)b^{2}/2, I(f)b^{2})$ under $\{Q_{n\Delta}(\underline{x})\}$ probability,

where $1(f)$ is the Fisher information number and

$b^{2}=\sum_{j=1}^{2}Ip_{j}(\Delta_{j}-\sum_{k=1}^{2}p_{k}\Delta_{k})^{2}$

On the other hand, from [5],

$X_{i}=\sum_{k=1}^{s}a_{n}(R_{i1k})/\sqrt{pq}\vec{}^{L}N(O, 1)$ under $H$

$\vec{}^{L}N(\sqrt{l(f)/I}b, 1)$ under $\{Q_{n\Delta}\}$ probability.

Since $\{X_{i} : 1\leqq i\leqq n\}$ are independent random variables, from theorem 3.2 of [2],

$S\vec{}^{L}N(O, 1)$ under $H$

$\vec{}^{L}N(\sqrt{I(f)}b, 1)$ under $\{Q_{\Delta}\}$ probability.

Therefore the left and right hands of the equation (3) of the proposition are
equal to $1-\Phi(k_{\alpha}-\sqrt{I(f)}b)$ where $\Phi(\cdot)$ is the standard normal distribution function
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and $k_{\alpha}$ is the upper $\alpha$ -percentage point of $\Phi(\cdot)$ . So the result follows.

The right hand of the equation (3) is the asymptotic power of the most power-

ful test for $H$ versus $K_{n}$ : $\tau_{j}=\Delta_{j}/\sqrt{n}$ as $ n\rightarrow\infty$ . Hence when $\tau_{j}$ is small and $a_{n}(k)$

is defined by (2), the test based on $S$ is efficient. H\’ajek and Sid\’ak [5] refer to

the rank test satisfying this proposition as asymptotically optimum.

\S 3. Asymptotic expansion

In order to investigate the asymptotic expansion of the test based on $S$ under

the null hypothesis, we need the following definitions. Let $A_{rn}=\sum_{k=n}^{n}|a_{n}(k)|^{r},$ $b_{n}=$

$\max|a_{n}(k)|,$ $p=s/n,$ $q=t/n$ and let the notation $\#$ denote the number of elements.
$1\leq k\leq n$

Also we set Assumption (I).

ASSUMPTION (I)

For any $c>0$ , there exist $\epsilon>0,$ $c^{\prime}>0$ and $\delta$ not depending on $n$ and $x$ which

satisfy the condition:
for any $x\in R^{1}$ ,

$\#$ { $ k:|a_{n}(k)t-x-2r\pi|>\epsilon$ for $r=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ and $t\in(cb_{n}^{-1},$ $c^{\prime}A_{5n^{1}}^{-})$ } $\geqq\delta n$ .

Robinson [6] showed that Wilcoxon and normal scores satisfy Assumption (I).

Here we get the theorem.

THEOREM
$lf$ we set

$G_{ns}(x)=\Phi(x)+D^{4}\Phi(x)\{(1-6pq)A_{4n}/(24pqI)-(1-4pq)/(8pqIn)\}$

and suppose that Assumption (I) is satisfied, where $\Phi(x)$ is the standard normal

distribution function and $D^{4}$ is the fourth differential, then $|Pr\{S\leqq x\}-G_{ns}(x)|<BA_{6n}$

for all $x$ , where $B$ is a function of $p$ only.

PROOF. The characteristic function of $\sqrt{(n-1)/(npq)}\sum_{k=1}^{s}a_{n}(R_{itk})$ is from [3],

$f_{ns}(t)=\left(\begin{array}{l}n\\s\end{array}\right)\sum\exp[i\sqrt{(n-1)/(npq)}t\{a_{n}(k_{1})+\cdots+a_{n}(k_{s})\}]$

$=[2\pi B_{ns}(p)]^{-1}\int_{-\pi}^{\pi}\prod_{k=1}^{n}[q+pe^{i1^{\sqrt{(n-1)/(npq)}}ta_{n}(k)+\theta 1}]e^{-i\theta^{S}}d\theta$

where $\Sigma$ is the summation over all vectors $(k_{1}, \cdots, k_{s})$ with integer elements and

$1\leqq k_{1}<\cdots k_{s}\leqq n$ and $B_{ns}(p)=\left(\begin{array}{l}n\\s\end{array}\right)p^{s}q^{n-s}$ .

Here we transform
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$ f_{ns}(t)=[(npq)^{1/2}2\pi B_{ns}(p)]^{-1}\int_{-\pi(npq)^{1/2}}^{\pi}(npq)^{1/2}\prod_{k=1}^{n}o_{k}(\psi, t)d\psi$ ,

where

$\rho_{k}(\psi, t)nk\iota$’ and $\xi_{nk}=n^{-1/2}\psi+\sqrt{(n-1)/n}ta_{n}(k)$ .
Hence the characteristic function of $S$ is $\{f_{ns}(t/\sqrt{I})\}^{I}$ . Setting

$g_{ns}(t)=e^{-l^{2}/2}[1+t^{4}\{(1-6pq)A_{4n}/(24pq)-(1-4pq)/(8pqn)\}]$ ,

the distribution function with characteristic function $\{g_{ns}(t/\sqrt{I})\}^{I}$ is

$H_{ns}(x)=\Phi(x)+\sum_{k=1}^{I}D^{4k}\Phi(x)\left(\begin{array}{l}I\\k\end{array}\right)\{(1-6pq)A_{4n}/(24I^{2}pq)-(1-4pq)/(8I^{2}pqn)\}^{k}$

where $D^{4k}$ is the $4k$-th differential.
Then from XVI. 3 lemma 1 of [4],

$|F_{ns}(x)-H_{ns}(x)|\leqq 1/\pi\int_{-T}^{T}|\{f_{ns}(t/\sqrt{I})\}^{I}-\{g_{ns}(t/\sqrt{l})\}^{I}/t|dt+24d/(\pi T)$

$\leqq l/\pi\int_{-T}^{T}|f_{ns}(t/\sqrt{I})-g_{ns}(t/\sqrt{l})|/|t|dt+24d/(\pi T)$ ,

where $d=\sup_{x}\{H_{ns}^{\prime}(x)\}$ .

Hence if we take $T=c^{\prime}A_{sn^{1}}^{-}$ , from the similar way of getting the $equatiolus(17)$

and (18) of [6], we find that

$\int_{-T}^{-\tau^{-\iota}}+\int_{T-1}^{T}|f_{ns}(t/\sqrt{I})-g_{ns}(t/\sqrt{I})|/|t|dt\leqq B_{1}A_{5n}$

and

$\int_{-T-1}^{\tau-1}|f_{ns}(t/\sqrt{l})-g_{ns}(t/\sqrt{I})|/|t|dt\leqq B_{2}A_{5n}$ .
Here we get $|F_{ns}(x)-H_{ns}(x)|<B_{3}A_{5n}$ , where $B_{1},$ $B_{2}$ and $B_{3}$ are functions of 1) only.
Now from the Holder inequality, since $A_{4n}\geqq n^{-1}$ and

$A_{4n}=\sum_{k=1}^{n}|a_{n}(k)|^{4}\leqq\{\sum_{k=1}^{n}|a_{n}(k)|^{2}\}^{1/\$}\{\sum_{k=1}^{n}|a_{n}(k)|^{6}\}^{2/\$}=A_{sn^{3}}^{2/}$ ,

we have $A_{4n}/n\leqq A_{4n}^{2}\leqq A_{5n}$ .
Therefore we get the theorem.
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